JPS58194907A - Production of vinyl chloride paste resin - Google Patents

Production of vinyl chloride paste resin

Info

Publication number
JPS58194907A
JPS58194907A JP7629682A JP7629682A JPS58194907A JP S58194907 A JPS58194907 A JP S58194907A JP 7629682 A JP7629682 A JP 7629682A JP 7629682 A JP7629682 A JP 7629682A JP S58194907 A JPS58194907 A JP S58194907A
Authority
JP
Japan
Prior art keywords
latex
vinyl chloride
water
particles
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7629682A
Other languages
Japanese (ja)
Other versions
JPH0153882B2 (en
Inventor
Seiji Fujino
清治 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP7629682A priority Critical patent/JPS58194907A/en
Priority to US06/457,246 priority patent/US4569991A/en
Priority to EP83100366A priority patent/EP0084837B1/en
Priority to DE8383100366T priority patent/DE3380411D1/en
Priority to CA000420060A priority patent/CA1235547A/en
Priority to ES519256A priority patent/ES519256A0/en
Priority to BR8300366A priority patent/BR8300366A/en
Publication of JPS58194907A publication Critical patent/JPS58194907A/en
Priority to US06/723,186 priority patent/US4581444A/en
Publication of JPH0153882B2 publication Critical patent/JPH0153882B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate separation of free water from solids to thereby produce the titled paste resin in good efficiency, by adding a specified water-soluble cationic high-molecular compound to a vinyl chloride (co)polymer latex and coagulating the particles in the latex. CONSTITUTION:Use is made of a water-soluble cationic high-molecular compound of formula I or II [wherein R1-R4 are each H or a 1-4C alkyl, Z is -(CH2)-, formula III, m and n are each 1-6, X and Y are each a halogen and n>=2], preferably, one having positive charges (surface charge density >= about 10<-5>C/cm<2>) and a particle diameter of about 0.01-10mu. Namely, about 0.001- 5wt%, based on the weight of the contained particles, above high-molecular compound is added to a vinyl (co)polymer latex to coagulate the particles without flocculating them, the free water is removed by decantation, filter pressing or a like operation, and the obtained cake (solids concentration about 65-78%) is dried.

Description

【発明の詳細な説明】 本発明は、塩化ビニル系樹脂ラテックス中に水溶性カチ
オン高分子凝集剤を添加して固形分濃度を高めた後塩化
ビニル系樹脂を分離する塩化ビニルペーストレジン(以
下ベーストレジンという)の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a vinyl chloride paste resin (hereinafter referred to as base paste) that separates vinyl chloride resin after increasing the solid content concentration by adding a water-soluble cationic polymer flocculant to vinyl chloride resin latex. (referred to as resin).

近年ベーストレジン製造の際、原油の価格上昇にともな
い、ラテックス中の水分を除去して固形分濃度を高めて
乾燥時のエネルギーコスト上昇を防ぐ方法が種々考えら
れている。
In recent years, in the production of base resin, with the rise in the price of crude oil, various methods have been considered to remove water from latex to increase the solid content concentration to prevent increases in energy costs during drying.

従来、ペーストレジンは、乳化重合法やマイクロサスペ
ンション重合法によシ、平均粒子径が約3μm以下のラ
テックスを製造し1.そのラテックスをスプレー乾燥す
る方法が品質の晶から、広く用いられて来た。しかしな
がらこの方法fよれば、ラテックス中の固形分濃度を極
力高くしないと、コストが上昇する。
Conventionally, paste resin has been produced using emulsion polymerization or microsuspension polymerization to produce latex with an average particle size of about 3 μm or less. The method of spray drying latex has been widely used due to its quality. However, according to this method f, the cost increases unless the solid content concentration in the latex is made as high as possible.

また、安定なラテックスとしては、&5%以下の固形分
濃度に保たないと、重合時に、凝集物が多く発生しやす
いか、乳化剤等多量の助剤が必要とな多品質上の問題が
生ずるなど、問題がある。そのため、従来は、ラテック
ス中の粒子濃度を30〜40%程度まで、濃縮したのち
、スプレー乾燥等によシ乾燥する方法が行なわれている
。一方ラテックスを凝集させたのち、p過や遠心脱水す
ることに上シ、粒子濃度を上昇させ、乾燥エネルギー費
の1徂減を計ることは、容易に考えられる。しかしなが
ら、ラテックスを単に凝集させたのでは、凝集物中に多
量の水分が包含され、沖過や遠心脱水ができないのみk
らず、付着性が強く、流動性のないものとなり、工業的
な取゛り扱いに困難を極めるので好ましくない。
In addition, as a stable latex, if the solid content concentration is not maintained at 5% or less, a large number of aggregates will easily occur during polymerization, or many quality problems will occur such as the need for large amounts of auxiliary agents such as emulsifiers. There are other problems. Therefore, the conventional method has been to concentrate the particle concentration in latex to about 30 to 40% and then dry it by spray drying or the like. On the other hand, it is easy to imagine that after agglomerating the latex, it can be subjected to p-filtration or centrifugal dehydration to increase the particle concentration and thereby reduce the drying energy cost by one degree. However, if the latex is simply agglomerated, a large amount of water will be included in the agglomerate, making it impossible to carry out filtration or centrifugal dehydration.
However, it is not preferable because it has strong adhesive properties and no fluidity, making it extremely difficult to handle industrially.

またペーストレジンは、ラテックス中の水分を除去した
のちポリ塩化ビニールを可塑剤中に□分散してプラスチ
ゾルを与えなければならないが、単に多価金属や従来知
られている凝集剤等で凝集させたものは、プラスチゾル
にならないか又は、プラスチゾルの粘度を非常に高いも
のにしてしまいペーストレジンとしての商品価値を大き
く損なう。即ち従来公知の凝集方法は、ラテックス中の
乳化剤の作用を失活させるか、粒子相互を高分子鎖で結
んだ9、粒子表面電荷を除去する方法などによっていた
ので、これらの方法に基ず<111.:1.凝集方法に
おいては、−塵粒子を乾燥させるとぐ、粒子が、可塑剤
中で、再分散しない。   賃 従来からよく知られている凝集の理論は、Snnoln
chowskiの急速凝集の理論に述べられているよう
に、ラテックスの各粒子がブラウン運動を行っている間
に、相互に粒子が衝突して凝集がおこシ、これによシ全
粒子数が減少し、凝集が完成し、最終的には1つの大き
な塊となる。
In addition, for paste resin, it is necessary to remove the moisture in the latex and then disperse polyvinyl chloride in a plasticizer to give plastisol, but it is not possible to simply agglomerate it with polyvalent metals or conventionally known flocculants. Otherwise, the plastisol will not turn into plastisol, or the viscosity of the plastisol will become extremely high, greatly impairing its commercial value as a paste resin. That is, conventional aggregation methods have been based on methods such as deactivating the effect of the emulsifier in latex, linking particles with polymer chains9, or removing particle surface charges. 111. :1. In the agglomeration method - once the dust particles are dried, the particles do not redisperse in the plasticizer. The well-known theory of agglomeration is Snnoln.
As stated in Chowski's theory of rapid agglomeration, while each latex particle is undergoing Brownian motion, the particles collide with each other and agglomeration occurs, which reduces the total number of particles. , the aggregation is completed and finally becomes one large lump.

このような凝集では、水分が凝集体中に包含されてしま
い、脱水しても含水率が高く、そのうえ粒子がお互いに
付着しているため脱水乾燥後、分散しようとしてもなか
なか分散しない。このためペーストレジンの製″造方法
としては不適当である。
In such agglomeration, water is included in the aggregates, and even after dehydration, the water content remains high. Furthermore, since the particles adhere to each other, they are difficult to disperse even if they are attempted to be dispersed after dehydration and drying. Therefore, this method is inappropriate as a method for producing paste resin.

本発明者は先に水溶性カチオン高分子化合物をラテック
スに添加するラテ、ツクスの凝集方法を特願昭37−/
、 05g、、、 7号として出願したが、その後の研
究において、当該先願に記載されていない構造式を有す
る水溶性カチオン高分子化合物でも塩化ビニル樹脂ラテ
ックスに対して良好な凝集作用を有することを見いだし
た。
The present inventor previously proposed a method for aggregating latte and tuxu by adding a water-soluble cationic polymer compound to latex in a patent application filed in 1972-/
, 05g,..., filed as No. 7, but subsequent research revealed that even a water-soluble cationic polymer compound with a structural formula not described in the earlier application had a good flocculating effect on vinyl chloride resin latex. I found it.

本発明者は、ラテックス中の粒子同志を接着させないで
凝集の起る現象−を探索した結果、ラテックス中に特定
の水溶性カチオン高分子化合物を添加すると粒子同志を
接着させることなぐ凝集させることができ、かつ水の・
離も容易であることを見いだし本発明に到達した。
As a result of exploring the phenomenon of aggregation occurring without adhesion of particles in latex, the present inventor found that when a specific water-soluble cationic polymer compound is added to latex, particles can be agglomerated without adhesion. Possible and water ・
The present invention was achieved by discovering that it is easy to separate.

本発明の目的は、ラテックス中の粒子を凝固させること
なく凝集させた後固形分を遊離水から分離するペースト
レジンの製造方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a paste resin in which particles in latex are aggregated without coagulating and the solid content is separated from free water.

しかして、本発明の要旨は、塩イヒビニル樹脂ラテック
スまたは塩化ビニル系共重合体ラテックスに、下記一般
式C1:lまたは(It)で表わされる水溶性カチオン
高分子化合物を添加した後固形分を分離することを特徴
とする塩化ビニルペーストレジンの製造方法に存する。
Therefore, the gist of the present invention is to separate the solid content after adding a water-soluble cationic polymer compound represented by the following general formula C1:l or (It) to vinyl chloride resin latex or vinyl chloride copolymer latex. A method for producing a vinyl chloride paste resin is provided.

一般式CI] 一般式[11] (式中、R,、R2、R,及びR2は水素原子または炭
素原子数l、gのアルキル基、 Zは−(CH2)m−基、−CH2→Q←CH2−基、
−(CH2)m−〇−(CH2)n−基、X及びYはハ
ロゲン原子で、同一であっても異なっていてもよい。
General formula CI] General formula [11] (wherein, R,, R2, R, and R2 are hydrogen atoms or alkyl groups with carbon atoms 1 and g, Z is -(CH2)m- group, -CH2→Q ←CH2- group,
-(CH2)m-〇-(CH2)n- group, X and Y are halogen atoms, which may be the same or different.

m及びnはt〜乙の整数で、同一であっても異なってい
てもよい。
m and n are integers from t to B, and may be the same or different.

tは2以上の整数 1 をそれぞれ示す。) 以T4発、を詳細ゆ説q!i名。t is an integer greater than or equal to 2 1 are shown respectively. ) Detailed explanation of T4 shots! i name.

塩化ビニル樹脂ラテックスまたは塩化ビニル系共重体ラ
テックス(以下単にラテックスということがある。)は
、その種類は特に限定されとそれに共重合可能なコモノ
マーを乳化重合(共重合)またはマイクロサスペンショ
ン重合(共重合)して得られる。具体的にはポリ塩化ビ
ニルラテツク(エマルジョン)、塩化ビニル−酢酸ビニ
ル共重合体ラテックス等が挙げられる。
Vinyl chloride resin latex or vinyl chloride copolymer latex (hereinafter sometimes simply referred to as latex) is produced by emulsion polymerization (copolymerization) or microsuspension polymerization (copolymerization) of comonomers that can be copolymerized with it. ) can be obtained. Specific examples include polyvinyl chloride latex (emulsion), vinyl chloride-vinyl acetate copolymer latex, and the like.

本発明方法に使用する一般式〔I〕及び〔■〕の水溶性
カチオン高分子化合物は、各種合成方法によって製造さ
れる。
The water-soluble cationic polymer compounds of general formulas [I] and [■] used in the method of the present invention are produced by various synthetic methods.

一般式[1)及び[11)であられされる化合物は、構
造式中のアルキル基R1s R2” 、R3及び人が水
素原子または01〜.のアルキル基、すなわちメチル基
、エチル基、プロピル基が好ましく、特にメチル基が良
い。
Compounds represented by the general formulas [1) and [11] have a structure in which the alkyl groups R1s, R2'', R3, and a hydrogen atom or an alkyl group of 01 to 0, i.e., a methyl group, an ethyl group, a propyl group, Preferably, methyl group is particularly preferred.

X及びYはクロ、ルまたはブロム原子で両者はIQ−4
’あっ7.よ:1・:・1い。2.−t、炭素い工数7
〜。
X and Y are chlorine, ru or bromine atoms, and both are IQ-4
'Ah 7. Yo:1・:・1. 2. -t, carbon man-hours 7
~.

パ1 のm基、具体的にはメチレン基、エチレン基、プロピレ
ン基が好ましい。tの値は、2以上の整数ならどんな数
でもよいが、/ 0−、、 /A;0の範囲、好ましく
はSO〜100の範囲にあるものが望捷しい。tの値が
大きいほど凝集作用が大きい。mとnとの数が大きくな
る。とポリマー鎖中の荷電密度が低くなるので、使用ラ
テックス粒子の電荷を勘案し、m+nの値及びtの数を
適当に選択すべきである。
The m group of Pa1, specifically a methylene group, an ethylene group, or a propylene group, is preferable. The value of t may be any integer greater than or equal to 2, but it is preferably in the range of /0-, /A;0, preferably in the range of SO to 100. The larger the value of t, the greater the aggregation effect. The numbers m and n become larger. Therefore, the value of m+n and the number of t should be appropriately selected in consideration of the charge of the latex particles used.

一般式〔■〕で表わされる化合物は、構造式中、のRB
 s R4が水素原子であるのが好ましい。
The compound represented by the general formula [■] has RB in the structural formula
It is preferred that s R4 is a hydrogen atom.

そして、これら化合物の表面荷電密度が10マイクロク
ーロン/c1f!以上の正の荷電を有する粒子径θ。o
iμm−1oμmの粒子であるのが望ましい。
The surface charge density of these compounds is 10 microcoulombs/c1f! Particle diameter θ having a positive charge equal to or greater than o
Particles of iμm-1oμm are desirable.

水溶性カチオン高分子化合物(以下凝集剤という)は、
ラテックス中の負の電荷を帯びたラテックス粒子と凝集
剤中の正電荷と衝突゛してラテックス粒子は凝集するが
、凝集したもの同志は反撥し合って、分散性が良好とな
り、ラテックス全体は、豆腐状になることなく、流動性
のすぐれた、水分離性のよい分散液となる。
The water-soluble cationic polymer compound (hereinafter referred to as flocculant) is
The negatively charged latex particles in the latex collide with the positive charges in the flocculant, causing the latex particles to aggregate, but the aggregated particles repel each other, resulting in good dispersibility, and the latex as a whole The resulting dispersion has excellent fluidity and good water separation properties without becoming tofu-like.

凝集剤は、必要によシ、水またはその他の媒体に溶解し
て用いてもよい。
The flocculant may be used after being dissolved in water or other medium, if necessary.

しかして、凝集剤の添加量は、ラテックス中の粒子重量
当シ0.θθ/−5重量%、好ましくけ0゜0l−2重
量%の範囲で添加することにより種々の凝集粒子状態の
ものが得られる。添加量を少量ずつ増加していくと、ラ
テックスは、次第に粘度が増大し、さらに添加していく
と逆に粘度ヵ9低T’L−r:4お。ユ。、程を光学顕
微鏡ア観察すると、初めの段階でラテックス粒子は相互
にイオジボリマーとして作用しあって凝集し、大きな凝
集粒子として存在する。添加量の少ない場合は、小さな
粒子径を有する凝集体が主体であり、添パ加量の増加に
伴ない凝集粒子径の増L4μ 大化が行われ、さらに添加すると今度は凝集粒子径は分
割されlO〜100μ程度、特に20〜Sθμ程度のほ
ぼ均一な凝集粒子径に変ってくる。そして、凝集剤の添
加量によシ凝集粒子径を所望の大きさにすることができ
る。
Therefore, the amount of the flocculant added is 0.00000000000000000000000 though is 0.0000000000,000 per the weight of the particles in the latex. By adding θθ/−5% by weight, preferably in the range of 0°0l−2% by weight, various agglomerated particles can be obtained. As the amount of latex added is increased little by little, the viscosity of the latex gradually increases, and as the amount is further added, the viscosity becomes 9. Yu. When the process is observed using an optical microscope, the latex particles initially interact with each other as iodine polymers and aggregate, and exist as large aggregated particles. When the amount added is small, the aggregates with a small particle size are the main body, and as the amount added increases, the aggregate particle size increases by 4μ, and when further addition is made, the aggregate particle size becomes divided. The agglomerated particle size changes to a substantially uniform diameter of about 10 to 100μ, especially about 20 to Sθμ. The diameter of the aggregated particles can be adjusted to a desired size by adjusting the amount of the flocculant added.

本発明の方法によれば、ラテックスに凝集剤を添加し、
攪拌後放置すると水とラテックス粒子凝集体とが容易に
分離し、デカンテーションによシ水を除くことができ、
遠心分離機での脱水によシ固形分濃度約72%程度まで
、またフィルタープレスによれば固形分濃度約7ざチま
で脱水できる。
According to the method of the present invention, a flocculant is added to the latex,
If left after stirring, the water and latex particle aggregates will easily separate, and the water can be removed by decantation.
Dehydration using a centrifugal separator can reduce the solid content to about 72%, and using a filter press can reduce the solid content to about 7%.

したがって、本発明の方法によれば約2λ〜35%程度
の水分を蒸発させれば良いため、従来の乾燥に伴なうエ
ネルギーコストは著しく低減され大幅な製造コストダウ
ンを計ることができる。
Therefore, according to the method of the present invention, it is only necessary to evaporate about 2λ to 35% of water, so the energy cost associated with conventional drying is significantly reduced, making it possible to significantly reduce manufacturing costs.

また、本発明によシ得られた脱水後のケーキは、水分が
ある特定の値以下になると、急激に区 流動性・失なう。それまでは、比較的高粒子濃度である
にもかかわらず、粘土のような流動特性を示す。このよ
うな性質を利用して、脱水ケーキを造粒することもでき
る。造粒したペース1 ニ ドレジンは通常のペース忙、、、ニレジンがバルク密度
が小さく、粉立ちが激しく、取り扱いに衛生上の問題が
発生しやすいのに比べ、粒子状であるため、粉立ちが少
なく、作業環境維持設備費の低減が計れるのみならず、
バルク密度がo、s g/ ml程度と従来のベースト
レジンのλ倍程度あり、輸送費や倉庫の保管費が従来の
半分程度ですむ利点がある。さらに造粒したベーストレ
ジンは、空気輸送等によシ移送可能であるため、バルク
輸送、更にこの場合自動計測も可能である。そのため、
従来の粉体の取シ扱いと比べ大巾な作業の合理化や作業
環境の改善が可能となる。
Furthermore, the dehydrated cake obtained according to the present invention rapidly loses its fluidity when the moisture content falls below a certain value. Until then, it exhibits clay-like flow properties despite relatively high particle concentrations. Dehydrated cakes can also be granulated by utilizing these properties. Granulated Pace 1 Niresin has a small bulk density and generates a lot of powder, which tends to cause hygiene problems when handling, but because it is in a granular form, it produces less powder. , not only can you reduce the cost of maintenance equipment for the working environment, but also
The bulk density is about 0.sg/ml, which is about λ times that of conventional base resin, and has the advantage that transportation costs and warehouse storage costs are about half of conventional ones. Furthermore, since the granulated base resin can be transported by pneumatic transportation or the like, bulk transportation and further automatic measurement is possible in this case. Therefore,
Compared to conventional handling of powder, it is possible to streamline the work and improve the work environment.

以下に本発明方法を実施例にて詳述するが、本発明は、
その要旨を超えない限シ、以下の実施例に限定されるも
のではない。
The method of the present invention will be explained in detail in Examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

なお、実施例中「部」とあるは、「重量部」を表わす。In addition, "parts" in the examples represent "parts by weight."

′#″fJ /   、、: 300tの耐圧容器を用いて、ラウリル硫酸ナトリウム
0.xl偏・、過硫酸カリ0.03部、重炭酸水素ナト
リウムo、7部、亜硫酸ナトリウム0.07部を塩ピモ
ノマー100部に対し添加し、40℃にて塩ビモノマー
の飽和蒸気圧が2’に9/α低下するまで乳化重合して
、平均粒径θ0gμmノ塩化ビニール樹脂ラテックスを
得り。
'#''fJ / ,,: Using a 300 t pressure vessel, add 0.xl of sodium lauryl sulfate, 0.03 part of potassium persulfate, 7 parts of sodium bicarbonate, and 0.07 part of sodium sulfite to salt. It was added to 100 parts of vinyl chloride monomer and emulsion polymerized at 40° C. until the saturated vapor pressure of the vinyl chloride monomer was reduced to 2′ by 9/α to obtain a vinyl chloride resin latex with an average particle size of θ0 g μm.

このラテックス中の粒子固形分は3g%であった。The particle solids content in this latex was 3g%.

別途3を三ロフラスコを用い、常温で窒素気流中で 混合溶媒itO中に2時間かけて滴下したのち、2tの
水を添加してt週間放置した。この高分子化合物は、一
般式〔1〕においてeがブチレン基、X及びYがそれぞ
れプロ3νある化合物である。
Separately, 3 was added dropwise to the mixed solvent itO in a nitrogen stream at room temperature using a three-ring flask over 2 hours, and then 2 tons of water was added and left for t weeks. This polymer compound is a compound in the general formula [1] in which e is a butylene group and X and Y are each pro3v.

このようにして得られた水溶液を上述のラテックス/ 
00 kgに対し、1.θ3を添加しuo℃でゆつくシ
攪拌したのち、巴工業HpAboスーパーデカンタ−を
用いて、脱水した。含水率37%の脱水ケーキを、不二
パウダル株式会社製の二軸横押出し造粒機EXD−40
を用いて、直径/、/ mmの円形メツシュを用いて脱
水ケーキ中の水分を2’A−29%に調節し、押出し造
粒を行なった。このサンプルを流動乾燥機にてSO℃の
熱風を用いて、/、j時間乾燥し含水率θ、lチ以下の
乾燥レジンを得た。
The aqueous solution thus obtained was mixed with the above-mentioned latex/
00 kg, 1. After adding θ3 and stirring slowly at 0°C, dehydration was performed using a Tomoe Kogyo HpAbo super decanter. A dehydrated cake with a moisture content of 37% is processed using a twin-screw horizontal extrusion granulator EXD-40 manufactured by Fuji Paudal Co., Ltd.
Extrusion granulation was performed using a circular mesh with a diameter of /, / mm to adjust the moisture content in the dehydrated cake to 2'A-29%. This sample was dried in a fluidized fluid dryer using hot air at SO 0 C for /, j hours to obtain a dry resin with a water content of θ, 1 or less.

得られたレジンのかさ密度は0.!;1lfl/ccで
あって、通常のベーストレジンの0.2!flilcc
士0.0!; g/ccの値と比較し、非常に大きな値
を有していた。
The bulk density of the obtained resin was 0. ! ;1lfl/cc, which is 0.2 of normal base resin! flilcc
0.0! ; It had a very large value compared to the value of g/cc.

との227700部に対してジオクチルフタレート(・
0P)60部、非イオン系界面活性剤0.6部、Ca−
Zn系熱安定剤3部、エポキシ化大豆油3部を添加して
プラスチゾルを調製し、B型粘度測定ならびにオープン
熱安定性テストを行ない表1に示した。オープン熱安定
性テストは、/q!;”(:jの熱風循環密閉容器中に
io分間放置したあと、取シ出したフィルムを用い同温
度で黒変するまで続けた。
227,700 parts of dioctyl phthalate (・
0P) 60 parts, nonionic surfactant 0.6 part, Ca-
A plastisol was prepared by adding 3 parts of a Zn-based heat stabilizer and 3 parts of epoxidized soybean oil, and a B-type viscosity measurement and an open heat stability test were conducted, and the results are shown in Table 1. Open thermal stability test is /q! ;''(:j) After being left in a closed hot air circulation container for io minutes, the film was taken out and kept at the same temperature until it turned black.

実施例コ 3tオートクレーブ中にジアリルジメチルアンモニウム
クロライド37りIとジメチルスルホキサイドiosg
を窒素雰囲気中にて、硫酸アンモン/Eを加えて、30
℃でSO時間無攪拌状態で重合させた。得られた固体を
メタノールqooi添加して、溶解後、多量のアセトン
で再沈させ、・N−Na0t溶液にて、極限粘度を測定
したところ、o、qiであった。この化合物は、一般式
〔■〕においてR1及びR2がメチル基、R8及びR,
が水素原子、Xが塩素原子の化合物である。
Example 3 In a 3T autoclave, diallyldimethylammonium chloride 37 and dimethyl sulfoxide iosg
was added with ammonium sulfate/E in a nitrogen atmosphere for 30
Polymerization was carried out at ℃ for an SO hour without stirring. The obtained solid was dissolved in methanol qi and then reprecipitated with a large amount of acetone. The intrinsic viscosity was measured in a .N-Na0t solution and found to be o, qi. This compound has the general formula [■] in which R1 and R2 are methyl groups, R8 and R,
is a hydrogen atom and X is a chlorine atom.

このメタノール溶液200gを、実施例tで用いたラテ
ックス3Otに添加したのち、巴工業■製のスーパーデ
カンタ−pA60を用いて脱′″L7C,ae6%”1
°″n :1.、、:Id o、7“′1であシかつ脱
水ケーキ中の  率は31%であった。
After adding 200g of this methanol solution to 3Ot of the latex used in Example t, it was decanted using a Super Decanter pA60 manufactured by Tomoe Kogyo ■.
°"n: 1., :Ido, 7"'1 and the percentage in the dehydrated cake was 31%.

得られた脱水固形分を棚式乾燥器を用いて50℃で乾燥
し、乾燥レジンを得た。
The obtained dehydrated solid content was dried at 50° C. using a shelf dryer to obtain a dry resin.

乾燥レジンについて実施例1と同様の試験を行った。The same test as in Example 1 was conducted on the dried resin.

比較例1 実施例1で用いたPvCラテックス7000m1に硫酸
アルミニウム3gを添加して凝集させた。
Comparative Example 1 3 g of aluminum sulfate was added to 7000 ml of the PvC latex used in Example 1 to cause agglomeration.

全体が固化し、脱水不可能な状態になった棚式乾燥機に
てs o ”Oで乾燥し、乾燥レジンを得た。
The entire product solidified and was dried in a tray type dryer with s o '' O in a state where dehydration was impossible, to obtain a dry resin.

比較例2 実施例1で用いたPVOラテックス7000m1に、通
常のカチオン系凝集剤(変性ポリアクリルアミド系)2
gを用いて凝集させたところ、全体がクリーム状になり
水分が遊離されず沖紙による脱水が困難であった。
Comparative Example 2 To 7000 ml of PVO latex used in Example 1, 2 ml of ordinary cationic flocculant (modified polyacrylamide type) was added.
When agglomerated using g, the whole became cream-like and water was not released, making it difficult to dehydrate using Okigami paper.

比較例3 実施例1で用いたラテックスを、ヤマト科学製のミニス
プレー“]ドライヤーにて、そのまま乾燥した。熱風温
度は、入口側が120℃、出口′:1 温度が50℃にて行った。(何も処理しないで行った従
来方法) ラテックスはそのままでは遠心脱水や沖過による脱水は
、熱論不可能であった。
Comparative Example 3 The latex used in Example 1 was directly dried in a mini-spray dryer manufactured by Yamato Kagaku.The temperature of the hot air was 120°C on the inlet side and 50°C on the outlet. (Conventional method performed without any treatment) It was impossible to thermally dehydrate latex by centrifugal dehydration or offshore filtration if the latex was left as it was.

表     1Table 1

Claims (1)

【特許請求の範囲】[Claims] (1)塩化ビニル樹脂ラテックスまたは塩化ビニル系共
1合体ラテックスに、下記一般式〔1〕または〔■〕で
表わされる水溶性カチオン高分曹子化合物を添加した後
固形分を分離することを特徴とする塩化ビニルペースト
レジンの製造方法。 一般式〔■〕。 一般式[11] (式中s R1、R2,R1及びR4は、水素原子また
は炭素原子数/−&のアルキル基、 2は−(CH2)m−基、 c R2(yc R2−基
、又は−(CH2)rn−〇−(CH2)n−基、X及
びYはハロゲン原子で、同一であっても異なっていても
よい。 m及びnは/−4の整数で、同一であっても異なってい
てもよい。 tは2以上の整数 をそれぞれ示す。)
(1) A water-soluble cationic polymeric carbonate compound represented by the following general formula [1] or [■] is added to vinyl chloride resin latex or vinyl chloride-based comonomer latex, and then the solid content is separated. A method for producing a vinyl chloride paste resin. General formula [■]. General formula [11] (In the formula, s R1, R2, R1 and R4 are hydrogen atoms or alkyl groups with the number of carbon atoms/-&, 2 is -(CH2)m- group, c R2(yc R2- group, or -(CH2)rn-〇-(CH2)n- group, X and Y are halogen atoms, which may be the same or different. m and n are integers of /-4 and may be the same They may be different. t represents an integer of 2 or more.)
JP7629682A 1982-01-26 1982-05-07 Production of vinyl chloride paste resin Granted JPS58194907A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7629682A JPS58194907A (en) 1982-05-07 1982-05-07 Production of vinyl chloride paste resin
US06/457,246 US4569991A (en) 1982-01-26 1983-01-11 Production of thermoplastic resin
EP83100366A EP0084837B1 (en) 1982-01-26 1983-01-17 Flocculation of latex particles and production of thermoplastic resin
DE8383100366T DE3380411D1 (en) 1982-01-26 1983-01-17 Flocculation of latex particles and production of thermoplastic resin
CA000420060A CA1235547A (en) 1982-01-26 1983-01-24 Flocculation of latex particles and production of thermoplastic resin
ES519256A ES519256A0 (en) 1982-01-26 1983-01-25 A PROCEDURE FOR PRODUCING A WET CAKE FROM A THERMOPLASTIC RESIN.
BR8300366A BR8300366A (en) 1982-01-26 1983-01-26 PROCESS FOR FLOCULATION OF LATEX PARTICLES IN A LATEX AND PROCESS FOR THE PRODUCTION OF A THERMOPLASTIC RESIN
US06/723,186 US4581444A (en) 1982-01-26 1985-04-15 Flocculation of latex particles and production of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7629682A JPS58194907A (en) 1982-05-07 1982-05-07 Production of vinyl chloride paste resin

Publications (2)

Publication Number Publication Date
JPS58194907A true JPS58194907A (en) 1983-11-14
JPH0153882B2 JPH0153882B2 (en) 1989-11-16

Family

ID=13601387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7629682A Granted JPS58194907A (en) 1982-01-26 1982-05-07 Production of vinyl chloride paste resin

Country Status (1)

Country Link
JP (1) JPS58194907A (en)

Also Published As

Publication number Publication date
JPH0153882B2 (en) 1989-11-16

Similar Documents

Publication Publication Date Title
CA1235547A (en) Flocculation of latex particles and production of thermoplastic resin
JP4747090B2 (en) Method for producing emulsion polymerization latex agglomerated particles
JP2005314699A (en) Method for producing fluoropolymer using alkyl sulfonate surfactant
JPS5848584B2 (en) Method for producing graft copolymer
KR102339200B1 (en) Multistage polymer powder composition, its method of preparation and use
JP2890387B2 (en) Method for producing granular polymer
US2894927A (en) Improved film-forming latexes of chloroethylene copolymers and process for preparing same
JPS58194907A (en) Production of vinyl chloride paste resin
JPWO2004076538A1 (en) Polymer particle composition and method for producing the same
JP3879399B2 (en) Method for producing paraffin wax for aqueous dispersion polymerization of tetrafluoroethylene and method for producing tetrafluoroethylene polymer using the same
JP6828462B2 (en) Vinyl chloride-vinyl acetate copolymer particles and automobile underbody coating agent
JPWO2019146782A1 (en) Acrylic polymer coagulated product
JPH0247482B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
KR102366633B1 (en) Polymer powder composition and its method of preparation
JPS59155402A (en) Production of thermoplastic resin
JPH01311129A (en) Thermoplastic polymer powder mixture
US3660332A (en) Process for preparing granular graft copolymers
JPH0329812B2 (en)
JPS61200102A (en) Production of water-absorbing resin
JPS59155403A (en) Production of thermoplastic resin
JPS5834497B2 (en) Ethylene-vinyl ester
CN115124639A (en) Preparation method of low molecular weight polytetrafluoroethylene emulsion
JPH0641209A (en) Production of vinyl chloride resin
JP2001002713A (en) Production of water-absorbing resin
JPH0534366B2 (en)