JPH0153882B2 - - Google Patents

Info

Publication number
JPH0153882B2
JPH0153882B2 JP7629682A JP7629682A JPH0153882B2 JP H0153882 B2 JPH0153882 B2 JP H0153882B2 JP 7629682 A JP7629682 A JP 7629682A JP 7629682 A JP7629682 A JP 7629682A JP H0153882 B2 JPH0153882 B2 JP H0153882B2
Authority
JP
Japan
Prior art keywords
latex
vinyl chloride
water
particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7629682A
Other languages
Japanese (ja)
Other versions
JPS58194907A (en
Inventor
Seiji Fujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Vinyl Co
Original Assignee
Mitsubishi Kasei Vinyl Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Vinyl Co filed Critical Mitsubishi Kasei Vinyl Co
Priority to JP7629682A priority Critical patent/JPS58194907A/en
Priority to US06/457,246 priority patent/US4569991A/en
Priority to EP83100366A priority patent/EP0084837B1/en
Priority to DE8383100366T priority patent/DE3380411D1/en
Priority to CA000420060A priority patent/CA1235547A/en
Priority to ES519256A priority patent/ES8403146A1/en
Priority to BR8300366A priority patent/BR8300366A/en
Publication of JPS58194907A publication Critical patent/JPS58194907A/en
Priority to US06/723,186 priority patent/US4581444A/en
Publication of JPH0153882B2 publication Critical patent/JPH0153882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、塩化ビニル系樹脂ラテツクス中に水
溶性カチオン高分子凝集剤を添加して固形分濃度
を高めた後塩化ビニル系樹脂を分離する塩化ビニ
ルペーストレジン(以下ペーストレジンという)
の製造方法に係る。 近年ペーストレジン製造の際、原油の価格上昇
にともない、ラテツクス中の水分を除去して固形
分濃度を高めて乾燥時のエネルギーコスト上昇を
防ぐ方法が種々考えられている。 従来、ペーストレジンは、乳化重合法やマイク
ロサスペンジヨン重合法により、平均粒子径が約
3μm以下のラテツクスを製造し、そのラテツクス
をスプレー乾燥する方法が品質の面から、広く用
いられて来た。しかしながらこの方法によれば、
ラテツクス中の固形分濃度を極力高くしないと、
コストが上昇する。 また、安定なラテツクスとしては、45%以下の
固形分濃度に保たないと、重合時に、凝集物が多
く発生しやすいか、乳化剤等多量の助剤が必要と
なり品質上の問題が生ずるなど、問題がある。そ
のため、従来は、ラテツクス中の粒子濃度を50〜
60%程度まで、濃縮したのち、スプレー乾燥等に
より乾燥する方法が行なわれている。一方ラテツ
クスを凝集させたのち、過や遠心脱水すること
により、粒子濃度を上昇させ、乾燥エネルギー費
の低減を計ることは、容易に考えられる。しかし
ながら、ラテツクスを単に凝集させたのでは、凝
集物中に多量の水分が包含され、過や遠心脱水
ができないのみならず、付着性が強く、流動性の
ないものとなり、工業的な取り扱いに困難を極め
るので好ましくない。 またペーストレジンは、ラテツクス中の水分を
除去したのちポリ塩化ビニールを可塑剤中に分散
してプラスチゾルを与えなければならないが、単
に多価金属や従来知られている凝集剤等で凝集さ
せたものは、プラスチゾルにならないか又は、プ
ラスチゾルの粘度を非常に高いものにしてしまい
ペーストレジンとしての商品価値を大きく損な
う。即ち従来公知の凝集方法は、ラテツクス中の
乳化剤の作用を失活させるか、粒子相互を高分子
鎖で結んだり、粒子表面電荷を除去する方法など
によつていたので、これらの方法に基ずく凝集方
法においては、一度粒子を乾燥させると、粒子
が、可塑剤中で、再分散しない。 従来からよく知られている凝集の理論は、
Smolnchowskiの急速凝集の理論に述べられてい
るように、ラテツクスの各粒子がブラウン運動を
行つている間に、相互に粒子が衝突して凝集がお
こり、これにより全粒子数が減少し、凝集が完成
し、最終的には1つの大きな塊となる。このよう
な凝集では、水分が凝集体中に包含されてしま
い、脱水しても含水率が高く、そのうえ粒子がお
互いに付着しているため脱水乾燥後、分散しよう
としてもなかなか分散しない。このためペースト
レジンの製造方法としては不適当である。 本発明者は先に水溶性カチオン高分子化合物を
ラテツクスに添加するラテツクスの凝集方法を特
願昭57−10687号として出願したが、その後の研
究において、当該先願に記載されていない構造式
を有する水溶性カチオン高分子化合物でも塩化ビ
ニル樹脂ラテツクスに対して良好な凝集作用を有
することを見いだした。 本発明者は、ラテツクス中の粒子同志を接着さ
せないで凝集の起る現象を探索した結果、ラテツ
クス中に特定の水溶性カチオン高分子化合物を添
加すると粒子同志を接着させることなく凝集させ
ることができ、かつ水の分離も容易であることを
見いだし本発明に到達した。 本発明の目的は、ラテツクス中の粒子を凝固さ
せることなく凝集させた後固形分を遊離水から分
離するペーストレジンの製造方法を提供するにあ
る。 しかして、本発明の要旨は、塩化ビニル樹脂ラ
テツクスまたは塩化ビニル系共重合体ラテツクス
に、下記一般式〔〕または〔〕で表わされる
水溶性カチオン高分子化合物を添加した後固形分
を分離することを特徴とする塩化ビニルベースト
レジンの製造方法に存する。 一般式〔〕 一般式〔〕 (式中、R1,R2,R3及びR4は水素原子または
炭素原子1〜4のアルキル基、 Zは−(CH2n−基、
The present invention is a vinyl chloride paste resin (hereinafter referred to as paste resin) in which a water-soluble cationic polymer flocculant is added to a vinyl chloride resin latex to increase the solid content concentration, and then the vinyl chloride resin is separated.
It pertains to the manufacturing method. In recent years, in the production of paste resin, with the rise in the price of crude oil, various methods have been considered to remove water from the latex to increase the solid content concentration to prevent an increase in energy costs during drying. Conventionally, paste resins have been produced using emulsion polymerization or microsuspension polymerization, with an average particle size of approximately
From the viewpoint of quality, a method of producing latex of 3 μm or less and spray drying the latex has been widely used. However, according to this method,
Unless the solid concentration in the latex is as high as possible,
Costs will rise. In addition, for a stable latex, if the solid content concentration is not maintained at 45% or less, a large amount of aggregates will easily occur during polymerization, or a large amount of auxiliary agents such as emulsifiers will be required, resulting in quality problems. There's a problem. Therefore, conventionally, the particle concentration in latex was
The method used is to concentrate it to about 60% and then dry it by spray drying. On the other hand, it is easily possible to increase the particle concentration and reduce the drying energy cost by agglomerating the latex and then subjecting it to filtration or centrifugal dehydration. However, if latex is simply agglomerated, a large amount of water will be included in the agglomerate, which not only makes it impossible to dehydrate by filtration or centrifugation, but also makes it highly adhesive and non-flowable, making it difficult to handle industrially. It is not desirable because it masters. Paste resin requires the removal of water in latex and then dispersion of polyvinyl chloride in a plasticizer to give plastisol, but it is simply agglomerated with polyvalent metals or conventionally known flocculants. Otherwise, the plastisol will not form or the viscosity of the plastisol will become extremely high, greatly impairing its commercial value as a paste resin. In other words, conventional aggregation methods have been based on methods such as deactivating the effect of emulsifiers in latex, linking particles with polymer chains, or removing particle surface charges. In the drop flocculation method, once the particles are dried, they do not redisperse in the plasticizer. The well-known theory of agglomeration is
As stated in Smolnchowski's theory of rapid agglomeration, while each particle of the latex is undergoing Brownian motion, the particles collide with each other and agglomeration occurs, which reduces the total number of particles and causes aggregation. It is completed and finally becomes one big lump. In such agglomeration, water is included in the aggregates, and even after dehydration, the water content remains high.Furthermore, the particles adhere to each other, so even if an attempt is made to disperse the particles after dehydration and drying, it is difficult to disperse them. Therefore, this method is inappropriate as a method for producing paste resin. The present inventor previously filed a patent application No. 10687/1987 for a latex agglomeration method in which a water-soluble cationic polymer compound is added to latex, but in subsequent research, a structural formula not described in the earlier application was developed. It has been found that the water-soluble cationic polymer compound also has a good flocculating effect on vinyl chloride resin latex. As a result of exploring the phenomenon of agglomeration occurring without adhesion of particles in latex, the present inventor found that by adding a specific water-soluble cationic polymer compound to latex, particles can be agglomerated without adhesion. The present invention was achieved based on the discovery that water can be easily separated. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a paste resin in which particles in a latex are aggregated without coagulating and the solids are separated from free water. Therefore, the gist of the present invention is to add a water-soluble cationic polymer compound represented by the following general formula [] or [] to a vinyl chloride resin latex or a vinyl chloride copolymer latex, and then separate the solid content. A method for producing a vinyl chloride-based resin is provided. General formula [] General formula [] (In the formula, R 1 , R 2 , R 3 and R 4 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, Z is -(CH 2 ) n - group,

【式】 基、−(CH2n−O−(CH2o−基、 X及びYはハロゲン原子で、同一であつても異
なつていてもよい。 m及びnは1〜6の整数で、同一であつても異
なつていてもよい。 lは2以上の整数 をそれぞれ示す。) 以下本発明を詳細に説明する。 塩化ビニル樹脂ラテツクスまたは塩化ビニル系
共重体ラテツクス(以下単にラテツクスというこ
とがある。)は、その種類は特に限定されるもの
ではなく、塩化ビニルまたは塩化ビニルとそれに
共重合可能なコモノマーを乳化重合(共重合)ま
たはマイクロサスペンジヨン重合(共重合)して
得られる。具体的にはポリ塩化ビニルラテツク
(エマルジヨン)、塩化ビニル−酢酸ビニル共重合
体ラテツクス等が挙げられる。 本発明方法に使用する一般式〔〕及び〔〕
の水溶性カチオン高分子化合物は、各種合成方法
によつて製造される。 一般式〔〕及び〔〕であらわされる化合物
は、構造式中のアルキル基R1,R2,R3及びR4
水素原子またはC1〜3のアルキル基、すなわちメチ
ル基、エチル基、プロピル基が好ましく、特にメ
チル基が良い。 X及びYはクロルまたはブロム原子で両者は同
一であつてもよい。Zは、炭素原子数1〜3のア
ルキレン基、具体的にはメチレン基、エチレン
基、プロピレン基が好ましい。lの値は、10以上
の整数ならどんな数でもよいが、10〜1500の範
囲、好ましくは50〜1000の範囲にあるものが望ま
しい。lの値が大きいほど凝集作用が大きい。m
とnとの数が大きくなるとポリマー鎖中の荷電密
度が低くなるので、使用ラテツクス粒子の電荷を
勘案し、m+nの値及びlの数を適当に選択すべ
きである。 一般式〔〕で表わされる化合物は、構造式
中、のR3,R4が水素原子であるのが好ましい。 そして、これら化合物の表面荷電密度が10マイ
クロクーロン/cm2以上の正の荷電を有する粒子径
0.01μm〜10μmの粒子であるのが望ましい。 水溶性カチオン高分子化合物(以下凝集剤とい
う)は、ラテツクス中の負の電荷を帯びたラテツ
クス粒子と凝集剤中の正電荷と衝突してラテツク
ス粒子は凝集するが、凝集したもの同志は反撥し
合つて、分散性が良好となり、ラテツクス全体
は、豆腐状になることなく、流動性のすぐれた、
水分離性のよい分散液となる。 凝集剤は、必要により、水またはその他の媒体
に溶解して用いてもよい。 しかして、凝集剤の添加量は、ラテツクス中の
粒子重量当り0.001〜5重量%、好ましくは0.01
〜2重量%の範囲で添加することにより種々の凝
集粒子状態のものが得られる。添加量を少量ずつ
増加していくと、ラテツクスは、次第に粘度が増
大し、さらに添加していくと逆に粘度が低下して
くる。この過程を光学顕微鏡で観察すると、初め
の段階でラテツクス粒子は相互にイオンポリマー
として作用しあつて凝集し、大きな凝集粒子とし
て存在する。添加量の少ない場合は、小さな粒子
径を有する凝集体が主体であり、添加量の増加に
伴ない凝集粒子径の増大化が行われ、さらに添加
すると今度は凝集粒子径は分割され10〜100μ程
度、特に20〜50μ程度のほぼ均一な凝集粒子径に
変つてくる。そして、凝集剤の添加量により凝集
粒子径を所望の大きさにすることができる。 本発明の方法によれば、ラテツクスに凝集剤を
添加し、撹拌後放置すると水とラテツクス粒子凝
集体とが容易に分離し、デカンテーシヨンにより
水を除くことができ、遠心分離機での脱水により
固形分濃度約72%程度まで、またフイルタープレ
スによれば固形分濃度約78%まで脱水できる。 したがつて、本発明の方法によれば約22〜35%
程度の水分を蒸発させれば良いため、従来の乾燥
に伴なうエネルギーコストは著しく低減され大幅
な製造コストダウンを計ることができる。 また、本発明により得られた脱水後のケーキ
は、水分がある特定の値以下になると、急激に流
動性を失なう。それまでは、比較的高粒子濃度で
あるにもかかわらず、粘土のような流動特性を示
す。このような性質を利用して、脱水ケーキを造
粒することもできる。造粒したペーストレジンは
通常のペーストレジンがバルク密度が小さく、粉
立ちが激しく、取り扱いに衝生上の問題が発生し
やすいのに比べ、粒子状であるため、粉立ちが少
なく、作業環境維持設備費の低減が計れるのみな
らず、バルク密度が0.5g/ml程度と従来のペー
ストレジンの2倍程度あり、輸送費や倉庫の保管
費が従来の半分程度ですむ利点がある。さらに造
粒したペーストレジンは、空気輸送等により移送
可能であるため、バルク輸送、更にこの場合自動
計測も可能である。そのため、従来の粉体の取り
扱いと比べ大巾な作業の合理化や作業環境の改善
が可能となる。 以下に本発明方法を実施例にて詳述するが、本
発明は、その要旨を超えない限り、以下の実施例
に限定されるものではない。 なお、実施例中「部」とあるは、「重量部」を
表わす。 実施例 1 300の耐圧容器を用いて、ラウリル硫酸ナト
リウム0.6部、過硫酸カリ0.03部、重炭酸水素ナ
トリウム0.1部、亜硫酸ナトリウム0.07部を塩ビ
モノマー100部に対し添加し、60℃にて塩ビモノ
マーの飽和蒸気圧が2Kg/cm低下するまで乳化重
合して、平均粒径0.8μmの塩化ビニール樹脂ラテ
ツクスを得た。 このラテツクス中の粒子固形分は38%であつ
た。 別途5三口フラスコを用い、常温で窒素気流
中で とジブロモブタンを1モルずつジメチルホルムア
ミド(DMF)/水=4/1混合溶媒1の中に
2時間かけて滴下したのち、2の水を添加して
1週間放置した。この高分子化合物は、一般式
〔〕においてZがブチレン基、X及びYがそれ
ぞれブロム原子である化合物である。該化合物の
数平均分子量を浸透圧法で測定すると82000であ
り、lの値は約250であつた。 このようにして得られた水溶液を上述のラテツ
クス100Kgに対し、1.03添加し40℃でゆつくり
撹拌したのち、巴工業製p660スーパーデカンタ
ーを用いて、脱水した。含水率37%の脱水ケーキ
を、不二パウダル株式会社製の二軸横押出し造粒
機EXD−60を用いて、直径1.1mmの円形メツシユ
を用いて脱水ケーキ中の水分を26〜29%に調節
し、押出し造粒を行なつた。このサンプルを流動
乾燥機にて50℃の熱風を用いて、1.5時間乾燥し
含水率0.1%以下の乾燥レジンを得た。 得られたレジンのかさ密度は0.54g/c.c.であつ
て、通常のペーストレジンの0.25g/c.c.±0.05
g/c.c.の値と比較し、非常に大きな値を有してい
た。 このレジン100部に対してジオクチルフタレー
ト(DOP)60部、非イオン系界面活性剤0.6部、
Ca−Zn系熱安定剤3部、エポキシ化大豆油3部
を添加してプラスチゾルを調製し、B型粘度測定
ならびにオーブン熱安定性テストを行ない表1に
示した。オーブン熱安定性テストは、195℃の熱
風循環密閉容器中に10分間放置したあと、取り出
したフイルムを用い同温度で黒変するまで続け
た。 実施例 2 3オートクレーブ中にジアリルジメチルアン
モニウムクロライド377gとジメチルスルホキサ
イド705gを窒素雰囲気中にて、過硫酸アンモン
1gを加えて、30℃で50時間無撹拌状態で重合さ
せた。得られた固体をメタノール700g添加して、
溶解後、多量のアセトンで再沈させ、1N−NaCl
溶液にて、極限粘度を測定したところ、0.71であ
つた。この化合物は、一般式〔〕においてR1
及びR2がメチル基、R3及びR4が水素原子、Xが
塩素原子の化合物である。極限粘度から算出した
重合度lの値は約490であり、分子量は約79000で
ある。 このメタノール溶液200gを、実施例1で用い
たラテツクス30に添加したのち、巴工業(株)製の
スーパーデカンターp660を用いて脱水したとこ
ろ、排液中の固形分は、0.1%以下でありかつ脱
水ケーキ中の含水率は31%であつた。 得られた脱水固形分を棚式乾燥器を用いて50℃
で乾燥し、乾燥レジンを得た。 乾燥レジンについて実施例1と同様の試験を行
つた。 比較例 1 実施例1で用いたPVCラテツクス1000mlに硫
酸アルミニウム3gを添加して凝集させた。全体
が固化し、脱水不可能な状態になつた棚式乾燥機
にて50℃で乾燥し、乾燥レジンを得た。 比較例 2 実施例1で用いたPVCラテツクス1000mlに、
通常のカチオン系凝集剤(変性ポリアクリルアミ
ド系)2gを用いて凝集させたところ、全体がク
リーム状になり水分が遊離されず紙による脱水
が固難であつた。 比較例 3 実施例1で用いたラテツクスを、ヤマト科学製
のミニスプレードライヤーにて、そのまま乾燥し
た。熱風温度は、入口側が120℃、出口温度が50
℃にて行つた。(何も処理しないで行つた従来方
法) ラテツクスはそのままでは遠心脱水や過によ
る脱水は、無論不可能であつた。
[Formula] The group, -( CH2 ) n -O-( CH2 ) o- , X and Y are halogen atoms, which may be the same or different. m and n are integers of 1 to 6, and may be the same or different. l represents an integer of 2 or more. ) The present invention will be explained in detail below. Vinyl chloride resin latex or vinyl chloride copolymer latex (hereinafter sometimes simply referred to as latex) is produced by emulsion polymerization (vinyl chloride or vinyl chloride and a comonomer copolymerizable with vinyl chloride) without any particular limitation. (copolymerization) or microsuspension polymerization (copolymerization). Specific examples include polyvinyl chloride latex (emulsion) and vinyl chloride-vinyl acetate copolymer latex. General formulas [] and [] used in the method of the present invention
The water-soluble cationic polymer compound can be produced by various synthetic methods. Compounds represented by the general formulas [] and [] have a structure in which the alkyl groups R 1 , R 2 , R 3 and R 4 are hydrogen atoms or C 1-3 alkyl groups, i.e. methyl, ethyl, propyl A group is preferred, and a methyl group is particularly preferred. X and Y may be chloro or bromine atoms, and both may be the same. Z is preferably an alkylene group having 1 to 3 carbon atoms, specifically a methylene group, an ethylene group, or a propylene group. The value of l may be any integer greater than or equal to 10, but it is preferably in the range of 10 to 1,500, preferably in the range of 50 to 1,000. The larger the value of l, the greater the aggregation effect. m
As the number of and n increases, the charge density in the polymer chain decreases, so the value of m+n and the number of l should be selected appropriately, taking into account the charge of the latex particles used. In the compound represented by the general formula [], R 3 and R 4 in the structural formula are preferably hydrogen atoms. The surface charge density of these compounds is positively charged particles with a surface charge density of 10 microcoulombs/cm 2 or more.
Particles of 0.01 μm to 10 μm are desirable. A water-soluble cationic polymer compound (hereinafter referred to as a flocculant) collides with the negatively charged latex particles in the latex and the positive charges in the flocculant, causing the latex particles to flocculate, but the flocculated particles repel each other. As a result, the dispersibility is good, and the latex as a whole has excellent fluidity without becoming tofu-like.
It becomes a dispersion liquid with good water separation property. The flocculant may be used after being dissolved in water or other medium, if necessary. Therefore, the amount of coagulant added is 0.001 to 5% by weight, preferably 0.01% by weight, based on the weight of particles in the latex.
By adding in a range of 2% by weight, various agglomerated particles can be obtained. As the amount added is increased little by little, the viscosity of the latex gradually increases, and as the amount is further added, the viscosity decreases. When this process is observed using an optical microscope, the latex particles interact with each other as ionic polymers and aggregate in the initial stage, and exist as large aggregated particles. When the amount added is small, the aggregates with a small particle size are the main body, and as the amount added increases, the aggregate particle size increases, and when further addition is made, the aggregate particle size is divided into 10 to 100μ. The size of the aggregated particles changes to approximately uniform, especially about 20 to 50μ. The diameter of the aggregated particles can be adjusted to a desired size by adjusting the amount of the flocculant added. According to the method of the present invention, when a flocculant is added to latex and left to stand after stirring, water and latex particle aggregates are easily separated, water can be removed by decantation, and water can be dehydrated using a centrifuge. Dehydration can be carried out to a solid content concentration of about 72% using a filter press, and to a solid content concentration of about 78% using a filter press. Therefore, according to the method of the present invention, approximately 22-35%
Since it is only necessary to evaporate a certain amount of water, the energy cost associated with conventional drying is significantly reduced, making it possible to significantly reduce manufacturing costs. Further, the dehydrated cake obtained by the present invention suddenly loses fluidity when the moisture content falls below a certain value. Until then, it exhibits clay-like flow properties despite relatively high particle concentrations. Dehydrated cakes can also be granulated by utilizing these properties. Granulated paste resin has a small bulk density and generates a lot of dust, which can easily cause problems when handling, but because it is in a granular form, it creates less dust and maintains the working environment. Not only can equipment costs be reduced, but the bulk density is approximately 0.5g/ml, which is about twice that of conventional paste resins, and has the advantage of reducing transportation costs and warehouse storage costs to about half of conventional paste resins. Furthermore, since the granulated paste resin can be transported by pneumatic transport or the like, bulk transport and further automatic measurement is possible in this case. Therefore, it is possible to streamline the work and improve the work environment to a greater extent than with conventional powder handling. The method of the present invention will be explained in detail below using Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. In addition, "parts" in the examples represent "parts by weight." Example 1 0.6 parts of sodium lauryl sulfate, 0.03 parts of potassium persulfate, 0.1 parts of sodium bicarbonate, and 0.07 parts of sodium sulfite were added to 100 parts of vinyl chloride monomer using a 300°C pressure-resistant container, and the vinyl chloride monomer was heated at 60°C. Emulsion polymerization was carried out until the saturated vapor pressure of the mixture decreased by 2 kg/cm to obtain a vinyl chloride resin latex with an average particle size of 0.8 μm. The particle solids content in this latex was 38%. Separately, use a 5-necked flask in a nitrogen stream at room temperature. 1 mole of dibromobutane and dibromobutane were added dropwise into dimethylformamide (DMF)/water = 4/1 mixed solvent 1 over 2 hours, then water from 2 was added and left for one week. This polymer compound is a compound in which Z is a butylene group and X and Y are each a bromine atom in the general formula []. The number average molecular weight of the compound was determined by osmotic pressure method to be 82,000, and the value of 1 was approximately 250. The thus obtained aqueous solution was added in an amount of 1.03 to 100 kg of the above-mentioned latex, slowly stirred at 40°C, and then dehydrated using a p660 super decanter manufactured by Tomoe Kogyo. A dehydrated cake with a moisture content of 37% was reduced to 26-29% using a circular mesh with a diameter of 1.1 mm using a twin-screw horizontal extrusion granulator EXD-60 manufactured by Fuji Paudal Co., Ltd. and extrusion granulation. This sample was dried for 1.5 hours using hot air at 50°C in a fluidized fluid dryer to obtain a dry resin with a moisture content of 0.1% or less. The bulk density of the obtained resin was 0.54 g/cc, compared to 0.25 g/cc ± 0.05 of normal paste resin.
It had a very large value compared to the value of g/cc. For 100 parts of this resin, 60 parts of dioctyl phthalate (DOP), 0.6 parts of nonionic surfactant,
A plastisol was prepared by adding 3 parts of a Ca-Zn heat stabilizer and 3 parts of epoxidized soybean oil, and subjected to type B viscosity measurement and oven heat stability test, and the results are shown in Table 1. In the oven thermal stability test, the film was left in a closed container with hot air circulation at 195°C for 10 minutes, and then the film was taken out and continued at the same temperature until it turned black. Example 2 3 In a nitrogen atmosphere, 377 g of diallyldimethylammonium chloride and 705 g of dimethyl sulfoxide were added to 1 g of ammonium persulfate in an autoclave, and the mixture was polymerized at 30° C. for 50 hours without stirring. Add 700g of methanol to the obtained solid,
After dissolving, reprecipitate with a large amount of acetone and add 1N-NaCl.
When the intrinsic viscosity of the solution was measured, it was 0.71. This compound has R 1 in the general formula []
and a compound in which R 2 is a methyl group, R 3 and R 4 are hydrogen atoms, and X is a chlorine atom. The degree of polymerization l calculated from the intrinsic viscosity is about 490, and the molecular weight is about 79,000. After adding 200 g of this methanol solution to the latex 30 used in Example 1, it was dehydrated using a Super Decanter P660 manufactured by Tomoe Kogyo Co., Ltd., and the solid content in the drained liquid was 0.1% or less. The moisture content in the dehydrated cake was 31%. The obtained dehydrated solid content was heated to 50℃ using a shelf dryer.
to obtain a dry resin. The same test as in Example 1 was conducted on the dried resin. Comparative Example 1 3 g of aluminum sulfate was added to 1000 ml of the PVC latex used in Example 1 to coagulate it. When the whole solidified and became impossible to dehydrate, it was dried at 50°C in a shelf dryer to obtain a dry resin. Comparative Example 2 1000ml of PVC latex used in Example 1,
When flocculating using 2 g of a common cationic flocculant (modified polyacrylamide type), the entire mixture became cream-like and no water was released, making it difficult to dehydrate using paper. Comparative Example 3 The latex used in Example 1 was directly dried using a mini spray dryer manufactured by Yamato Kagaku. The hot air temperature is 120℃ on the inlet side and 50℃ on the outlet side.
I went to ℃. (Conventional method performed without any treatment) Of course, latex cannot be dehydrated by centrifugation or filtration if it is left as is.

【表】【table】

Claims (1)

【特許請求の範囲】 1 塩化ビニル樹脂ラテツクスまたは塩化ビニル
系共重合体ラテツクスに、下記一般式[]また
は[]で表わされる水溶性カチオン高分子化合
物を添加した後固形分を分離することを特徴とす
る塩化ビニルペーストレジンの製造方法。 一般式[] 一般式[] (式中、R1,R2,R3及びR4は、水素原子また
は炭素原子1〜4のアルキル基、 Zは−(CH2n−基、
【式】 又は−(CH2n−O−(CH2o−基、 X及びYはハロゲン原子で、同一であつても異
なつていてもよい。 m及びnは1〜6の整数で、同一であつても異
なつていてもよい。 lは10以上の整数 をそれぞれ示す。)
[Claims] 1. A water-soluble cationic polymer compound represented by the following general formula [] or [] is added to a vinyl chloride resin latex or a vinyl chloride copolymer latex, and then the solid content is separated. A method for producing a vinyl chloride paste resin. General formula [] General formula [] (In the formula, R 1 , R 2 , R 3 and R 4 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, Z is -(CH 2 ) n - group,
[Formula] or -(CH 2 ) n -O-(CH 2 ) o - group, X and Y are halogen atoms, which may be the same or different. m and n are integers of 1 to 6, and may be the same or different. l represents an integer of 10 or more. )
JP7629682A 1982-01-26 1982-05-07 Production of vinyl chloride paste resin Granted JPS58194907A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7629682A JPS58194907A (en) 1982-05-07 1982-05-07 Production of vinyl chloride paste resin
US06/457,246 US4569991A (en) 1982-01-26 1983-01-11 Production of thermoplastic resin
EP83100366A EP0084837B1 (en) 1982-01-26 1983-01-17 Flocculation of latex particles and production of thermoplastic resin
DE8383100366T DE3380411D1 (en) 1982-01-26 1983-01-17 Flocculation of latex particles and production of thermoplastic resin
CA000420060A CA1235547A (en) 1982-01-26 1983-01-24 Flocculation of latex particles and production of thermoplastic resin
ES519256A ES8403146A1 (en) 1982-01-26 1983-01-25 Flocculation of latex particles and production of thermoplastic resin.
BR8300366A BR8300366A (en) 1982-01-26 1983-01-26 PROCESS FOR FLOCULATION OF LATEX PARTICLES IN A LATEX AND PROCESS FOR THE PRODUCTION OF A THERMOPLASTIC RESIN
US06/723,186 US4581444A (en) 1982-01-26 1985-04-15 Flocculation of latex particles and production of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7629682A JPS58194907A (en) 1982-05-07 1982-05-07 Production of vinyl chloride paste resin

Publications (2)

Publication Number Publication Date
JPS58194907A JPS58194907A (en) 1983-11-14
JPH0153882B2 true JPH0153882B2 (en) 1989-11-16

Family

ID=13601387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7629682A Granted JPS58194907A (en) 1982-01-26 1982-05-07 Production of vinyl chloride paste resin

Country Status (1)

Country Link
JP (1) JPS58194907A (en)

Also Published As

Publication number Publication date
JPS58194907A (en) 1983-11-14

Similar Documents

Publication Publication Date Title
CA1235547A (en) Flocculation of latex particles and production of thermoplastic resin
JP5010465B2 (en) Method for producing coagulated latex particles
US7728055B2 (en) Process for producing coagulated latex particles
KR930003794B1 (en) Suspended emulsion polymerization of vinyl monomers
JPWO2006092897A1 (en) Method for producing coagulated latex particles
US5589525A (en) Process for preparing novel high solids non-aqueous polymer compositions
JP4663521B2 (en) Polymer particle composition and method for producing the same
KR102339200B1 (en) Multistage polymer powder composition, its method of preparation and use
JPH0153882B2 (en)
CN1226392C (en) Method for preparing paraffin for aqueous dispersion polymerization of tetrafluoroethylene and process for preparing tetrafluoroethylene with said paraffin
US5480921A (en) Process for preparing novel high solids non-aqueous polymer compositions
JPH0247482B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
JPH0625321A (en) Production of vinyl chloride resin for processing into paste
JPH0240086B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
US6110995A (en) Process for preparing novel high solids non-aqueous polymer compositions
US2482048A (en) Vinyl chloride-containing polymers having a high stability against thermal decomposition
JPH0329812B2 (en)
JPH0240087B2 (en) NETSUKASOSEIJUSHINOSEIZOHO
US3660332A (en) Process for preparing granular graft copolymers
WO2013027771A1 (en) Method for producing vinylidene fluoride polymer
JP2002531616A (en) Halogen-containing vinyl polymer resin and method for producing the same
JP3471647B2 (en) Method for producing mixed powder containing polytetrafluoroethylene
JPS6354018B2 (en)
JPS5859249A (en) Plastisol for pasting
JPS5946963B2 (en) Polymer recovery method from latex