JPS58194247A - Microwave discharge light source device - Google Patents

Microwave discharge light source device

Info

Publication number
JPS58194247A
JPS58194247A JP7640982A JP7640982A JPS58194247A JP S58194247 A JPS58194247 A JP S58194247A JP 7640982 A JP7640982 A JP 7640982A JP 7640982 A JP7640982 A JP 7640982A JP S58194247 A JPS58194247 A JP S58194247A
Authority
JP
Japan
Prior art keywords
lamp
mercury
microwave
light source
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7640982A
Other languages
Japanese (ja)
Inventor
Hitoshi Kodama
児玉 仁史
Kenji Yoshizawa
憲治 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7640982A priority Critical patent/JPS58194247A/en
Publication of JPS58194247A publication Critical patent/JPS58194247A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To improve the luminous output of a main light source lamp, by seting the amount of mercury, which is sealed in a second nonelectrode discharge lamp to be disposed inside a microwave cavity together, down to below 1/20 of that to be sealed in another nonelectrode discharge lamp serving as a main light source. CONSTITUTION:A magnetron 1 generates microwaves which are led into a waveguide 2. A microwave cavitied resonator 3 consisting of a light reflective member 4 and a metallic mesh 5 is coupled with the waveguide 2. A nonelectrode discharge lamp 7 being disposed inside a cavity 3 makes up a main light source upon sealing the starting rare gases together with at least mercury. Another nonelectrode discharge lamp 8 is disposed interposingly between the lamp 7 and a feeder port 6 and serves as a starting auxiliary light source after being sealed with said starting rate gases in addition to mercury inside its bulb made up of an ultraviolet transmittible material. The amount of mercury to be sealed in the lamp 8 is set down to below 1/20 of that to be sealed in the lamp 7. Doing like this, the extent of microwave energy to be absorbed in the lamp 8 is thus controlled and thereby the luminous output of the lamp 7 can be materially improved.

Description

【発明の詳細な説明】 この発明はマイクロ波空胴内に配設された無電極放電ラ
ンプの始動を確実にするために導波管内。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a waveguide for ensuring the starting of an electrodeless discharge lamp disposed within a microwave cavity.

又はマイクロ波空胴内に配設され、マイクロ波エネルギ
ーによって点灯させる第2の無電極放電ランプ及びこの
ラングを備えたマイクu波放電光源装置に関するもので
ある。
Alternatively, the present invention relates to a second electrodeless discharge lamp disposed in a microwave cavity and lit by microwave energy, and a microwave U-wave discharge light source device including this rung.

発FJi4者等は、マイクロ波放電光源装置のマイクロ
波空胴内に配設された無電極放電ランプ(以下第1のラ
ンプと称する)は、配光の制約からマイクロ波空胴内の
マイクロ波電磁界の弱い位置に配設される場合が多く、
このため始動が不確実となる問題があった。そこでその
改善策として、比較的マイクロ波電磁界の強い導波管内
又はマイクロ波空胴内の給電口近傍に1点灯され紫外線
を放射する第2の無電極放電ランプ(以下第2のランプ
と称す)を配投し、まず第2のランプを点灯させ。
The FJi4 parties stated that the electrodeless discharge lamp (hereinafter referred to as the first lamp) installed in the microwave cavity of the microwave discharge light source device does not work well with the microwave inside the microwave cavity due to light distribution constraints. They are often installed in locations with weak electromagnetic fields,
For this reason, there was a problem that starting was uncertain. Therefore, as an improvement measure, a second electrodeless discharge lamp (hereinafter referred to as the second lamp) that is lit near the feed port in the waveguide or microwave cavity, where the microwave electromagnetic field is relatively strong, emits ultraviolet rays. ) and first light the second lamp.

この時放射される紫外線を主光源となる第1のうンプに
照射し、この第1のランプに弱電へ電離を引き起こす事
によって9弱いマイクロ波の漏れ電磁界によっても確実
に第1のランプが始動するマイクロ波放電光源装置を別
途提案した。しかしながら、このマイクロ波放電光源装
置にあっては、第1のランプ点灯中も第2のランプが点
灯しつづけるため、マイクロ波エネルギーの一部が第2
のランプに吸収され、この吸収量が多くなると第1のラ
ンプの光出力が減少するという欠点があった。
The ultraviolet rays emitted at this time are irradiated onto the first pump, which serves as the main light source, and the first lamp is ionized into a weak electric current, thereby ensuring that the first lamp is activated even by the weak microwave leakage electromagnetic field. We separately proposed a microwave discharge light source device that starts. However, in this microwave discharge light source device, since the second lamp continues to be lit even while the first lamp is lit, a part of the microwave energy is transferred to the second lamp.
The problem is that the light output of the first lamp decreases as the amount of absorption increases.

この発明は上記の点に鑑みてなされたもので。This invention was made in view of the above points.

マイクロ波空胴内のマイクロ波電磁界によって第1のラ
ンプを点灯させるものにおいて、紫外線透過材料で形成
されたパルプ内に少なくとも希ガスおよび上記第1のラ
ンプに封入された水銀量の1/20以下の量の水銀を封
入した始動補助用の第2の無電極ランプを、マイクロ波
空胴内またセ導波管内のいずれかに設け、第2のランプ
に吸収されるマイクロ波エネルギーの吸収量を抑制し、
第1のランプの光出力の向上が図れるマイクロ波放電光
源装置を提供することを目的とする。
In a device in which the first lamp is lit by a microwave electromagnetic field in a microwave cavity, at least a rare gas and 1/20 of the amount of mercury sealed in the first lamp are contained in a pulp made of an ultraviolet-transparent material. A second electrodeless lamp for starting aid containing the following amount of mercury is provided either inside the microwave cavity or inside the waveguide, and the amount of microwave energy absorbed by the second lamp is suppress,
It is an object of the present invention to provide a microwave discharge light source device that can improve the light output of a first lamp.

以下実施例に基づいてこの発明の詳細な説明する。I!
1図はこの発明の一実施例を示すもので。
The present invention will be described in detail below based on examples. I!
Figure 1 shows one embodiment of this invention.

(1)はマイクロ波を発振するマグネトロン、(21t
iそのマイクロ波を導く導波管、(3)は光反射性部材
(4)と金属メツシュ(5)とで構成されるマイクロ波
空胴で、給電口<6)を通して上記導波管+21 K給
金されている。(7)は透明石英ガラスより成る内径3
0φの球形を成す第1のランプで内部[は100119
のHgasM9のFe、289の顯工2,1〜のHgB
r2 、及び60tOrrのアルゴンが封入されている
。(8)は透明石英ガラスより成り内径7φの球形状を
成す第2のランプで、上記マイクロ波空胴(3)内の第
1のランプ(7)と給電口(6)との間に配設され、内
部には1〜のHg工2及び5 torrのアルゴンが封
入されている。第2図は、第2のランプ(8)を示す断
面図で。
(1) is a magnetron that oscillates microwaves, (21t
i The waveguide (3) that guides the microwave is a microwave cavity composed of a light reflective member (4) and a metal mesh (5), and the waveguide +21 K is passed through the feed port <6). is being paid. (7) is an inner diameter 3 made of transparent quartz glass.
The first lamp has a spherical shape of 0φ, and the inside [is 100119
of HgasM9 of Fe, 289 of HgB of 2,1~
r2, and 60 tOrr of argon. (8) is a second lamp made of transparent quartz glass and has a spherical shape with an inner diameter of 7φ, and is disposed between the first lamp (7) and the power supply port (6) in the microwave cavity (3). The inside is filled with 1~2 Hg gas and 5 Torr of argon. FIG. 2 is a sectional view showing the second lamp (8).

図中(9)は第1のランプ(7)と同一材料で、かつそ
れと一体的に形成されたラング支持部である。
In the figure, (9) is a rung support portion made of the same material as the first lamp (7) and formed integrally therewith.

以上の構成を有するマイクロ波放電光源装置に於ては、
給電口(6)からのマイクロ波の漏れ電磁界によって第
2のランプ(8)が点灯し、この時放射される紫外線に
よって、第1のランプ(7)が点灯とする。これに伴な
いマイクロ波エネルギーの大部分#′i第1のランプ(
7)に吸収され、第゛2のランプ(8)の発光強度は減
少する。上記の第1のランプ(7)のエネルギー吸収量
は主として第1のランプ(7)と第2のランプ(8)の
封入水銀量の比によって決′tり、第1のランプ(7)
の封入水銀量に対する第2のランプ(8)の封入水銀量
の比を少な(する事が望ましい。
In the microwave discharge light source device having the above configuration,
The second lamp (8) is lit by the microwave leakage electromagnetic field from the power supply port (6), and the first lamp (7) is lit by the ultraviolet rays emitted at this time. Accordingly, most of the microwave energy #'i first lamp (
7), and the emission intensity of the second lamp (8) decreases. The amount of energy absorbed by the first lamp (7) is mainly determined by the ratio of the amount of mercury enclosed in the first lamp (7) and the second lamp (8).
It is desirable to reduce the ratio of the amount of mercury enclosed in the second lamp (8) to the amount of mercury enclosed in the second lamp (8).

発明者尋の実験によればtitのランプ(7)の封入水
銀量に対して、第2のランプ(8)の封入水銀量が純水
銀の状態で封入した時1/20以下にした場合。
According to experiments conducted by the inventor, Hiromu, when the amount of mercury enclosed in the second lamp (8) is 1/20 or less of the amount of mercury enclosed in the tit lamp (7) when the amount of mercury is enclosed in pure mercury.

第2のランプ(8)が無い場合と第2のランプ(8)が
点灯した状態のままとでの第1のラング(7)の光出力
の差汀2%以下で実用上特に問題にならない事がわかっ
た。同第2のランプ(8)の封入水銀it’を上記の値
より漸次増加させた場合、第1のランプ(7)の光出力
は次第に減少し、逆に第2のランプ(8)の封入水銀量
を前記の値より減少させた場合、第1のランプ(9)光
出力は増加して行き、第1のランプ(7)の封入水銀量
に対し第2のランプの封入水銀量を17100以下にし
た場合は、第1のランプ(7)の光出力は、第2のラン
プ(8)が無い状態で第1のランプを点灯させた時の光
出力と差を認められなかった。尚また上記の様に第2の
ランプ(8)の封入水銀mt−減少させた場合、第2の
ランプ(8)からの紫外線放射量が減少し、このため第
1のランプ(7)の電離が不充分で、給電口(6)から
の漏れ電磁界だけでは、第1のランプ(7)が点灯出来
なくなる事も予想されたが実際にはこの様な現象は見ら
れなかった。
The difference in the light output of the first rung (7) when there is no second lamp (8) and when the second lamp (8) remains lit is less than 2% and does not pose any practical problem. I found out what happened. When the enclosed mercury it' of the second lamp (8) is gradually increased from the above value, the light output of the first lamp (7) gradually decreases, and conversely, when the enclosed mercury it' of the second lamp (8) When the amount of mercury is decreased from the above value, the light output of the first lamp (9) increases, and the amount of mercury enclosed in the second lamp is 17,100 compared to the amount of mercury enclosed in the first lamp (7). In the following cases, no difference was observed between the light output of the first lamp (7) and the light output when the first lamp was turned on without the second lamp (8). Furthermore, when the mercury mt-filled in the second lamp (8) is decreased as described above, the amount of ultraviolet radiation from the second lamp (8) decreases, and therefore the ionization of the first lamp (7) decreases. It was expected that the first lamp (7) would not be able to be lit due to insufficient electromagnetic field leakage from the power supply port (6), but such a phenomenon was not actually observed.

これは第1のランプ(7)が確実に点灯出来る様になる
ために必要な紫外線量は極めて少なく、このため第1の
ランプ(7)は、第2のランプ(8)内に封入された水
銀が自身の放電によって生ずる熱のため完全に蒸発して
強い紫外線を発する様になるよりも前に点灯可能となっ
ているためと考えられる。
This is because the amount of ultraviolet rays required to ensure that the first lamp (7) can be lit is extremely small, so the first lamp (7) is enclosed within the second lamp (8). This is thought to be because the heat generated by the mercury's own discharge allows it to be lit before it completely evaporates and emits strong ultraviolet rays.

以上説明した様に第2のランプ(8)に封入する水銀i
tは少ない方が望ましいが、工作上少量の水銀kH量し
ようとする場合、秤量誤差を生じやすい。
As explained above, the mercury i sealed in the second lamp (8)
It is desirable that t be small, but when attempting to use a small amount of mercury kHz due to workmanship, weighing errors are likely to occur.

この様な秤量誤差は第2のランプ(8)ヲ小型にした場
合に問題となり特に上記誤差によって第2のうンプに封
入される水銀量が多くなりすぎた場合には第2のランプ
(8)の破裂を招く事もある。これは第1のランプ(7
)の点灯直後から数秒間は第1のランプ(8)内の封入
物、特に水銀が充分蒸発しておらず、このため、第1の
ランプ(7)はマイクロ波エネルギーを充分吸収出来ず
、第2のランプ(8)が比較的強く発光する○この時第
2のランプ(8)の封入水銀量が多過ぎるとマイクロ波
エネルギーの吸収量が多くなり過ぎ、自身の放電によっ
て発する熱のためランプ壁面が過熱軟化し、破裂を起こ
すものである。この様な現象は単に封入水銀量のみによ
って決まるわけではなく、ランプの形状、大きさと相互
に関連して決定されるが6本実施例の場合第2のランプ
(8)への封入水銀量が3M9を越えると上°記の場合
の様に破裂を生ずるランプが現われ始め、封入水銀量が
5■を越すと全てのランプに破裂が生じた0以上の様な
欠点を除去するためには第2のランプ(8)へ封入され
る水銀をノ10ゲン化水銀の形で封入する事が有効であ
る。これハノ・ロゲン化水銀が常温状態では固体である
ため秤量が容易であり、かつハロゲン化水銀の場合、純
水銀に比較し同−重量中に含まれる水銀量は当然束なく
なるこの面でも第1のランプ(7)の光出力を上げる上
で有利である。
Such a weighing error becomes a problem when the second lamp (8) is downsized, especially when the amount of mercury sealed in the second pump becomes too large due to the above-mentioned error. ) may cause rupture. This is the first lamp (7
) for several seconds immediately after the lamp is turned on, the contents in the first lamp (8), especially the mercury, are not sufficiently evaporated, and therefore the first lamp (7) cannot absorb enough microwave energy. The second lamp (8) emits relatively strong light. At this time, if the amount of mercury enclosed in the second lamp (8) is too large, the amount of microwave energy absorbed will be too large, and the heat generated by its own discharge will cause The lamp wall becomes overheated and softens, causing it to explode. This phenomenon is not simply determined by the amount of mercury enclosed, but is determined in relation to the shape and size of the lamp. In the case of this embodiment, the amount of mercury enclosed in the second lamp (8) When the amount of mercury exceeds 3M9, some lamps begin to burst as in the above case, and when the amount of mercury filled exceeds 5mm, all lamps explode. It is effective to fill the mercury in the lamp (8) in the form of mercury genide. Since mercury halide is solid at room temperature, it is easy to weigh, and in the case of mercury halide, the amount of mercury contained in the same weight is naturally less than that of pure mercury.This is also the first in this aspect. This is advantageous in increasing the light output of the lamp (7).

なお、上記実施例においては、第2のランプ(8)をマ
イクロ波空胴(3)内に設けたが、ランプ(8)の配設
位置は導波管(6)内の給電口(6)に近い箇所であっ
ても、上記実施例と同等の効果を奏する。
In the above embodiment, the second lamp (8) was provided inside the microwave cavity (3), but the lamp (8) was installed at the power feeding port (6) inside the waveguide (6). ), the same effect as in the above embodiment can be achieved.

以上説明した様にこの発明によ九ばマイクロ波空胴内に
配設され、マイクロ波電磁界により点灯する第1のラン
プを有するものにおいて、マイクロ波空胴または導波管
内のいずれかに第2のランプを設けるとともに、この第
2のランプに封入する水銀量を第1のランプに封入する
水銀量の1/20以下にしたので、第2のランプに吸収
されるマイクロ波エネルギーの吸収を抑制でき、したが
って第1のランプの光出力を向上させる効果がある。
As explained above, according to the present invention, in a device having a first lamp disposed in a microwave cavity and lit by a microwave electromagnetic field, a first lamp is provided in either the microwave cavity or the waveguide. In addition to providing a second lamp, the amount of mercury sealed in the second lamp was set to 1/20 or less of the amount of mercury sealed in the first lamp, so that the absorption of microwave energy by the second lamp was reduced. This has the effect of improving the light output of the first lamp.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すマイクロ波放電光源
装置の縦断面図、第2図はこの発明に係る第2のランプ
を示す断面図である。 図中(1>はマイクロ波発振器、(2)は導波管、(3
)はマイクロ波空胴共振器、(6)は給電口、(7)は
第1のランプ、(8)は第2のランプ なお、各図中同一符号は同一または相当部分を示す。 代理人 葛 野 信 − 第1図 第2図
FIG. 1 is a longitudinal cross-sectional view of a microwave discharge light source device showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a second lamp according to the present invention. In the figure, (1> is a microwave oscillator, (2) is a waveguide, and (3) is a microwave oscillator.
) is a microwave cavity resonator, (6) is a power supply port, (7) is a first lamp, and (8) is a second lamp. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (11マイクロ波発振器、このマイクロ波発振器により
発振されたマイクロ波を導く導波管、この導波管に給電
口を通して結合されたマイクロ波空胴、このマイクロ波
空胴内に配設され、始動用希ガスと共に少なくとも水銀
が封入された主光源となる第1の無電極放電ランプ、上
記導波管の内部あるいはマイクロ波空胴の内部のいずれ
か一方に配設され、紫外線透過材料で形成されたバルブ
内に少なくとも始動用希ガスに加えて水銀を封入し、た
始動補助用の第2の無電極放電ラングを備え。 この第2の無電極放電ランプ内に封入される水銀値は上
記第1の無’を極放電ランプ内に封入される水銀1の1
/20以下とした事を特徴とするマイクロ波放電光源装
置。 (2)上記第2の無電極放電ランプの水銀がハロゲン化
水銀の形で封入されている事1に特徴とする特許請求の
範囲第(1)項記載のマイクロ波放電光源装置。
[Claims] (11) A microwave oscillator, a waveguide that guides the microwaves oscillated by this microwave oscillator, a microwave cavity coupled to this waveguide through a feeding port, and within this microwave cavity. a first electrodeless discharge lamp serving as a main light source, which is disposed inside the waveguide or inside the microwave cavity, and which is filled with at least mercury together with a starting rare gas; A second electrodeless discharge rung for assisting starting is provided, in which mercury is sealed in addition to at least a rare gas for starting in a bulb formed of an ultraviolet-transparent material. The mercury value is the mercury sealed in the polar discharge lamp.
1. A microwave discharge light source device characterized by having a discharge voltage of /20 or less. (2) The microwave discharge light source device according to claim (1), characterized in that the mercury of the second electrodeless discharge lamp is sealed in the form of mercury halide.
JP7640982A 1982-05-07 1982-05-07 Microwave discharge light source device Pending JPS58194247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7640982A JPS58194247A (en) 1982-05-07 1982-05-07 Microwave discharge light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7640982A JPS58194247A (en) 1982-05-07 1982-05-07 Microwave discharge light source device

Publications (1)

Publication Number Publication Date
JPS58194247A true JPS58194247A (en) 1983-11-12

Family

ID=13604443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7640982A Pending JPS58194247A (en) 1982-05-07 1982-05-07 Microwave discharge light source device

Country Status (1)

Country Link
JP (1) JPS58194247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987751A (en) * 1982-10-06 1984-05-21 フュージョン・システムズ・コーポレーション Far uv beam bulb with improved filler
EP2087505A2 (en) * 2006-10-31 2009-08-12 LG Electronics Inc. Electrodeless bulb, and electrodeless lighting system having the same
US20160066369A1 (en) * 2014-09-01 2016-03-03 Miele & Cie. Kg Cooking appliance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987751A (en) * 1982-10-06 1984-05-21 フュージョン・システムズ・コーポレーション Far uv beam bulb with improved filler
JPH0423378B2 (en) * 1982-10-06 1992-04-22 Fusion Systems Corp
EP2087505A2 (en) * 2006-10-31 2009-08-12 LG Electronics Inc. Electrodeless bulb, and electrodeless lighting system having the same
EP2087505A4 (en) * 2006-10-31 2011-01-12 Lg Electronics Inc Electrodeless bulb, and electrodeless lighting system having the same
US20160066369A1 (en) * 2014-09-01 2016-03-03 Miele & Cie. Kg Cooking appliance

Similar Documents

Publication Publication Date Title
US4783615A (en) Electrodeless high pressure sodium iodide arc lamp
KR100237859B1 (en) High power lamp
US5789855A (en) Amalgam Positioning in an electrodeless fluorescent lamp
JP2006269229A (en) Electrodeless discharge lamp and luminaire equipped with same
JP2003249196A (en) Microwave electrodeless discharge lamp lighting device
EP1056119B1 (en) Cold-end device of a low-pressure mercury vapour discharge lamp
JP3103565U (en) Metal halogen electrodeless lamp
JPH10283993A (en) Metal halide lamp
JPH0250583B2 (en)
JPS58194247A (en) Microwave discharge light source device
JP2007080705A (en) Microwave discharge lamp and microwave discharge light source device equipped with the microwave discharge lamp
JPH0231459B2 (en)
KR860002152B1 (en) A lamp
KR840002224B1 (en) Source of light system
JPS5825071A (en) Electrodeless discharge lamp for microwave discharge
JPS58194246A (en) Nonelectrode discharge lamp and microwave discharge light source device using lamp thereof
JPH10241632A (en) High-pressure discharge lamp lighting method, high-pressure discharge lamp lighting device, and lighting system
JPS60235353A (en) Electrodeless discharge lamp
JP2001319618A (en) Ultrahigh-pressure mercury lamp and its manufacturing method
JP2819788B2 (en) High pressure discharge lamp device
JPH0582102A (en) Ultraviolet radiation discharge lamp
JPS5825073A (en) Electrodeless discharge lamp
JP3178259B2 (en) Electrodeless discharge lamp
JPH01243304A (en) Electrodeless discharge lamp
JPH0145179B2 (en)