JPS58193438A - Dual-wave length photometer type absorptiometer - Google Patents

Dual-wave length photometer type absorptiometer

Info

Publication number
JPS58193438A
JPS58193438A JP7702382A JP7702382A JPS58193438A JP S58193438 A JPS58193438 A JP S58193438A JP 7702382 A JP7702382 A JP 7702382A JP 7702382 A JP7702382 A JP 7702382A JP S58193438 A JPS58193438 A JP S58193438A
Authority
JP
Japan
Prior art keywords
light
sample
light emitting
wavelength
sample cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7702382A
Other languages
Japanese (ja)
Inventor
Toshio Izu
利雄 五津
Ichiro Yokoyama
一郎 横山
Hisashi Sakurai
恒 桜井
Kenjiro Hata
秦 賢治郎
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP7702382A priority Critical patent/JPS58193438A/en
Publication of JPS58193438A publication Critical patent/JPS58193438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the error due to the difference in measuring positions of two lights by a photometer wherein lights from two semiconductor light emitting devices are irradiated to a sample at the substantially same point so that the measured locations in the sample become substantially identical to each other. CONSTITUTION:LEDs 1, 2 having a long life and rapid on-off response are used as light sources. The light from LED1 which emits a light with wavelength suitable for measuring the objective component and the light from LED2 which emits a light with wavelength suitable for measuring suspended matters (SS), are irradiated to a sample cell at the substantially same point using optical fibers 3 arranged in close relation to each other. Both LED's are alternately lit up to avoid an overlap of their light emitting periods and to irradiate the sample cell separately. Then, the intensity of each transmitted light is measured by a photoelectric counter 8.

Description

【発明の詳細な説明】 とにより、分析を行なう吸光光度計の改良に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in an absorption photometer for performing analysis.

一般に、単光測光式の吸光光度計においては、呈色試料
を測定する際に試料液中に含まれる懸濁物、浮遊物(以
下.SS分という)は、光の散乱を生ずるため、測定上
雑音源となり、正確な濃度測定が困難であった。
In general, when measuring a colored sample with a single photometric absorption photometer, suspended matter and floating matter (hereinafter referred to as SS components) contained in the sample solution cause light scattering, so the measurement is difficult. This was a source of noise, making accurate concentration measurements difficult.

このため、測定しようとする試料成分が吸収しない波長
の光を、前記SS分の測定のため利用し、試料の吸収す
る波長の光と同時に投射して、二つの波長の光の透過光
量の差、あるいは比から、目的成分濃度を測定する三波
長測光式の吸光光度計が使用されている。これらの多く
は光源にタングステンランプ、ハロゲンランプを使用し
、三波長測光式の場合は、それぞれの波長を選択するた
めのフィルタ、光学系、および回転セクタ等を使用する
関係上、装置が大形化し、また、光源ランプの寿命が短
かく、その保守に多くの手数、経費を要する欠点があっ
た。
For this reason, light with a wavelength that is not absorbed by the sample component to be measured is used to measure the SS component, and is projected at the same time as light with a wavelength that is absorbed by the sample. A three-wavelength photometric spectrophotometer is used to measure the concentration of the target component based on , or the ratio. Most of these use tungsten lamps or halogen lamps as light sources, and in the case of three-wavelength photometry, the equipment is large because it uses filters, optical systems, and rotating sectors to select each wavelength. In addition, the life of the light source lamp is short, and its maintenance requires a lot of effort and expense.

本発明は、上述の欠点を除去するため、光源に点滅応答
が早く、長寿命の半導体発光素子(LED)を用い、光
伝達要素として光ファイバを使用−して、目的成分測定
に適した波長の光を発光する半導体発光素子の発した光
と、SS分測定に適した波長の光を発光する半導体発光
素子の発した光とを、双方の光を導ひく光ファイバーを
密着せしめて試料セルの略同一点に照射するよう配置し
、更にこの二つの半導体発光素子の発光周期が重複しな
いように、各発光素子を交互に点灯して、試料セルに照
射し、セル内の被検物質、およびSS分によって夫々吸
収及び散乱されて減光した透過装置を光電変換素子によ
り受光して、電気信号に変換し変換増幅器で増幅し、点
滅周期により同期整流し指示計器等を動作させて測定を
行なうように構成したものである。かかる構成とするこ
とにより、従来方式による吸光光度計に比べて光源の寿
命が著しく長く、光源の点滅応答が早いため、回転セク
タ等の機械的手段を要せず、また、二つの半導体発光素
子からの光を試料の略同一点に照射することにより試料
中の測定部位を略同位置にすることができるため、二つ
の光の測光位置差による誤差がない等、高性能の三波長
測光式吸光光度計を提供し得るものである。
In order to eliminate the above-mentioned drawbacks, the present invention uses a semiconductor light emitting device (LED) with a fast blinking response and a long life as a light source, and uses an optical fiber as a light transmission element to obtain a wavelength suitable for measuring the target component. The light emitted by a semiconductor light-emitting element that emits light of a wavelength suitable for SS component measurement and the light emitted by a semiconductor light-emitting element that emits light of a wavelength suitable for SS component measurement are connected to a sample cell by an optical fiber that guides both lights. The two semiconductor light emitting devices are arranged to irradiate almost the same point, and each light emitting device is turned on alternately so that the light emitting periods of the two semiconductor light emitting devices do not overlap, and the sample cell is irradiated, and the analyte in the cell and The transmission device absorbs and scatters the light attenuated by the SS component, and receives the light with a photoelectric conversion element, converts it into an electrical signal, amplifies it with a conversion amplifier, and performs measurements by synchronous rectification and operating an indicator etc. according to the blinking period. It is configured as follows. With this configuration, the life of the light source is significantly longer than that of conventional absorption photometers, and the blinking response of the light source is faster, eliminating the need for mechanical means such as a rotating sector, and the use of two semiconductor light emitting elements. A high-performance three-wavelength photometry method that eliminates errors due to photometric position differences between the two lights, as the measurement site in the sample can be placed at approximately the same position by irradiating the light from the same point on the sample. A spectrophotometer can be provided.

第1図は、本発明による三波長測光式吸光光度計の実施
例の測定系の要部を示す図である。
FIG. 1 is a diagram showing essential parts of a measurement system of an embodiment of a three-wavelength photometric absorption photometer according to the present invention.

図中、/は目的成分測定に適した波長λ の光を放射す
る半導体発光素子(発光ダイオードLED)、コはt導
体発光素子/と異なるSS分測定に適した波長λ の光
を放射する半導体発光素子である。
In the figure, / is a semiconductor light emitting device (light emitting diode LED) that emits light with a wavelength λ suitable for measuring the target component, and / is a semiconductor light emitting device (light emitting diode) that emits light with a wavelength λ suitable for measuring the SS component, which is different from /. It is a light emitting element.

これらコ個の半導体発光素子/、コは、電源回路から、
両発光素f/、2の発光周期が重複しないように、第2
図に示す波形のパルス電圧が交互に供給され、自発光素
子/、コは、これにより交r7)にパルス点灯するよう
になっている。
These semiconductor light emitting devices/, are connected to the power supply circuit from the power supply circuit.
The second light emitting element f/2 is designed so that the light emitting periods of both light emitting elements f/
Pulse voltages having the waveform shown in the figure are alternately supplied, and the self-luminous elements / and 2 are thereby set to emit pulse light at the intersection r7).

自発光素子/、−より放射された波長λ 、λ+   
2.1゜ の光は、それぞれ光ファイバー3の導入口−、りを経て
導入口+、5からの光ファイバー3を密接させ、試料セ
ルフ面に設けられた光ファイバー3の噴射口6より、セ
ル内の試料の略一点に投射され、曳ルを透過した光は充
電変換素子からなる受光部gに到達する。この際、波長
λ の光は、試料セル中の被測定呈色試料により、また
、波長λ2の光は、試料中のSS分のみにより、それぞ
れ吸収及び散乱され、減光して受光部gに到達する。
Wavelength λ, λ+ emitted from self-luminous element /, -
The 2.1° light passes through the inlets - and 5 of the optical fibers 3, brings the optical fibers 3 from the inlets + and 5 into close contact with each other, and enters the inside of the cell from the injection port 6 of the optical fiber 3 provided on the sample self-surface. The light that is projected onto approximately one point on the sample and transmitted through the puller reaches the light receiving section g consisting of a charge conversion element. At this time, the light with wavelength λ is absorbed and scattered by the colored sample to be measured in the sample cell, and the light with wavelength λ2 is absorbed and scattered only by the SS component in the sample, and the light is attenuated and reaches the light receiving part g. reach.

受光部gに到達した光は、光電変換素子により、電気信
号に変換されるが、この電気信号は先にλ 、λ の両
波長による光が重複しないように交互にパルス点灯され
ていたため、変換増幅器で増幅された信号を2 、λ 
の両信号成分に同期整流回1      2 路により分別し、その両者の差、または比を測定するこ
とにより、目的成分濃度に対応する出力が求められる。
The light that reaches the light-receiving part g is converted into an electrical signal by the photoelectric conversion element, but this electrical signal was previously pulsed alternately so that the light of both wavelengths λ and λ did not overlap. The signal amplified by the amplifier is 2,λ
By separating both signal components using a synchronous rectification circuit 1 2 and measuring the difference or ratio between the two, an output corresponding to the target component concentration can be obtained.

そして、計器等により濃度を検知できるよう構成されて
いる。
The device is configured to be able to detect the concentration using a meter or the like.

第3図は、本発明による吸光光度計により、浮遊物を含
む試料(乳び血清)中のクレアチニン濃度の測定を行な
った場合の実施例を示したものである。図示のように、
試料濃度と実lll1値(g&光度)との間には、十分
の直線性があり、その精度の良いことが実証される。
FIG. 3 shows an example in which the concentration of creatinine in a sample containing suspended matter (chyle serum) was measured using the spectrophotometer according to the present invention. As shown,
There is sufficient linearity between the sample concentration and the actual value (g & luminous intensity), demonstrating that the accuracy is good.

本発明により、簡易な構成で高性能の三波長側光式吸光
光度計を供し得る。
According to the present invention, it is possible to provide a high-performance three-wavelength absorption spectrophotometer with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による三波長測光式吸光光度計の実施
例について、その測定系の要部の構成を示す図。 第Ω図は、三波長の光を発光する2個の半導体発光孝子
に両光源の発光(点滅)周期が重複しないように供給さ
れるパルス電圧電源の波形例を示す図。 第3図は、本発明による吸光光度計を用いて被検試料濃
度と、吸光度との相関直線性を乳び血清中のクレアチニ
ン濃度について測定した結果を示す図である。 /・・波長λ の光を放射する半導体発光素子、ス・・
波長λ の光を放射する半導体発光素子、3− yt、
ファイバー、ダ、s・・光ファイバーへの光の導入[」
、6・・光の噴射口、7・・試料セル、g・・光電変換
素子からなる受光部。 出願人  東亜電波工業株式会社
FIG. 1 is a diagram showing the configuration of the main parts of the measurement system of an embodiment of the three-wavelength photometric absorption photometer according to the present invention. Ω is a diagram showing an example of the waveform of a pulse voltage power supply that is supplied to two semiconductor light emitting devices that emit light of three wavelengths so that the light emission (blinking) periods of both light sources do not overlap. FIG. 3 is a diagram showing the results of measuring the correlation linearity between the concentration of a test sample and absorbance with respect to the concentration of creatinine in chyle serum using the spectrophotometer according to the present invention. /...Semiconductor light emitting device that emits light with wavelength λ, S...
Semiconductor light emitting device that emits light with wavelength λ, 3-yt,
Fiber, da, s...Introduction of light into optical fiber ["
, 6... Light injection port, 7... Sample cell, g... Light receiving section consisting of a photoelectric conversion element. Applicant Toa Denpa Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)波長の異なる二つの光源からの光、または輻射線
を試料セルに照射し、試料セル内の試料物質により吸収
及び散乱されて減光された光量(輻射Is量)を、光電
変換素子からなる受光部で受けて電気信号に変換し、二
つの波長の光による透過光量に対応する信号の差、また
は比により試料中の物質成分濃度を測定する吸光光度計
において、目的成分測定に適した波長の光を発する半導
体発光素子と、懸濁物浮遊物質測定に適した波長の光を
発する半導体発光素子と、該二つの半導体発光素子を交
互に発光せしめる光ファイバーと前記二つの半導体発光
素子から発した光を試料セル内の試料物質を通して受光
するように配置された光電変換素子からなる受光部とを
具えたごとを特徴とする二波長測光式%式%
(1) A sample cell is irradiated with light or radiation from two light sources with different wavelengths, and the amount of light (radiation Is amount) that is absorbed and scattered by the sample material in the sample cell and is attenuated is transferred to a photoelectric conversion element. It is a spectrophotometer that measures the concentration of a substance component in a sample based on the difference or ratio of signals corresponding to the amount of transmitted light by two wavelengths of light, which is received by a light receiving part and converted into an electrical signal. a semiconductor light emitting element that emits light at a wavelength suitable for measuring suspended solids; an optical fiber that causes the two semiconductor light emitting elements to alternately emit light; A dual-wavelength photometric type % type % type characterized by comprising a light receiving section consisting of a photoelectric conversion element arranged to receive emitted light through a sample material in a sample cell.
JP7702382A 1982-05-07 1982-05-07 Dual-wave length photometer type absorptiometer Pending JPS58193438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7702382A JPS58193438A (en) 1982-05-07 1982-05-07 Dual-wave length photometer type absorptiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7702382A JPS58193438A (en) 1982-05-07 1982-05-07 Dual-wave length photometer type absorptiometer

Publications (1)

Publication Number Publication Date
JPS58193438A true JPS58193438A (en) 1983-11-11

Family

ID=13622151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7702382A Pending JPS58193438A (en) 1982-05-07 1982-05-07 Dual-wave length photometer type absorptiometer

Country Status (1)

Country Link
JP (1) JPS58193438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene
JP2009150666A (en) * 2007-12-18 2009-07-09 Kenek Co Ltd Light measuring device
JP2017075809A (en) * 2015-10-13 2017-04-20 株式会社共立理化学研究所 Concentration analysis method and concentration analysis device
GB2554483A (en) * 2016-09-26 2018-04-04 Sumitomo Chemical Co Analytical test device
JP2019510213A (en) * 2016-02-26 2019-04-11 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Apparatus and method for measuring absorbance of substances in solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885195A (en) * 1972-02-01 1973-11-12
JPS50151583A (en) * 1974-05-27 1975-12-05
JPS53106093A (en) * 1977-02-25 1978-09-14 Minolta Camera Co Ltd Photoelectric phototelectic type blood detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885195A (en) * 1972-02-01 1973-11-12
JPS50151583A (en) * 1974-05-27 1975-12-05
JPS53106093A (en) * 1977-02-25 1978-09-14 Minolta Camera Co Ltd Photoelectric phototelectic type blood detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110135A (en) * 1985-11-08 1987-05-21 Cosmo Co Ltd Method and apparatus for quantifying concentration of asphaltene
JPH0528778B2 (en) * 1985-11-08 1993-04-27 Cosmo Oil Co Ltd
JP2009150666A (en) * 2007-12-18 2009-07-09 Kenek Co Ltd Light measuring device
JP2017075809A (en) * 2015-10-13 2017-04-20 株式会社共立理化学研究所 Concentration analysis method and concentration analysis device
JP2019510213A (en) * 2016-02-26 2019-04-11 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Apparatus and method for measuring absorbance of substances in solution
US11543344B2 (en) 2016-02-26 2023-01-03 Cytiva Sweden Ab Apparatus and method for measuring the light absorbance of a substance in a solution
GB2554483A (en) * 2016-09-26 2018-04-04 Sumitomo Chemical Co Analytical test device
GB2554411A (en) * 2016-09-26 2018-04-04 Sumitomo Chemical Co Analytical test device

Similar Documents

Publication Publication Date Title
JP3868516B2 (en) Photometer multi-detector read head
US4171909A (en) Apparatus for measuring light intensities
US4925299A (en) Hemoglobin detector
US4863694A (en) Chemically sensitive component
JPS6234039A (en) Fluorescence detector used in immunoassay
JPH0781950B2 (en) Apparatus and method for measuring light diffusely reflected from an optically inhomogeneous sample
EP0121404A2 (en) A photometric light absorption measuring apparatus
JPH01253634A (en) Reflection density measuring apparatus
JPH11511557A (en) Method and apparatus for characterizing a specimen under ambient light
JPS58193438A (en) Dual-wave length photometer type absorptiometer
US3535044A (en) Total organic carbon colorimeter
JP2894364B2 (en) Optical measuring device
JPS6361143A (en) System for measuring gas concentration distribution
CN213364573U (en) Concentration direct-reading photometer with LED as detector
JP3847123B2 (en) Absorbance meter
JP2631364B2 (en) Measuring device for color test paper
RU2038585C1 (en) Photocolorimetric gas analyzer
Shin et al. A Pair of Light Emitting Diodes for Absorbance Measurement
GB2102942A (en) Spectrometric gas analysis
TWI617129B (en) Solar cell measuring device
JPS58193439A (en) Absorptiometer
RU2198383C2 (en) Procedure measuring photometric characteristics of materials
TWM502505U (en) A cuvette's holder
RU2244935C2 (en) Photometric method and device for measuring bilirubin concentration in blood
EP0115294A2 (en) Photometric device