JPS58193439A - Absorptiometer - Google Patents

Absorptiometer

Info

Publication number
JPS58193439A
JPS58193439A JP7702482A JP7702482A JPS58193439A JP S58193439 A JPS58193439 A JP S58193439A JP 7702482 A JP7702482 A JP 7702482A JP 7702482 A JP7702482 A JP 7702482A JP S58193439 A JPS58193439 A JP S58193439A
Authority
JP
Japan
Prior art keywords
light
wavelength
light source
led
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7702482A
Other languages
Japanese (ja)
Inventor
Toshio Izu
利雄 五津
Ichiro Yokoyama
一郎 横山
Hisashi Sakurai
恒 桜井
Kenjiro Hata
秦 賢治郎
Hiroyuki Suzuki
博之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP7702482A priority Critical patent/JPS58193439A/en
Publication of JPS58193439A publication Critical patent/JPS58193439A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To attain a simplified structure and high performacne by a method wherein a semiconductor light emitting device of single-wavelength property is driven by a pulse voltage generating power source. CONSTITUTION:When pulse voltage is supplied to an LED of a light source section 6 from a power source circuit 5 comprising a pulse voltage generating circuit, the LED is lit up intermittently in accordance with the frequency of the supply voltage. The projected light becomes a parallel beam through a lens 9 and is then irradiated to a sampled cell 3. With the LED of single-wavelength property being used as one of the light source section 6, a filter for selecting wavelength, a grating, etc. can be dispensed with as compared with the case using an LED of overall-wavelength light emitting property. Use of the power source circuit comprising a pulse voltage generating circuit also eliminates the need of another mechanism such as a rotary sector. Thus, it becomes possible to attain an absorptiometer with a simplified structure and high performance.

Description

【発明の詳細な説明】 本発明は、呈色物質の吸光度を測定することにより分析
を行なう吸光光度計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in spectrophotometers that perform analysis by measuring the absorbance of colored substances.

従来、呈色物質の光吸収を利用した吸光光度計の検出部
は、第1図に示すように、光源lと、波長選択用の金属
干渉フィルタ、2(またはプリズム−スリットによる波
長選択、あるいは回折格子による波長選択が用いられる
こともある。)、試料セル3、検出器(光電変換素子と
、その出力の変換増幅器、出力指示部等よりなる)11
1より、基本的に構成されているものが大部分で、光源
/にはタングステンランプ、ハロゲンランプ、水銀ラン
プ等が使用されている。これらの光源では、発光波長域
が広範囲にわたっているので、目的の波長の選択を自由
に行なうことができるが、タングステンランプ、ハロゲ
ンランプは寿命が短かく、且つ、ランプの輝度の経時変
化が著しいため、輝度安定回路を備えねばならず、更に
、目的とする波長の選択を行なうため、高価で、機構的
にも複雑な波長選択用光学系(フィルタ、回折格子、プ
リズム−スリットなど)を上述のとおり必要とする等、
その保守に多大の手数と経費を要する。
Conventionally, the detection section of a spectrophotometer that utilizes light absorption of a color-forming substance has a light source 1, a metal interference filter 2 for wavelength selection (or wavelength selection using a prism-slit, or ), sample cell 3, detector (consisting of a photoelectric conversion element, a conversion amplifier for its output, an output indicator, etc.) 11
1, most of them have a basic configuration, and a tungsten lamp, halogen lamp, mercury lamp, etc. are used as the light source. These light sources emit light over a wide range of wavelengths, so you can freely select the desired wavelength. However, tungsten lamps and halogen lamps have short lifespans, and their brightness changes significantly over time. In addition, in order to select the desired wavelength, an expensive and mechanically complex wavelength selection optical system (filter, diffraction grating, prism-slit, etc.) must be provided. As required, etc.
Its maintenance requires a great deal of effort and expense.

本発明は、光源に被検物質成分の吸収波長域に適合する
単波長の光を放射する半導体発光素子(発光ダイオード
、I]ID、以下単にLEDという)を使用することに
より、タングステンランプ、ノ10ゲンランプ等の光源
に比べて寿命が長く、保守も極めて容易であり、また、
放射光が単波長、すなわち単色光的な性質を有するため
、波長選択用の複雑な光学系は不要となり、更に、LI
CD光源をパルス電源により間欠点灯することによって
、従来のタングステンランプ、ハロゲンランプを光源と
する吸光光度計における回転セクタと同様の光チヨツパ
作用を得られる等、優れた性能をもつ吸光光度計を提供
し得るものである。
The present invention uses a semiconductor light emitting device (light emitting diode, I] ID, hereinafter simply referred to as LED) that emits light of a single wavelength that matches the absorption wavelength range of the test substance component as a light source. Compared to light sources such as 10-gen lamps, it has a longer lifespan and is extremely easy to maintain.
Since the synchrotron radiation has a single wavelength, that is, it has monochromatic properties, there is no need for a complicated optical system for wavelength selection.
By intermittent lighting of the CD light source using a pulsed power source, we provide a spectrophotometer with excellent performance, such as obtaining the optical chopper effect similar to the rotating sector in a conventional spectrophotometer using a tungsten lamp or halogen lamp as a light source. It is possible.

第2図は、本発明による単波長特性LIDを使用した吸
光光度計の検出部の一実施例を示す断面図である。
FIG. 2 is a sectional view showing an embodiment of a detection section of an absorption photometer using a single wavelength characteristic LID according to the present invention.

図中、6はLEDを用いた光源部、7は光源部6を試料
セルに装着する光源部ブロック、9はLEDからの光を
平行に照射させるためのレンズ、9は光電変換素子10
に光を集光させる受光部ブロック//に装着されたコン
デンサレンズであって、特に高精度の測定を行なうこと
が必要の場合には、金jll干渉フィルタgを光源部ブ
ロック7のレンズ9の前に装着することもできるように
しである。
In the figure, 6 is a light source unit using an LED, 7 is a light source unit block for attaching the light source unit 6 to the sample cell, 9 is a lens for irradiating light from the LED in parallel, and 9 is a photoelectric conversion element 10
It is a condenser lens attached to the light receiving block // that focuses light on the light source block 7, and when it is necessary to perform particularly high-precision measurements, a gold jll interference filter g is attached to the lens 9 of the light source block 7. It can also be worn on the front.

光源部乙のLEDに、パルス電圧発生回路からなる電源
回路Sからパルス電圧が供給されると、LEDは供給電
圧の周波数に応じて間欠的に点灯し、その投射光はレン
ズ9により平行光束となり、試料セル3に照射される。
When a pulse voltage is supplied to the LED of the light source part B from the power supply circuit S consisting of a pulse voltage generation circuit, the LED lights intermittently according to the frequency of the supplied voltage, and the projected light is converted into a parallel light beam by the lens 9. , the sample cell 3 is irradiated.

そして、試料セル3中の試料により吸収を受け、減光し
て受光部ブロックll内の光電変換素子IOに到達し、
受光光の強度に応じた電気信号に変換される。この電気
信号は増幅され、光源の間欠点滅パルスに同期して整流
された後、試料濃度に対応した電気信号として、計器等
により検知を行なうものである。
Then, it is absorbed by the sample in the sample cell 3, and the light is attenuated and reaches the photoelectric conversion element IO in the light receiving block 11,
The received light is converted into an electrical signal according to its intensity. This electrical signal is amplified and rectified in synchronization with the intermittent pulses of the light source, and then detected by a meter or the like as an electrical signal corresponding to the sample concentration.

こ\で、光源部乙のLIC’Dに、単波長発光特性のも
のを使用すれば、゛全波長域発光特性のものに対して、
波長選択用のフィルタ、回折格子等が不要であり、パル
ス電圧発生回路からなる電源回路の使用による回転セク
タ等の機構の不要とも相まって、構造の簡略化が行なわ
れ、しかも高性能の吸光光度計を構成することができる
。単波長発光特性のLEDは、各種のものが市販されて
おり、目的、試料の吸光特性に応じて選択することがで
きる。                      
  (1・・第3図は、本発明によりクレアチニンビク
ラートの吸光特性を、緑色単波長発光特性LEDを光源
として測定した場合の例により示したものである。
Here, if you use the LIC'D of the light source part B with single wavelength emission characteristics, ``compared to the one with full wavelength emission characteristics,
There is no need for wavelength selection filters, diffraction gratings, etc., and the use of a power supply circuit consisting of a pulse voltage generation circuit eliminates the need for mechanisms such as rotating sectors, resulting in a simplified structure and a high-performance spectrophotometer. can be configured. Various types of LEDs with single wavelength emission characteristics are commercially available, and can be selected depending on the purpose and the light absorption characteristics of the sample.
(1... Figure 3 shows an example of the light absorption characteristics of creatinine viclat according to the present invention, measured using a green single-wavelength LED as a light source.

本例は、試料のクレアチニンビクラートは赤色移色され
ていて、その最大吸収波長域は1I90XIOrn前後
のところにあり、図のように緑色単波長LEDの発光波
長域とは、一部分合致するにすぎないが、このときのク
レアチニンピクラート中のクレアチニン濃度と吸光度と
の関係は、第7図に示されるように十分の直線性がある
ことが判る。すなわち、測定しようとする物質成分の有
感波長域が光源の発光波長域の一部であっても、一致す
る部分があれば、十分な直線性をもって濃度測定が可能
である。
In this example, the sample creatinine vicrate has been color-shifted to red, and its maximum absorption wavelength range is around 1I90XIOrn, which only partially matches the emission wavelength range of the green single-wavelength LED, as shown in the figure. However, it can be seen that the relationship between the creatinine concentration in creatinine picrate and the absorbance has sufficient linearity as shown in FIG. That is, even if the sensitive wavelength range of the substance component to be measured is part of the emission wavelength range of the light source, as long as there is a matching part, concentration measurement can be performed with sufficient linearity.

本発明により、吸光光度計光源として、単波長発光特性
のLIDを用いることによって、その構成が著しく簡略
化され、しかもLICDはパルス点灯が可能であること
から、同期整流回路との併用によって、回転セクタ等の
機械的装置も不要になり、吸光光度計の性能向上に多大
の効果をもたらすものである。
According to the present invention, by using an LID with a single wavelength emission characteristic as a light source for an absorption photometer, its configuration is significantly simplified.Moreover, since the LICD can be lit in pulses, it can be used in combination with a synchronous rectifier circuit to This eliminates the need for mechanical devices such as sectors, which greatly improves the performance of the spectrophotometer.

LICDは、吸光光度計光源として現在のところ使用さ
れた例はないが現在では高性能で、しかも廉価な各種の
LEDが市販されており、材料の入手も容易である。
LICD has not yet been used as a light source for an absorption photometer, but various high-performance and inexpensive LEDs are currently on the market, and materials are easily available.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の方式による吸光光度計の検出部の構造
の一部を示す図、第2図は、本発明による吸光光度計の
検出部の構造の実施例を示す断面図、第3図は、緑色単
波長発光特性のLICEの発光波長特性と、試料例とし
てクレアチニンピクラートの吸光度波長特性を併示する
図、第7図は、緑色単波長発光特性LICDを光源とす
る本発明吸光光度計により、クレアチニンピクラート中
のクレアチニン濃度を測定した際の濃度−吸光度特性を
例示する図である。 /・・光源、−・・金属干渉フィルタ、3・・試料セル
、ダ・・検出器、S・・パルス電圧供給電源回路\6・
・LEDを用いた光源部、り・・光源部ブロック、ざ・
・金11干渉フィルタ、9・・レンズ、9′・・コンデ
ンサレンズ、IO・・光電変換素子、/l・・受光部ブ
ロック。
FIG. 1 is a diagram showing a part of the structure of the detection section of a conventional spectrophotometer, FIG. 2 is a sectional view showing an embodiment of the structure of the detection section of the spectrophotometer according to the present invention, and FIG. The figure shows the emission wavelength characteristics of LICE with green single wavelength emission characteristics and the absorbance wavelength characteristics of creatinine picrate as a sample example. Figure 7 shows the light absorption of the present invention using LICD with green single wavelength emission characteristics as a light source. FIG. 2 is a diagram illustrating concentration-absorbance characteristics when the creatinine concentration in creatinine picrate is measured using a photometer. /...Light source, -...Metal interference filter, 3...Sample cell, Da...Detector, S...Pulse voltage supply power supply circuit\6.
・Light source block using LED, ri...
- Gold 11 interference filter, 9...lens, 9'...condenser lens, IO...photoelectric conversion element, /l...light receiving block.

Claims (1)

【特許請求の範囲】[Claims] (1)  光源からの光を試料セルに照射し、セル内の
試料物質により吸収を受けた光を受け、その光量を電気
信号に変換する光電変換素子とを具えた吸光光度計にお
いて、光源部の光源が単波長特性半導体発光素子からな
り、該発光素子を発光せしめる該発光素子の電源回路が
パルス電圧発生回路からなることを特徴とする吸光光度
計。
(1) In a spectrophotometer that is equipped with a photoelectric conversion element that irradiates a sample cell with light from a light source, receives the light absorbed by the sample substance in the cell, and converts the amount of light into an electrical signal, the light source part 1. A spectrophotometer, wherein the light source comprises a semiconductor light-emitting element with a single wavelength characteristic, and the power supply circuit for the light-emitting element that causes the light-emitting element to emit light comprises a pulse voltage generation circuit.
JP7702482A 1982-05-07 1982-05-07 Absorptiometer Pending JPS58193439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7702482A JPS58193439A (en) 1982-05-07 1982-05-07 Absorptiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7702482A JPS58193439A (en) 1982-05-07 1982-05-07 Absorptiometer

Publications (1)

Publication Number Publication Date
JPS58193439A true JPS58193439A (en) 1983-11-11

Family

ID=13622176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7702482A Pending JPS58193439A (en) 1982-05-07 1982-05-07 Absorptiometer

Country Status (1)

Country Link
JP (1) JPS58193439A (en)

Similar Documents

Publication Publication Date Title
JP3868516B2 (en) Photometer multi-detector read head
FI94177C (en) Color detector to detect sample fluorescence or fluorescent sample
US4171909A (en) Apparatus for measuring light intensities
US4945250A (en) Optical read head for immunoassay instrument
JPS61251724A (en) Spectrophotometer
JP4536754B2 (en) Spectrophotometer and liquid chromatography
EP0438550B1 (en) Optical read system
WO2015010434A1 (en) Apparatus and method for measuring reflection characteristic of material
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
KR970005587B1 (en) Spectrophoto meter comprising a xenon flashtube as a light source
US3924950A (en) Atomic absorption spectroscopy with background correction
US4722606A (en) Analytical photometer, in particular multi-channel, applied to a centrifugal system adapted to perform practically simultaneous determination of the presence of different substances in a certain number of samples
Sullivan et al. The application of resonance lamps as monochromators in atomic absorption spectroscopy
FI72391C (en) FOERFARANDE FOER MAETNING AV SKILLNADEN AV FAERGAEMNEHALT I PROV.
JPS59208445A (en) Method and device for measuring absorptive component quantity of sample
JPS58193439A (en) Absorptiometer
JPS6236104Y2 (en)
US3535044A (en) Total organic carbon colorimeter
JPS58193438A (en) Dual-wave length photometer type absorptiometer
EP1800109A1 (en) Method and sensor for infrared measurement of gas
JPH11508053A (en) Analysis system
JPS59231426A (en) Optoacoustic detector
SU837168A1 (en) Atomic absorbtion spectrophotometer
Shin et al. A Pair of Light Emitting Diodes for Absorbance Measurement
RU2198383C2 (en) Procedure measuring photometric characteristics of materials