JPS58193084A - Controller for temperature in case of discharge from furnace of material to be heated of heating furnace - Google Patents

Controller for temperature in case of discharge from furnace of material to be heated of heating furnace

Info

Publication number
JPS58193084A
JPS58193084A JP7582782A JP7582782A JPS58193084A JP S58193084 A JPS58193084 A JP S58193084A JP 7582782 A JP7582782 A JP 7582782A JP 7582782 A JP7582782 A JP 7582782A JP S58193084 A JPS58193084 A JP S58193084A
Authority
JP
Japan
Prior art keywords
temperature
furnace
heated object
computer
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7582782A
Other languages
Japanese (ja)
Inventor
岡藤 雅晴
岡嶋 保則
順一 野口
畑間 俊哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP7582782A priority Critical patent/JPS58193084A/en
Publication of JPS58193084A publication Critical patent/JPS58193084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、例えばカラス強化用加熱炉の如き加熱炉の炉
温制御装置において、出炉直後の被加熱体の温度、温度
分布等を計測して該炉温制御装置の制御目標値である基
準温度を自動的に変更、調fii’i L. {4+る
自動補正装置を付設し、以って被加熱体の出炉温度等の
長期安定化、制御の完全自動化、制御の精度向上等全実
現し得る加熱炉の被加熱休出炉温度節」御装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a furnace temperature control device for a heating furnace, such as a heating furnace for glass strengthening, by measuring the temperature, temperature distribution, etc. of a heated object immediately after leaving the furnace. The reference temperature, which is the control target value, is automatically changed and adjusted. {4+ automatic correction device is attached to control the temperature of the heating and resting furnace of the heating furnace, which can achieve long-term stabilization of the unloading temperature of the heated object, complete automation of control, and improvement of control accuracy. Regarding equipment.

第3図、第4図に本発明の技術的前提となる例えはガラ
ス強化用電気炉の構成を示す3,ガラス強化用電気炉の
構成を概説すると、30は加熱炉であって、この加熱炉
30は幅狭な例えば三つの連続して配置された室30a
.30b,30Cに区画されて成り且つこれらの室30
a,30b。
3 and 4 show the structure of an electric furnace for glass strengthening as an example, which is the technical premise of the present invention.3 To outline the structure of an electric furnace for glass strengthening, 30 is a heating furnace, The furnace 30 has narrow chambers 30a arranged in series, for example.
.. It is divided into chambers 30b and 30C, and these chambers 30
a, 30b.

30cの各内壁面にはヒータ61,31が夫々配設され
、この加熱炉30でガラス62は、移送装置(図示せず
)で矢印Aの如く移送され、最後の室30Cにてその後
成型、強化するのに都合の良い所定温度に達するように
加熱処理きれるものである。その後カラス32は室30
Cから一上カヘ搬出され、出炉後押圧機33によって所
定形状に成型され、更にその後急冷用送風機34により
冷却されて次の工程に移送される。
Heaters 61, 31 are arranged on each inner wall surface of the heating furnace 30, and the glass 62 is transferred in the direction of arrow A by a transfer device (not shown) in the heating furnace 30, and then molded in the final chamber 30C. It can be heat-treated to reach a predetermined temperature convenient for strengthening. After that, crow 32 is in room 30.
It is carried out from C to the upper chamber, molded into a predetermined shape by a pressing machine 33 after being taken out of the furnace, and then cooled by a quenching blower 34 and transferred to the next process.

上記の如き加熱炉30の温度制御に係る従来5制衛I装
@は第5図に示される如く構成される。この温度制御は
本来抑圧機36でカラスを所定形状に成型し急冷用送風
機34で成型されたカラスを・名吟強化するとき強化度
,透視歪等のカラス品質を所定のものにするためには出
炉直後のカラス温度が正確に所定の温度になっていなけ
ればならないことがら要8青されるものである。
A conventional five-control system for controlling the temperature of the heating furnace 30 as described above is constructed as shown in FIG. This temperature control is originally used to mold the crow into a predetermined shape using the suppressor 36 and to strengthen the formed crow using the quenching blower 34, in order to make the crow quality such as the degree of reinforcement and perspective distortion the predetermined ones. It is essential that the temperature of the glass immediately after unloading must be exactly at a predetermined temperature.

そこで従来の制御装置は、上記の加熱炉30内の略中夫
の位置にアルメル●クロメルカップルの如き熱電対温度
計1を配設して炉内の温度を検出し、この炉内温度に係
る検出信号を、増幅器2で増幅しその後PID制御動作
を行うアナログコントローラ3に入力せしめ、別途に予
め人為的に適切に設定付与された制御目標値である基準
炉内温度と比較させてその偏差を得、当該偏差に基づい
て得た所要の制御信号81を例えばSCR(サイリスタ
)の如きゲート作用を有する操作器4に与えるように構
成されるものである。そして、例えばSCRでは制御信
号S1により位相の制御が行われ、炉内ヒータ6へ供給
される電流の通電量が適切に調節され、すなわち操作器
4から制御対象である炉内ヒータ6に適切な操作量が与
えられることによって炉内温度が制御目標値である基準
炉内温度と略一致せしめられるような制御が行われるの
である。
Therefore, the conventional control device detects the temperature inside the furnace by disposing a thermocouple thermometer 1 such as an alumel-chromel couple at a position approximately in the center of the heating furnace 30, and detects the temperature inside the furnace. The detection signal is amplified by an amplifier 2, and then inputted to an analog controller 3 that performs PID control operation, and compared with a reference furnace temperature, which is a control target value that has been appropriately set artificially in advance, to calculate the deviation. The device is configured to provide a required control signal 81 obtained based on the deviation to the operating device 4 having a gate function, such as an SCR (thyristor). For example, in the SCR, the phase is controlled by the control signal S1, and the amount of current supplied to the furnace heater 6 is appropriately adjusted. By applying the manipulated variable, control is performed such that the furnace temperature is made to substantially match the reference furnace temperature, which is the control target value.

ところが、上記の如き従来の制イ卸装置によれば次のよ
うなテメリットがある3、つ捷り、この制御の目的にも
ともと出炉直後のガラスの温度を所定温度にすることに
あるにも拘わらず、出炉直後のガラスの温度を直接に計
測しているのではなく炉内ヒータと炉壁からの輻射によ
って定する炉内温度を測定しこれを基礎にして制御を行
うようにしているため、本来主として炉内ヒータからの
輻射で加熱されるガラスの出炉直後の温度を正しく所定
の温度にすることは仲々難しく、一般的には従来装置に
よれば時間の経過に伴いカラスの出炉温度が低下する傾
向にある。このことは炉内温度が炉壁からの輻射を受け
ることにより高めに温度が測定されたり、或いはまた出
炉直後のカラスが外部の環境の影響を受けたりするから
である。このように従来下ではガラスの出炉温度が長期
的に低下するよう変動するため、斯かる事態をできるだ
け回避するためには人が絶えず当該電気炉の状態を監視
して斯かる変動に対処するべく前記制御目標値としてコ
ントローラ6内に設定される基準炉内温度全適宜に変更
°し設定し直さなければならない(Mの操旬という問題
が生じ、而して従来下では被加熱体の出炉温度の長期安
定化、制御の完全自動化、精度間上等を実現することが
仲々困難であった。
However, the conventional blowdown control device as described above has the following disadvantages: 3. Although the purpose of this control is originally to bring the temperature of the glass immediately after leaving the furnace to a predetermined temperature, First, we do not directly measure the temperature of the glass immediately after it is taken out of the furnace, but instead measure the temperature inside the furnace, which is determined by radiation from the furnace heater and the furnace wall, and control is performed based on this. It is very difficult to bring the temperature of glass, which is heated mainly by radiation from the furnace heater, to the correct temperature immediately after it is taken out of the furnace, and in general, with conventional equipment, the temperature at which the glass is taken out of the furnace decreases as time passes. There is a tendency to This is because the temperature inside the furnace is measured to be higher due to radiation from the furnace wall, or the crow immediately after being taken out of the furnace is affected by the outside environment. In this way, under conventional conditions, the temperature at which the glass is taken out of the furnace fluctuates in a manner that lowers it over a long period of time, so in order to avoid such situations as much as possible, people must constantly monitor the condition of the electric furnace and take measures to deal with such fluctuations. The reference furnace temperature set in the controller 6 as the control target value must be appropriately changed and reset (there arises a problem of the adjustment of M, and conventionally, the furnace temperature of the object to be heated is It has been difficult to achieve long-term stability, complete automation of control, and improved accuracy.

斯かる問題は単にガラス強化用加熱炉における制御に係
わる問題だけではなく同種の加熱炉についての一般的な
問題であると考えられる。
It is thought that such a problem is not only a problem related to control in a heating furnace for glass strengthening, but also a general problem with heating furnaces of the same type.

また、この種の加熱炉では、加熱手段を区分けし夫々の
加熱手段の発熱量を異在らせることにより、被加熱体に
対し所定の温度分布が形成されるように加熱することを
必要とする場合もあり、このような加熱炉ではより一層
細かい炉温の制御が要求される。
In addition, in this type of heating furnace, it is necessary to heat the object to be heated so that a predetermined temperature distribution is formed by dividing the heating means and varying the amount of heat generated by each heating means. In some cases, such heating furnaces require even more precise control of the furnace temperature.

本発明者は上記問題、要請に鑑みこれを有効に解決すべ
く本発明を成したものである。
In view of the above-mentioned problems and demands, the present inventors have created the present invention in order to effectively solve the problems.

第一に係る本発明は、加熱炉の炉温制御装置に、出炉直
後の被加熱体の温度を検出しこれに基つき制御目標値で
ある基準炉内温度を自動的に調節し得る自動補正装置を
設け、これにより簡易な構成で被加熱体の出炉温度の長
期安定化、炉温制菌の完全自動化、制御精度の向上全企
図することを目的とする。
The first aspect of the present invention provides automatic correction in a furnace temperature control device of a heating furnace, which detects the temperature of a heated object immediately after unloading and automatically adjusts a reference furnace temperature, which is a control target value, based on the detected temperature of a heated object immediately after unloading. The purpose is to provide a device with a simple configuration, to stabilize the temperature at which the heated object is taken out of the furnace over a long period of time, to completely automate the sterilization of the furnace temperature, and to improve control accuracy.

第二に係る本発明は、加熱炉の炉温制御装置に、出炉直
後の被加熱体の温度分布を検出しこれに基づき制御目標
値である基準炉内温度及び複数の独立加熱器の発熱量全
庁める各比率値を自動的に調節し得る自動補正装置を設
け、これにより上記と同様に被加熱体の出炉温度、温度
分布の長期安定化等全企図することを目的とする。
The second aspect of the present invention provides a furnace temperature control device for a heating furnace that detects the temperature distribution of a heated object immediately after unloading, and based on this detects the reference furnace internal temperature, which is a control target value, and the calorific value of a plurality of independent heaters. The aim is to provide an automatic correction device that can automatically adjust all the ratio values, and to achieve long-term stabilization of the temperature distribution and the temperature distribution of the heated object in the same way as mentioned above.

以下に本発明の好適一実施例を添付図面に基づいて詳述
する。
A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は第一の発明に係る実施例を示すものである。こ
の実施例では前述の前提技術である処の、熱電対温度計
1、増幅器2、PED制御動作を行うアナログコントロ
ーラ6、操作器4等から成り加熱炉5内の温度を検出し
電流供給ikk調節することにより加熱炉5内に配設さ
れたヒータ6の発熱量Qを制御する炉温制御装置に対し
、下記の917き構成を有する自動補正装置が付設され
るよう構成されている。
FIG. 1 shows an embodiment according to the first invention. This embodiment is based on the above-mentioned basic technology, and consists of a thermocouple thermometer 1, an amplifier 2, an analog controller 6 that performs PED control operation, an operating device 4, etc., and detects the temperature inside the heating furnace 5 and adjusts the current supply ikk. By doing so, the furnace temperature control device that controls the calorific value Q of the heater 6 disposed in the heating furnace 5 is configured to be provided with an automatic correction device having the following configuration 917.

つ1す、加熱炉5から出炉されたガラス7の出炉直後の
温度を検出することのできる放射温度計8と、放射温度
計8によって得られたガラ、スフの出炉直後のガラス温
度に係る検出信号6A−D変換器9によりディジタル化
した後これを入力し記憶スる第1のコンピュータ10と
、第1のコンピュータ10より出炉直後のガラス温度に
係る所要のデータを取り入れ且つ別途に予め与えられ(
P)、その記憶部に用意された制御目標値であるガラス
の基準温度値と該データとが比較され、その偏差に基づ
いてD−A変換器11を介して上記アナログコントロー
ラ6に対し上記基準炉内温度を与えることにより設定し
直しアナログコントローラ3内の設定値を自動的に変更
、調節する第2のコンピュータ12とから構成される自
動補正装置が付設される。斯かる構成から明らかなよう
に、該自動補正装置は、加熱炉5の炉温を制御するため
に設けられた炉温制御装置内のアナログコントローラ3
の、従来下では人為的に逐次設定、変更された制御目標
値である基準炉内温度を、出炉直後のガラス温度に基づ
いてコンピュータ10.12’に利用して自動的に変更
、設定し、以って上記基準炉内温度を補正するという機
能を有するものである。
1. A radiation thermometer 8 capable of detecting the temperature of glass 7 immediately after unloading from the heating furnace 5, and detection related to the glass temperature of glass and cloth immediately after unloading obtained by the radiation thermometer 8. A first computer 10 inputs and stores the signal after being digitized by an A-D converter 9, and a first computer 10 receives necessary data regarding the glass temperature immediately after being taken out of the furnace and is provided separately in advance. (
P), the data is compared with the reference temperature value of the glass, which is the control target value prepared in the storage section, and based on the deviation, the reference temperature value is sent to the analog controller 6 via the D-A converter 11. An automatic correction device is provided which includes a second computer 12 that automatically changes and adjusts the set values in the analog controller 3 by resetting them based on the furnace temperature. As is clear from such a configuration, the automatic correction device uses the analog controller 3 in the furnace temperature control device provided to control the furnace temperature of the heating furnace 5.
The reference furnace temperature, which is a control target value that was conventionally set and changed manually one after another, is automatically changed and set using the computer 10.12' based on the glass temperature immediately after unloading. Therefore, it has the function of correcting the reference furnace temperature.

上記放射温度計8には既に提案されている例えばパイロ
スキャナ(千野製作社)の如きスキャン型放射温度計が
使用され、使用される温度計の種類・構成によって相対
温度、絶対温度のうちいずれかによる温度データをガラ
スの全面にわたり所要の測定点の数たけ検出することが
できるものであるが、斯かる温度データはA−D変換器
9でディジタル化されてコンピュータ10に転送される
As the radiation thermometer 8, a scanning radiation thermometer such as the Pyroscanner (Chino Seisakusha), which has already been proposed, is used, and depending on the type and configuration of the thermometer used, either relative temperature or absolute temperature can be used. Temperature data can be detected at a required number of measurement points over the entire surface of the glass, and such temperature data is digitized by the A-D converter 9 and transferred to the computer 10.

コンピュータ10は例えばマイクロコンピュータが使用
され、転送されてきたカラス7の全域にわたる所定測定
点についての温度データをその記憶部に格納記憶する。
The computer 10 is, for example, a microcomputer, and stores the transferred temperature data at predetermined measurement points over the entire area of the crow 7 in its storage section.

その後所定のタイミングで、ると共に、適切なるタイミ
ングで、入力されたガラス7の温度分布に係る8度デー
タより所定位置(例えば代表位置9点)のデータを選択
し当該データカコンピュータ12に転送される。
Thereafter, at a predetermined timing, at an appropriate timing, data at a predetermined position (for example, 9 representative positions) is selected from the input 8 degree data regarding the temperature distribution of the glass 7, and the data is transferred to the computer 12. Ru.

捷だ、コンピュータ12は例えばマイクロコンピュータ
が使用され、入力される複数枚のガラスの温度データを
所定位置ごとに平均しこの平均された一点の平均温度と
予め記憶部に記憶されたカラスに係る基準温度と比較す
る。この場合、ガラスの種類に応じ各種の基準値を記憶
させて用意し、その比較判断時に使用される基準温度を
その場合に応じて適宜に変更させることもできる。
For example, the computer 12 is a microcomputer, which averages the input temperature data of a plurality of glasses for each predetermined position, and calculates the average temperature at one point and a standard related to the glass stored in the storage unit in advance. Compare with temperature. In this case, various reference values may be stored and prepared depending on the type of glass, and the reference temperature used for comparison and judgment may be changed as appropriate depending on the case.

上記実施例によれば、出炉直後のガラスの温度を計測し
、この実測値と基準値とを比較することによって、従来
ではアナログコントローラ3にお炉温度を自動的に長期
にわたシ安定させることが可能となる。
According to the above embodiment, by measuring the temperature of the glass immediately after unloading and comparing this actual measurement value with a reference value, conventionally the analog controller 3 automatically stabilizes the furnace temperature over a long period of time. becomes possible.

ここで、信号処理方式の一例を述べると、1枚のガラス
7からは例えば1000点の温度データが測定検出され
、これらをコンピュータ10に記憶させると共に、この
1000点の測定値の中から所定位置(ガラス略中央位
置)の温度データをコンピュータ12に転送せしめる。
Here, to describe an example of a signal processing method, for example, 1000 points of temperature data are measured and detected from one glass 7, these are stored in the computer 10, and a predetermined position is selected from among the measured values of these 1000 points. (approximately central position of the glass) is transferred to the computer 12.

コンピュータ12では出炉されるガラスごとにコンピュ
ータ10から転送される測定値について逐一その平均値
を求め平均値を修正し、斯くして単位枚数について求め
られた平均値とコンピュータ12内に設定される前記ガ
ラス温度に係る基準値とが比較されその偏差に基づきコ
ントローラ6内の炉温に係る基準値が変更、調節される
。通常上記単位枚数は例えば30分単位ごとの枚数程度
である。
The computer 12 calculates the average value of the measured values transferred from the computer 10 for each glass to be unloaded and corrects the average value. The reference value related to the glass temperature is compared, and the reference value related to the furnace temperature in the controller 6 is changed or adjusted based on the deviation. Normally, the unit number of sheets is approximately the number of sheets per 30 minutes, for example.

このようにコンピュータ12における比較判断において
出炉されたガラス7の単位枚数ごとの平均値を使用する
ようにしたのは、本来カラス7についての計測データの
バラツキが大きいからであり、それ故にコンピュータ1
2の出力で直接的に操作器4、延いてはヒータ6を制御
するという方式は採用されず、先ず炉温を制御すべくコ
ントローラ6内の炉温に係る基準値全変更し、その後ヒ
ータ6の発熱量を調節し、ガラスの出炉温度を所定の温
度にするという間接的な方式が採用されるのである。而
してガラスの出炉温度の長期にわたる安定化を達成する
ことができる。
The reason why the computer 12 uses the average value for each unit number of glass 7 taken out of the furnace in the comparative judgment is that the measurement data for the glass 7 originally varies widely, and therefore the computer 12
The method of directly controlling the controller 4 and eventually the heater 6 with the output of 2 was not adopted, but first, in order to control the furnace temperature, all reference values related to the furnace temperature in the controller 6 were changed, and then the heater 6 An indirect method is adopted in which the heating value of the glass is adjusted to bring the glass out of the furnace to a predetermined temperature. In this way, the temperature at which the glass is taken out of the furnace can be stabilized over a long period of time.

また上記実施例では2台のコンピュータで構成されたが
、データ転送の制御はいずれのコンピュータによっても
可能であり、寸だこれは一台のコンピュータで構成する
ことも可能である。更にはコンピュータを使用せずワイ
ヤードロジックテを気団路を組むこともできる。
Further, although the above embodiment is configured with two computers, data transfer can be controlled by any of the computers, and it is also possible to configure the system with a single computer. Furthermore, it is also possible to construct air mass routes using wired logicte without using a computer.

上記発明では、加熱炉5に配設されるヒータ6は単−又
は複数区域に分割されており、複数区域に分割されたヒ
ータ6には固定された所定の比率で電流が供給される場
合に係る制′御に関するものであった。次いで第2図に
第二の発明に係る実施例を示す。本発明は炉内のヒータ
が分割されて区分けされ、各区画ごとの複数のヒータに
ついてその各通電量が独立して制御されることによって
、各ヒータで加熱されるガラスの温度を部分ごと異なら
せるように制御するだめのものである。
In the above invention, the heater 6 disposed in the heating furnace 5 is divided into one or more zones, and when the heater 6 divided into the multiple zones is supplied with current at a fixed predetermined ratio, This was related to such control. Next, FIG. 2 shows an embodiment according to the second invention. In the present invention, the heater in the furnace is divided into sections, and the amount of electricity applied to each of the plurality of heaters in each section is independently controlled, thereby making the temperature of the glass heated by each heater different for each section. It is impossible to control it like this.

第2図において、加熱炉5、炉温制御装置における熱電
対温度計1、増幅器2、アナログコントローラろ、及び
自動補正装置における放射温度計8、コンピュータ10
等は若干の機能的変更を加えられた部分もあるが、前記
発明に係る実施例として第1図に示された構成要素と略
々同一であるで同一符号が付される。
In FIG. 2, a heating furnace 5, a thermocouple thermometer 1 in a furnace temperature control device, an amplifier 2, an analog controller, a radiation thermometer 8 in an automatic correction device, and a computer 10 are shown.
Although there are some functional changes, these components are substantially the same as those shown in FIG. 1 as an embodiment of the invention, and are designated by the same reference numerals.

加熱炉5内に配設されるヒータ16は、例えば′9個の
区画に分割され、各区画16a・・ごとにヒータが設け
られるように構成され、各ヒータK l=、j独立に電
流が供給されるようになっている。従って各ヒータの通
電量を適宜に調節するために各区画のヒータに対応させ
て9個の例えばSCRの如き電流調節用の操作器4・・
・が設けられる。既述の通りアナログコントローラ6で
はコンピュータ12により付与設定される炉内温度の基
準値と実1flll値とが比較され、その偏差とこれに
基づ(PII)制御動作に基づいて所要の制御信号S1
が出力されるが、斯かる制御信号Slは増幅器17で増
幅された後上記各操作器4・・・に下記の如き所定の信
号処理を施されて与えられるものとする。
The heater 16 disposed in the heating furnace 5 is divided into nine sections, for example, and a heater is provided in each section 16a. It is now being supplied. Therefore, in order to appropriately adjust the amount of current supplied to each heater, nine current adjustment actuators 4, such as SCRs, are provided corresponding to the heaters in each section.
・ will be provided. As mentioned above, the analog controller 6 compares the reference value of the furnace temperature given and set by the computer 12 with the actual 1flll value, and based on the deviation and this (PII) control operation, the required control signal S1 is generated.
It is assumed that the control signal Sl is amplified by the amplifier 17 and then given to each of the operating devices 4 after being subjected to the following predetermined signal processing.

つまり、増幅器17と各操作器4・・・との間には、例
えば乗除演算器により形成される比率分配器18・・・
が、夫々の操作器に対応させて介設され、この比率分配
器18・・・は夫々独自にコンピュータ12の制御下で
所定の比率値が設定されることにより増幅器17から入
力される制御信号S1の位相全各段定比率で調節した後
に斯かる制御信号を夫々対応する各操作器4・・・に送
出するものである、熱電対温度計1によって測定される
炉内温度の測定点は前記第一発明の場合と同様に加熱炉
5内の略中央位置に存する一点である。また放射温度計
8によって測定されコンピュータ10内に記憶保持され
るガラス7の温度分布に係る測定点の数に、この発明で
はガラス各部の温度が異なるように制御されるのに鑑み
より多くの測定点が選がされると共に、コンピュータ1
0よりコンピュータ12へ転送されるガラス温度に係る
実測データの数も少なくとも上記区画の数理上の所定数
となる。
That is, between the amplifier 17 and each operating device 4, there is a ratio divider 18 formed by, for example, a multiplication/division calculator.
are provided corresponding to the respective operating devices, and each ratio divider 18 receives a control signal input from the amplifier 17 by setting a predetermined ratio value independently under the control of the computer 12. The measurement points of the furnace temperature measured by the thermocouple thermometer 1, which is used to send such control signals to the respective corresponding operating devices 4 after adjusting the phase of S1 at a constant ratio for all stages, are as follows. As in the case of the first invention, it is a point located approximately at the center of the heating furnace 5. In addition, the number of measurement points related to the temperature distribution of the glass 7 measured by the radiation thermometer 8 and stored in the computer 10 is increased in view of the fact that the temperature of each part of the glass is controlled to be different in this invention. As the points are selected, computer 1
The number of actual measurement data related to the glass temperature transferred from 0 to the computer 12 also becomes at least the mathematically predetermined number of the above sections.

このことは、アナログコントa−ラ3の基準炉内温度、
比率分配器18・・・の各比率値を夫々調節することに
より各区画についての9個のヒータの発熱星全適切に独
立に制御し、ガラス7の各部を所要の温度にすべく一定
の温度分布を生せしめる必要があるからである。
This means that the reference furnace temperature of the analog controller 3,
By adjusting each ratio value of the ratio distributor 18, all nine heaters for each section can be properly and independently controlled to maintain a constant temperature in order to bring each part of the glass 7 to the required temperature. This is because it is necessary to create a distribution.

ガラス7に所定の温度分布を生じきせるように加熱する
のは、種々の厚みの強化ガラスに係る需要が社会的に存
するからであり、そのためにコンピュータ12の内部に
も各種のガラスについての温度分布に係る基準設定値を
予め記憶し用意するとと匠よシ、場合に応じ適宜な基準
の値を選択使用することもてきる。斯くすれば、本発明
に係る制御の汎用性を高めることができる。
The reason why the glass 7 is heated to create a predetermined temperature distribution is because there is a social demand for tempered glass of various thicknesses, and for this reason, the computer 12 also has temperature distributions for various types of glass. By storing and preparing the reference setting values in advance, the designer can select and use appropriate reference values depending on the situation. In this way, the versatility of the control according to the present invention can be increased.

こうして 第2のコンピュータ12においては、加熱し
成型しようとするガラスの温度分布に係る所定数の基準
設定温度が各部に対応させてプログラムにより予め与え
られその記憶部に記憶され、−4コンピユータ1oより
転送されてくる実測テークと上記基準設定温度とが比較
され、その偏差に基づいてコンピュータ12よりアナロ
グコントローラ6、各比率分゛配器18・・・に対し夫
々のD −A変換器19.20に介して基準炉内温度、
比率の設定値が各付力設定される如く機能する。
In this manner, in the second computer 12, a predetermined number of standard set temperatures related to the temperature distribution of the glass to be heated and molded are given in advance by a program in correspondence with each part and stored in its storage unit. The transferred actual measured temperature is compared with the reference set temperature, and based on the deviation, the computer 12 sends a message to the analog controller 6, each ratio distributor 18, and the respective D-A converters 19, 20. Reference furnace temperature, via
It functions so that the ratio setting value is set for each force.

上記構成によれば、出炉直後のガラスの温度分布をm+
+定検出し、この検出された温度分布に係る実測データ
とごンビューク12に予め用意さゎ、た制御目標である
ガラスの温度分布とが比較きれ、炉温制御装置のコント
o−ラ3の設定値、新たに加えられた比率分配器18・
・の各比率設定値を夫々調節しガラスの温度分布を目標
に近づけるべく各操作器4・・を介して各区画16a・
・・のヒータの発熱量が独立別個に制御されるのである
According to the above configuration, the temperature distribution of the glass immediately after leaving the furnace is m+
The measured data related to the detected temperature distribution can be compared with the temperature distribution of the glass, which is the control target prepared in advance in the Gombuke 12, and the controller 3 of the furnace temperature control device can Setting value, newly added ratio divider 18.
In order to bring the temperature distribution of the glass closer to the target by adjusting each ratio setting value of each section 16a, .
The amount of heat generated by the heaters is controlled independently and separately.

尚本発明においても、放射温度計8により測定され、コ
ンピュータ1oに記憶された各ガラスの温度分布に係る
実測データは適宜にラインプリンタで打ち出すことが可
能である。
Also in the present invention, the actual measurement data regarding the temperature distribution of each glass, which is measured by the radiation thermometer 8 and stored in the computer 1o, can be printed out using a line printer as appropriate.

上記第二の発明は前記第一の発明全基本として構成され
るものである。
The above-mentioned second invention is constituted as the entire basis of the above-mentioned first invention.

上記実施例によシ本発明の内容は明らかにされたが、本
発明は上記実施例に限定されるものではなくその要旨が
逸脱されない範囲内にて任意に設訓変更し得ること勿論
である。例えばガスバーナによって加熱する加熱炉につ
いての炉温制御装置に対しても本発明を適用することが
できる。また本発明はガラス強化用加熱炉のみではなく
、各種の加熱炉に対して適用することができ、極めて応
用性の高い炉温制御装置である。
Although the content of the present invention has been clarified through the above embodiments, the present invention is not limited to the above embodiments, and it goes without saying that the principles can be changed as desired without departing from the gist thereof. . For example, the present invention can also be applied to a furnace temperature control device for a heating furnace heated by a gas burner. Further, the present invention can be applied not only to glass strengthening heating furnaces but also to various types of heating furnaces, and is a highly applicable furnace temperature control device.

更に上記コントローラ3はアナログコントローラではな
くディジタルコントローラを使用することも可能であり
、この場合には回路的に若干の変更を要する。
Furthermore, it is also possible to use a digital controller instead of an analog controller as the controller 3, and in this case, some changes in circuitry are required.

以上の説明で明らかなように本発明によれば、コンピュ
ータ等を利用して炉内温度に係る制御目標である基準値
を出炉直後の被加熱体の温度に基づき所定の時間間隔で
適切に変更設定し、加熱炉の炉温制御において炉温の変
化に併せて出炉直後の被加熱体自体の温度変化を加味す
るようにしたため、被加熱体の出炉温度の長期安定化、
制御の完全自動化、制御の精度向上を達成することがで
き、更には種々の被加熱体の温度に係るデータを記憶さ
せておくことにより多種類の制御に資することができる
等の諸効果を発揮する。
As is clear from the above explanation, according to the present invention, the reference value, which is a control target related to the temperature inside the furnace, is appropriately changed at predetermined time intervals using a computer or the like based on the temperature of the heated object immediately after leaving the furnace. The temperature control of the heating furnace takes into account the temperature change of the heated object itself immediately after unloading, in addition to the change in the furnace temperature, which stabilizes the unloading temperature of the heated object over the long term.
Complete automation of control and improved control accuracy can be achieved, and furthermore, by storing data related to the temperature of various heated objects, it can contribute to various types of control. do.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は第一発明に係
る装置構成の一実施例を示すブロック図、第2図は第二
発明に係る装置構成の一実施例を示すブロック図、第3
図は加熱炉の一例を示す正面図、第4図は第3図中4−
4線断面図、第5図は従来の炉温制御装置の構成を示す
ブロック図である。 向図面中、1は熱電対温度計、3はコントローラ、4は
操作器、5は加熱炉、6.16はヒータ、8は放射温度
計、10.12はコンピュータ、18は比率分配器であ
る。 特許出願人 日本板硝子株式会社 代理人 弁理士下田容一部 同    弁理士 大 橋 邦 彦 第5図 十v 口34
The drawings show an embodiment of the present invention, FIG. 1 is a block diagram showing an embodiment of the device configuration according to the first invention, and FIG. 2 is a block diagram showing an embodiment of the device configuration according to the second invention. , 3rd
The figure is a front view showing an example of a heating furnace, and Figure 4 is 4-4 in Figure 3.
A 4-line sectional view and FIG. 5 are block diagrams showing the configuration of a conventional furnace temperature control device. In the drawing, 1 is a thermocouple thermometer, 3 is a controller, 4 is an operator, 5 is a heating furnace, 6.16 is a heater, 8 is a radiation thermometer, 10.12 is a computer, and 18 is a ratio distributor. . Patent applicant: Nippon Sheet Glass Co., Ltd. Agent: Patent attorney Yoichi Shimoda Patent attorney: Kunihiko Ohashi Figure 5, v. 34

Claims (6)

【特許請求の範囲】[Claims] (1)  加熱炉内に設けられた温度計より炉内温度を
測定検出し、コン)o−ラにて予め設定される炉内温度
に係る基準値と検出された測定値が比較され、その偏差
に基づき加熱手段の発熱量を調節するようにした加熱炉
において、出炉後の被加熱体温度を測定する温度計と、
該温度計による測定値を被加熱体温度に係る基準値と比
較し1、その偏差に基づき上記コン)o−ラ内に設定さ
れる炉内温度に係る基準値を変更し得るようにした自動
袖正装@を設けるようにしたことを特徴とする加熱炉の
被加熱体出炉温度制御装置。
(1) The temperature inside the heating furnace is measured and detected using a thermometer installed in the heating furnace, and the detected measured value is compared with a reference value related to the temperature inside the furnace that is set in advance by the controller. In a heating furnace that adjusts the calorific value of the heating means based on the deviation, a thermometer that measures the temperature of a heated object after being taken out of the furnace;
The measured value by the thermometer is compared with the reference value related to the temperature of the heated object 1, and based on the deviation, the reference value related to the furnace temperature set in the above controller can be changed. A heating furnace temperature control device for a heated object, characterized in that a formal sleeve is provided.
(2)前記自動補正装置を、被加熱体温度葡測定する前
記温度計からの測定値を記憶部に記憶し、他の記憶部内
に用意された被加熱体温度に係る基準値と比較し、その
偏差に基づき前記コントローラ内に設定される炉内温度
に係る基準値を変更するだめの信号を出力−するコンピ
ュータで構成したことを特徴とする特許 の加熱炉の被加熱休出炉温度制御装置。
(2) storing the measurement value from the thermometer that measures the temperature of the heated object in the automatic correction device in a storage section, and comparing it with a reference value related to the temperature of the heated object prepared in another storage section; The patented heating furnace temperature control device is characterized in that it is constituted by a computer that outputs a signal for changing the reference value related to the furnace temperature set in the controller based on the deviation.
(3)  前記自動補正装置を、被加熱体温度を測定す
る温度計からの測定値を記憶部に一旦記憶する第1のコ
ンピュータと、該第1のコンピュータに記憶された該測
定値を転送され、この測定値と記憶部内に用意された被
加熱体温度に係る基準値を比較し、その偏差に基づき前
記コントローラ内に設定される炉内温度に係る基準値を
変更するための信刊ヲ出力する第2のコンピュータとで
構成したことを特徴とする前記特許請求の範囲第1項記
載の加熱炉の被加熱体温度制御装置。
(3) The automatic correction device is connected to a first computer that temporarily stores a measured value from a thermometer that measures the temperature of the heated object in a storage unit, and a first computer to which the measured value stored in the first computer is transferred. Compare this measured value with a reference value related to the temperature of the heated object prepared in the storage unit, and output a newsletter for changing the reference value related to the furnace temperature set in the controller based on the deviation. 2. A temperature control device for a heated object in a heating furnace according to claim 1, characterized in that the device comprises a second computer that performs the following steps.
(4)  加熱炉内に設けられた温度計より炉内温度を
測定検出し、コントローラにて予め設定される炉内温度
に係る基準値と検出された測定値とが比較され、その偏
差に基づき加熱手段の発熱fa f Is節するように
した加熱炉において、上記加熱手段を複数の区画に分割
し各区画の加熱手段の発熱量を夫々の比率値で夫々独立
に調節する比率分配器と、出炉後の被加熱体温度分布を
測定する温度側と、該温度計の測定値を被加熱体の温度
分布に係る基準値と比較し、それらの偏差に基づき上記
コントローラ内に設定される炉内温度に係る基準値と」
−記比率分配器にて設定される比率値を変更し。 得るようにし、た自動補正装置を設けるようにしたこと
を特徴とする加熱炉の被加熱休出炉温度制御装置。
(4) The furnace temperature is measured and detected using a thermometer installed in the heating furnace, and the detected measured value is compared with a reference value related to the furnace temperature set in advance by the controller, and based on the deviation. A ratio distributor that divides the heating means into a plurality of sections and independently adjusts the amount of heat generated by the heating means in each section by a respective ratio value, in a heating furnace configured to divide the heat generation fa f Is of the heating means; The temperature side for measuring the temperature distribution of the heated object after unloading, and the measured value of the thermometer are compared with the reference value related to the temperature distribution of the heated object, and the temperature inside the furnace is set in the controller based on the deviation. Standard values related to temperature
- Change the ratio value set in the ratio divider. What is claimed is: 1. A temperature control device for a heating and resting furnace of a heating furnace, characterized in that the temperature control device is characterized in that the temperature control device is configured to obtain the temperature of a heated and shut down furnace, and is provided with an automatic correction device.
(5)前記自動補正装置を、被加熱体の温度分布全測定
する温度計からの測定値を記憶部に記憶し、他の記憶部
内に用意された被加熱体の温度分布に係る基準値と比較
し、それらの偏差に基つき前記コン)o−ラ内に設定さ
れる炉内温度に係る基準値及び前記比率分配器にて設定
される比率値を変更するための夫々の信号を前記コン)
o−ラ、比率分配器に出力するコンピュータで構成した
ことを特徴とする特許 熱炉の被加熱休出炉温度制御装置。
(5) The automatic correction device stores the measurement value from the thermometer that measures the entire temperature distribution of the heated object in the storage section, and uses the reference value related to the temperature distribution of the heated object prepared in another storage section. The comparison is made, and based on the deviation, the controller sends respective signals for changing the reference value related to the furnace temperature set in the controller and the ratio value set in the ratio distributor. )
A temperature control device for a heated and dormant furnace of a patented thermal furnace, characterized in that it is constituted by a computer that outputs output to an o-ra and a ratio distributor.
(6)  前記自動補正装置を、被加熱体の温度分布を
測定する温度計からの測定値を記憶部に一日記憶する第
1のコンピュータと、該第1のコンピュータに記憶され
た該測定値を転送され、この測定値と記憶部内に用意さ
れた被加熱体温度に係る基準値を比較し、それらの偏差
に基づき前記コントローラ内に設定される炉内温度に係
る基準値及びriiT記比率分配器にて設定される比率
値を変更するだめの信号を夫々コントローラ、比率分配
器に出力する第2のコンピュータとて構成したこと全特
徴とする前記特許請求の範囲第4項記載の加熱炉の被加
熱休出炉温度制御装置。
(6) The automatic correction device includes a first computer that stores measured values from a thermometer that measures the temperature distribution of the heated object in a storage unit for one day, and the measured values stored in the first computer. This measured value is compared with a reference value related to the temperature of the heated object prepared in the storage unit, and the reference value related to the furnace temperature and the ratio distribution described in riiT are set in the controller based on the deviation thereof. The heating furnace according to claim 4, further comprising a second computer that outputs a signal for changing the ratio value set in the heater to the controller and the ratio distributor, respectively. Temperature control device for heated and closed furnace.
JP7582782A 1982-05-06 1982-05-06 Controller for temperature in case of discharge from furnace of material to be heated of heating furnace Pending JPS58193084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7582782A JPS58193084A (en) 1982-05-06 1982-05-06 Controller for temperature in case of discharge from furnace of material to be heated of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7582782A JPS58193084A (en) 1982-05-06 1982-05-06 Controller for temperature in case of discharge from furnace of material to be heated of heating furnace

Publications (1)

Publication Number Publication Date
JPS58193084A true JPS58193084A (en) 1983-11-10

Family

ID=13587404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7582782A Pending JPS58193084A (en) 1982-05-06 1982-05-06 Controller for temperature in case of discharge from furnace of material to be heated of heating furnace

Country Status (1)

Country Link
JP (1) JPS58193084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368265A (en) * 1986-09-10 1988-03-28 Yokota Kikai Kk Reflow soldering device and its control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56982A (en) * 1979-06-15 1981-01-08 Kawasaki Steel Co Method and device for controlling temperature in furnace
JPS5664220A (en) * 1979-10-29 1981-06-01 Nippon Steel Corp Amount of heat distributing system in combustion furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56982A (en) * 1979-06-15 1981-01-08 Kawasaki Steel Co Method and device for controlling temperature in furnace
JPS5664220A (en) * 1979-10-29 1981-06-01 Nippon Steel Corp Amount of heat distributing system in combustion furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368265A (en) * 1986-09-10 1988-03-28 Yokota Kikai Kk Reflow soldering device and its control method
JPH0571351B2 (en) * 1986-09-10 1993-10-07 Yokota Kikai Kk

Similar Documents

Publication Publication Date Title
JPS58193084A (en) Controller for temperature in case of discharge from furnace of material to be heated of heating furnace
JPS6236080Y2 (en)
JP3757809B2 (en) air conditioner
KR100361246B1 (en) Method for controlling equalized back pressure of blast furnace hot stove
US3841855A (en) Glass tempering control system
KR100342657B1 (en) Method of and apparatus for controlling burners of industrial furnace by temperature tracking
JPH0799311B2 (en) Heating furnace temperature control method
JPH07180904A (en) Hot water-supplying apparatus
US4070148A (en) Apparatus for monitoring product temperature in an open ended, secondary emission, product carrying conveyor furnace
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JP2607795B2 (en) Method and apparatus for adjusting processing conditions of continuous furnace
JP3571759B2 (en) Drying oven for raw ceramic products
JPH0459371B2 (en)
JP2947678B2 (en) Burner combustion control system
JP2513195Y2 (en) Heat treatment furnace
JPS6123002Y2 (en)
JP2731278B2 (en) Furnace temperature controller
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPH1163843A (en) Method for controlling temperature in baking furnace
JP3473665B2 (en) Cascade control device in semiconductor manufacturing equipment
SU1738763A1 (en) Method of control of heating conditions of regenerative glass-making furnace
SU857074A1 (en) Method of automatic control of ceramic article annealing process in slot furnace
JPS6217480Y2 (en)
JPH0217609B2 (en)
JPS61110713A (en) Temperature controlling system of annealing surface