JPS5819219B2 - corrosion test equipment - Google Patents

corrosion test equipment

Info

Publication number
JPS5819219B2
JPS5819219B2 JP52013855A JP1385577A JPS5819219B2 JP S5819219 B2 JPS5819219 B2 JP S5819219B2 JP 52013855 A JP52013855 A JP 52013855A JP 1385577 A JP1385577 A JP 1385577A JP S5819219 B2 JPS5819219 B2 JP S5819219B2
Authority
JP
Japan
Prior art keywords
corrosive liquid
corrosive
liquid tank
tank
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52013855A
Other languages
Japanese (ja)
Other versions
JPS5399995A (en
Inventor
紀博徳
中島慶一
馬場和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52013855A priority Critical patent/JPS5819219B2/en
Publication of JPS5399995A publication Critical patent/JPS5399995A/en
Publication of JPS5819219B2 publication Critical patent/JPS5819219B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 従来の回転曲げ腐食疲労試験装置の1例を第1図に、腐
食液槽の1例を第2図及び第3図に示す。
DETAILED DESCRIPTION OF THE INVENTION An example of a conventional rotary bending corrosion fatigue testing apparatus is shown in FIG. 1, and examples of a corrosive liquid tank are shown in FIGS. 2 and 3.

第1図において上部タンク1に溜められた腐食液2は配
管3を通じて腐食液槽4に導びかれ、試験片5を腐食液
中に浸漬状態とする。
In FIG. 1, a corrosive liquid 2 stored in an upper tank 1 is led to a corrosive liquid bath 4 through a pipe 3, and a test piece 5 is immersed in the corrosive liquid.

腐食液槽4より出た腐食液は下部タンク6に貯溜され、
その後ポンプ7により上部タンク1に送られ、循環する
ようになっている。
The corrosive liquid discharged from the corrosive liquid tank 4 is stored in the lower tank 6,
Thereafter, it is sent to the upper tank 1 by a pump 7 and circulated.

第2図及び第3図は第1図に示した腐食液槽4の1例の
詳細構造であり、8は円筒状の腐食液槽本体、9はその
下部に設けられた腐食液の入口、10はその上部に設け
られた腐食液の出口、11はビス12により試験槽本体
80両側部に固定されたシール固定板、13は前記腐食
液槽本体80両側部に設けられたシール取付部、14は
前記シール固定板11と前記シール取付部13とにより
腐食液槽本体8に取付げられたシール部材、15は前記
腐食液槽本体8を試験機16に支持するための緩衝バネ
で、試験片17をシール固定板11及び腐食液槽本体8
に設けた孔に挿通してシール部材14を同試験片17に
接触させたのち、同試験片17を回転して負荷を加える
一方、腐食液を入口9→腐食液槽本体8内→出口10と
循環させるようになっている。
2 and 3 show the detailed structure of one example of the corrosive liquid tank 4 shown in FIG. 1, with reference numeral 8 indicating a cylindrical corrosive liquid tank body, 9 an inlet for the corrosive liquid provided at its lower part, Reference numeral 10 denotes an outlet for the corrosive liquid provided at the upper part thereof; 11 denotes a seal fixing plate fixed to both sides of the test tank body 80 by screws 12; 13 denotes a seal mounting part provided on both sides of the corrosive liquid tank main body 80; 14 is a sealing member attached to the corrosive liquid tank body 8 by the seal fixing plate 11 and the seal attachment part 13; 15 is a buffer spring for supporting the corrosive liquid tank main body 8 on the testing machine 16; Seal the piece 17 between the fixing plate 11 and the corrosive liquid tank body 8
After inserting the sealing member 14 into the hole provided in the test piece 17 and bringing it into contact with the test piece 17, the test piece 17 is rotated to apply a load, while the corrosive liquid is passed through the inlet 9 → inside the corrosive liquid tank main body 8 → the outlet 10 It is designed to circulate.

しかしながら前記の腐食疲労試験装置でQ瓢士部タンク
1、下部タンク6が大気開放であり、更に腐食液槽4の
シール部材14も腐食液槽本体8の内部から外部への腐
食澱漏洩を完全に防止することは不可能であり、従って
腐食液中の溶存酸素量を減少させた状態での疲労試験は
不可能であった。
However, in the above-mentioned corrosion fatigue testing apparatus, the Q tank 1 and the lower tank 6 are open to the atmosphere, and the sealing member 14 of the corrosive liquid tank 4 also completely prevents corrosive sludge from leaking from the inside of the corrosive liquid tank main body 8 to the outside. Therefore, it was impossible to conduct a fatigue test with a reduced amount of dissolved oxygen in the corrosive solution.

一般にタービンを設計する際の検討項目の1つとして翼
の振動に対する疲労設計の問題がある。
Generally, one of the items to consider when designing a turbine is the issue of fatigue design for blade vibration.

疲労設計に用いる異材料の疲労強度として屯従来は大気
中の疲労強度が使用されていたが、実機の環境が食塩、
苛性ソーダなどの不純物を含む湿り蒸気状態にある場合
もあり、食塩水、苛性ソーダ溶液中などの疲労強度をも
とに疲労設計を行なうことが必要であると考えられてい
る。
Previously, the fatigue strength in the atmosphere was used as the fatigue strength of different materials used in fatigue design, but the environment of the actual machine was salt, salt, etc.
It may be in a wet steam state containing impurities such as caustic soda, and it is considered necessary to perform fatigue design based on the fatigue strength in salt water, caustic soda solution, etc.

ここで実機のタービン環境中では腐食疲労挙動に大きな
影響を及ぼす溶存酸素濃度が零に近くなっているが、通
常の疲労試験では腐食雰囲気が直接大気と接しているた
め溶存酸素を減少させた状態での腐食疲労強度を求める
ことは不可能であるので、従来の疲労試験装置を使用し
て手軽に溶存酸素を減少させた溶液中での疲労強度が得
られる腐食試験装置の出現が要望されていた。
In the actual turbine environment, the dissolved oxygen concentration, which has a large effect on corrosion fatigue behavior, is close to zero, but in normal fatigue tests, the corrosive atmosphere is in direct contact with the atmosphere, so dissolved oxygen is reduced. Since it is impossible to determine the corrosion fatigue strength in a solution with reduced dissolved oxygen using a conventional fatigue test device, there is a need for a corrosion test device that can easily obtain the fatigue strength in a solution with reduced dissolved oxygen. Ta.

本発明は前記の要望にこたえて提案されたもので、試験
片を腐食液中にさらす腐食液槽、同腐食液槽に腐食液を
供給する液タンク、同液タンク及び前記腐食液槽の間に
腐食液を循環させる循環機構とを有する腐食試験装置に
於いて、液タンクを気密構造とし、前記腐食液中の溶存
酸素量を減少さセルため前起液タンク内の腐食液中に窒
素ガスをバブリングさせるバブリング機構、前記腐食液
槽を大気から隔離させるため内部に窒素ガスを封入した
隔離室、及び前記腐食液循環配管系内に設けられ溶存酸
素濃度を検出するため前記腐食液を採集する採集壜を取
付けることにより、腐食液採集壜を配管系外に置いた従
来のように大量の腐食液を必要とするようなことはなく
、濃度測定に必要な液量を少なくできると共に、低溶存
酸素濃度の腐食液が得られ、かつ溶存酸素濃度を減少さ
せた状態での疲労強度を求めることが可能な腐食試験装
置を提供せんとするものである。
The present invention was proposed in response to the above-mentioned needs, and includes a corrosive liquid tank in which a test piece is exposed to a corrosive liquid, a liquid tank that supplies the corrosive liquid to the corrosive liquid tank, and a space between the liquid tank and the corrosive liquid tank. In a corrosion testing apparatus having a circulation mechanism for circulating a corrosive liquid, the liquid tank is made of an airtight structure, and nitrogen gas is added to the corrosive liquid in the pre-liquid raising tank in order to reduce the amount of dissolved oxygen in the corrosive liquid. a bubbling mechanism for bubbling the corrosive liquid, an isolation chamber filled with nitrogen gas to isolate the corrosive liquid tank from the atmosphere, and an isolation chamber installed in the corrosive liquid circulation piping system to collect the corrosive liquid in order to detect the dissolved oxygen concentration. By installing a collection bottle, there is no need for a large amount of corrosive liquid as in the case of conventional methods in which the corrosive liquid collection bottle is placed outside the piping system, and the amount of liquid required for concentration measurement can be reduced, and the amount of dissolved liquid can be reduced. It is an object of the present invention to provide a corrosion testing device capable of obtaining a corrosive solution with an oxygen concentration and determining fatigue strength in a state where the dissolved oxygen concentration is reduced.

以下図面の実施例について説明すると、本発明の腐食試
験装置の1実施例を第4図に、同装置で使用する窒素ガ
ス封入容器の1例を第5図に示す。
Embodiments of the drawings will be described below. FIG. 4 shows an embodiment of the corrosion testing apparatus of the present invention, and FIG. 5 shows an example of a nitrogen gas-filled container used in the apparatus.

第4図においては18は腐食液19を溜めておく気密構
造の貯液タンクであり、窒素ガスボンベ20より送られ
て来た窒素ガスは前記貯液タンク18内に挿入された散
気管21からバブリングされるようになっている。
In FIG. 4, reference numeral 18 denotes a liquid storage tank having an airtight structure for storing a corrosive liquid 19, and nitrogen gas sent from a nitrogen gas cylinder 20 is bubbled through a diffuser pipe 21 inserted into the liquid storage tank 18. It is supposed to be done.

又腐食液19は貯液タンク18下部の流出口22から出
て配管23を通り、ポンプ24により腐食液槽25に送
られ、試験片26を腐食液中に浸漬状態とする。
Further, the corrosive liquid 19 exits from the outlet 22 at the bottom of the liquid storage tank 18, passes through the pipe 23, and is sent to the corrosive liquid tank 25 by the pump 24, so that the test piece 26 is immersed in the corrosive liquid.

腐食液槽25は腐食液が大気と接触することを防ぐため
に、窒素ガスを封入した容器2Tによって覆われている
The corrosive liquid tank 25 is covered with a container 2T filled with nitrogen gas to prevent the corrosive liquid from coming into contact with the atmosphere.

腐食液槽25より出た腐食液は溶存酸素濃度を測定する
ために使用する採集壜28at28bを通り、貯液タン
ク18の上部にある流入口29より配管30を経て同貯
液タンク18に戻される。
The corrosive liquid discharged from the corrosive liquid tank 25 passes through a collection bottle 28 at 28 b used to measure the dissolved oxygen concentration, and is returned to the liquid storage tank 18 through an inlet 29 at the top of the liquid storage tank 18 via a pipe 30. .

又ここで使用される窒素ガスは前記窒素ガスボンベ20
より窒素ガス配管31を経て各装置に供給さ1れ、その
抜水32を満たした大気侵入防止容器33を通して大気
中に放出される。
Also, the nitrogen gas used here is the nitrogen gas cylinder 20.
The nitrogen gas is then supplied to each device via a nitrogen gas pipe 31, and is discharged into the atmosphere through an air intrusion prevention container 33 filled with drained water 32.

34は腐食液槽25を通さない場合の配管、35a、3
5b。
34 is piping when the corrosive liquid tank 25 is not passed through, 35a, 3
5b.

35c t 35a 、35e t 35fは腐食液の
流れを遮断する際に使用するコックである。
35c t 35a, 35e t 35f are cocks used to cut off the flow of the corrosive liquid.

又この装置では系統内の腐食液が大気と接触するのを完
全に防止するために、貯液タンク18、コック35a、
35b 、35c 、35a 、35e 。
In addition, in this device, in order to completely prevent the corrosive liquid in the system from coming into contact with the atmosphere, a liquid storage tank 18, a cock 35a,
35b, 35c, 35a, 35e.

35f、腐食液採集壜28a、28bはガラス製とし、
配管23,30,31,34は真空ゴム管を使用し、ポ
ンプ24はダイヤフラム式のものを使用し、腐食液槽2
5、窒素ガラス封入容器27などはアクリル製としてい
る。
35f, the corrosive liquid collection bottles 28a and 28b are made of glass,
The piping 23, 30, 31, 34 uses vacuum rubber tubes, the pump 24 uses a diaphragm type, and the corrosive liquid tank 2
5. The nitrogen glass enclosure 27 and the like are made of acrylic.

第5図は片持ち式回転曲げ疲労試験機に取付けられた窒
素ガス封入容器27の詳細を示しているが、ここで25
は腐食液槽であり、試験片26を腐食液36により浸漬
状態としている。
FIG. 5 shows the details of the nitrogen gas filled container 27 attached to the cantilever rotary bending fatigue tester.
is a corrosive liquid bath, and the test piece 26 is immersed in the corrosive liquid 36.

更にシール部材37により腐食液36の内部から外部へ
の著しい漏洩を防いでおり、又容器27により窒素ガス
が腐食液槽25の周囲に封入され、腐食液36と大気と
が接触することを防いでいる。
Further, the sealing member 37 prevents significant leakage of the corrosive liquid 36 from the inside to the outside, and the container 27 seals nitrogen gas around the corrosive liquid tank 25 to prevent the corrosive liquid 36 from coming into contact with the atmosphere. I'm here.

窒素ガス封入容器27は試験機に試験片を着脱すること
を可能にするために2つ割りとなっており、ビス38に
より密封されている。
The nitrogen gas-filled container 27 is divided into two parts to allow the test piece to be attached to and removed from the test machine, and is sealed with a screw 38.

試験片26は試験片回転軸39に取付けられており、試
験片回転軸39は軸受40を介して固定治具41に取付
けられている。
The test piece 26 is attached to a test piece rotating shaft 39, and the test piece rotating shaft 39 is attached to a fixture 41 via a bearing 40.

又窒素ガス封入容器27の内部と外部は固定治具41と
試験片回転軸39との間に取付げられたオイルシール4
2により遮断されている。
Also, inside and outside of the nitrogen gas filled container 27, an oil seal 4 is installed between the fixing jig 41 and the test piece rotating shaft 39.
2.

43は試験片26に荷重を負荷するための重錘であり、
可撓性の良いベローズ44(例えばゴム製)により窒素
ガスと外部の大気との接触を防止すると共に、荷重負荷
時の重錘取付具45の移動に支障のないようにしている
43 is a weight for applying a load to the test piece 26;
The highly flexible bellows 44 (made of rubber, for example) prevents contact between the nitrogen gas and the outside atmosphere, and also allows the weight mount 45 to move without any hindrance when a load is applied.

次に以上説明した本発明の実施例による腐食試験装置に
よって腐食液中の溶存酸素濃度を減少させた状態での疲
労試験を実施する際の各装置の作用を説明する。
Next, an explanation will be given of the operation of each apparatus when a fatigue test is carried out in a state where the dissolved oxygen concentration in the corrosive liquid is reduced using the corrosion test apparatus according to the embodiment of the present invention described above.

。先ず第4図において腐食液19を貯液タンク18に入
れる前に、窒素ボンベ20中の窒素ガスにより腐食液槽
25、窒素ガス封入容器27中の空気を置換しておき、
コック35at35bを閉じて腐食液槽25中に空気が
侵入しないようにしておく。
. First, in FIG. 4, before putting the corrosive liquid 19 into the liquid storage tank 18, the air in the corrosive liquid tank 25 and nitrogen gas enclosure 27 is replaced with nitrogen gas in the nitrogen cylinder 20.
The cocks 35at35b are closed to prevent air from entering the corrosive liquid tank 25.

これは試験片26を始めから完全に低酸素濃度の腐食液
に浸漬させるためである。
This is because the test piece 26 is completely immersed in a corrosive solution with a low oxygen concentration from the beginning.

次に腐食液を貯液タンク18、配管23,30,34、
ポンプ24、腐食液採集壜28a、28bなどに満たし
、ポンプ24で腐食液を循環させながら貯液タンク18
内に挿入した散気管21から窒素ガスをバブリングして
腐食液中の溶存酸素濃度を減少させる。
Next, the corrosive liquid is transferred to the liquid storage tank 18, the pipes 23, 30, 34,
The pump 24, corrosive liquid collection bottles 28a, 28b, etc. are filled, and the liquid storage tank 18 is circulated by the pump 24.
Nitrogen gas is bubbled through the diffuser tube 21 inserted into the corrosive solution to reduce the dissolved oxygen concentration in the corrosive solution.

このようにすると配管系内の腐食液全部を同一溶存酸素
濃度にすることが出来る。
In this way, all the corrosive liquid in the piping system can be made to have the same dissolved oxygen concentration.

溶存酸素濃度を減少させた後にコック35a 、35b
を開け、試験片26を低溶存酸素濃度の腐食液に浸漬さ
せ、疲労試験を開始する。
After reducing the dissolved oxygen concentration, the cocks 35a and 35b
The test piece 26 is immersed in a corrosive solution with a low dissolved oxygen concentration, and the fatigue test is started.

溶存酸素濃度を測定する際にはコック35c、35dを
閉じたのち採集壜28aを取り出し、インシュ・カルミ
ン法などの比色法により溶存酸素濃度測定を実施する。
When measuring the dissolved oxygen concentration, the cocks 35c and 35d are closed, the collection bottle 28a is taken out, and the dissolved oxygen concentration is measured by a colorimetric method such as the Insu-Carmine method.

更に別の採集壜28bにより同様に溶存酸素濃度の測定
が可能であり、採集増設置数を多くすることにより測定
回数を増すことができる。
Furthermore, the dissolved oxygen concentration can be similarly measured using another collection bottle 28b, and the number of measurements can be increased by increasing the number of collection bottles installed.

貯液タンク18中の腐食液は常に窒素ガスと接触してお
り、腐食液槽25も第5図に示した構造の窒素ガス封入
容器27により荷重負荷後の試験片回転時にも窒素ガス
のみと接触しており、更にこれらの窒素ガスは大気侵入
防止容器33により大気とは完全に遮断されているため
、溶存酸素濃度を減少させた腐食液中での疲労試験が可
能となる。
The corrosive liquid in the liquid storage tank 18 is always in contact with nitrogen gas, and the corrosive liquid tank 25 is also equipped with a nitrogen gas-filled container 27 having the structure shown in FIG. Since these nitrogen gases are in contact with each other and are completely blocked from the atmosphere by the atmosphere intrusion prevention container 33, it is possible to perform a fatigue test in a corrosive liquid with a reduced concentration of dissolved oxygen.

第5図に示した窒素ガス封入容器27は片持ち式回転曲
げ疲労試験機に取付けた場合であるが、軸受40、オイ
ルシール42などを試験片の両側に取付けることにより
、四点支持式回転曲げ疲労試験機、引張圧縮式疲労試験
機にも本発明の腐食試験装置を取付けることが可能であ
る。
The nitrogen gas filled container 27 shown in FIG. 5 is installed in a cantilever type rotating bending fatigue tester, but by installing bearings 40, oil seals 42, etc. on both sides of the test piece, a four-point supported rotating The corrosion testing device of the present invention can also be attached to a bending fatigue tester or a tension-compression fatigue tester.

第6図はタービン翼用材料として一般に使用されている
13クロームステンレス鋼の疲労試験結果を示すもので
ある。
FIG. 6 shows the results of a fatigue test on 13 chrome stainless steel, which is commonly used as a material for turbine blades.

第6図に於いてXは腐食雰囲気の影響を受けていない大
気中の疲労試験結果、Yは従来の試験装置による大気開
放状態での室温で、3%食塩水中の疲労試験結果、2は
本発明の腐食試験装置による低溶存酸素濃度状態(30
ppb >での室温で、3%食塩水中の疲労試験結果で
ある。
In Figure 6, X is the result of a fatigue test in the atmosphere that is not affected by a corrosive atmosphere, Y is the result of a fatigue test in 3% saline at room temperature with a conventional test device open to the atmosphere, and 2 is the result of this test. Low dissolved oxygen concentration state (30
Fatigue test results in 3% saline at room temperature at >ppb.

実機タービン環境中では溶存酸素濃度が零に近くなって
いるが、大気開放状態の食塩水中疲労試験では溶存酸素
量が6ppmi度であり、実機環境を再現しているとは
言い難い。
In the environment of an actual turbine, the dissolved oxygen concentration is close to zero, but in a saline water fatigue test that is open to the atmosphere, the amount of dissolved oxygen was 6 ppm, so it is difficult to say that it reproduces the environment of an actual turbine.

六方本発明の腐食試験装置によれば、溶存酸素量を30
ppb(0,03ppm)まで減少させることが可能
となり、実機環境に近い腐食疲労試験を実施することが
可能となった。
According to the hexagonal corrosion test apparatus of the present invention, the amount of dissolved oxygen can be reduced to 30
It has become possible to reduce the corrosion stress to ppb (0.03 ppm), and it has become possible to conduct corrosion fatigue tests close to the actual machine environment.

又13クロームステンレス鋼の大気中の疲労強度Xは4
1kg/−であり、大気開放状態の3%食塩水中(室温
)では29ky/−となり、30%程度の強度低下がみ
られる。
Also, the fatigue strength X of 13 chrome stainless steel in the atmosphere is 4.
1 kg/-, and in a 3% saline solution (room temperature) exposed to the atmosphere, it becomes 29 ky/-, which shows a decrease in strength of about 30%.

一方実機環境に近い低溶存酸素濃度の3%食塩水中の場
合は34kg/maとなり、大気中疲労強度より17%
程度の強度低下を示し、大気開放状態の場合に比べると
疲労強度は若干向上するが、大気中の疲労強度には及ば
ないという結果が得られた。
On the other hand, in a 3% saline solution with a low dissolved oxygen concentration close to the actual environment, the fatigue strength is 34 kg/ma, which is 17% higher than the fatigue strength in the atmosphere.
The results showed that the fatigue strength was slightly improved compared to the case where it was exposed to the atmosphere, but it was not comparable to the fatigue strength in the atmosphere.

このように環境条件を考慮したタービン翼の疲労設計を
行なう際に必要な疲労強度を、本発明の腐食試験装置を
使用することにより精度よ(求めることが可能となり、
タービン翼設計の信頼性向上に寄与することが可能とな
る。
By using the corrosion testing apparatus of the present invention, it is possible to accurately determine the fatigue strength required when designing the fatigue strength of turbine blades in consideration of environmental conditions.
This makes it possible to contribute to improving the reliability of turbine blade design.

以上詳細に説明した如く本発明は、気密構造の液タンク
内の腐食液中に窒素ガスをバブリング機構によりバブリ
ングさせるようにしたので、腐食液中の溶存酸素量を減
少させた低溶存酸素濃度の腐食液が容易に得られる。
As explained in detail above, the present invention uses a bubbling mechanism to bubble nitrogen gas into the corrosive liquid in the liquid tank with an airtight structure, thereby reducing the amount of dissolved oxygen in the corrosive liquid. Corrosive liquid is easily obtained.

又腐食液槽を大気から隔離させるため内部に窒素ガスを
封入した隔離室を設けたので、腐食液と大気との接触が
完全に防止でき、溶存酸素濃度を減少させた状態での疲
労強度を容易に求めることができる。
In addition, in order to isolate the corrosive liquid tank from the atmosphere, we have installed an isolation chamber filled with nitrogen gas, which completely prevents contact between the corrosive liquid and the atmosphere, and improves fatigue strength even when the dissolved oxygen concentration is reduced. can be easily determined.

本発明は又腐食液循環配管系内に設けられ、溶存酸素濃
度を検出するため腐食液を採集する採集壜を取付けたの
で、濃度測定に必要な腐食液量が従来に比べて遥かに少
なく、又試験の途中に数回の測定が可能であると共に、
試験片周囲と同一条件の腐食液の溶存酸素濃度を測定で
きる。
The present invention also includes a collection bottle installed in the corrosive liquid circulation piping system to collect the corrosive liquid in order to detect the dissolved oxygen concentration, so the amount of corrosive liquid required for concentration measurement is much smaller than in the past. In addition, it is possible to take measurements several times during the test, and
It is possible to measure the dissolved oxygen concentration in the corrosive liquid under the same conditions as those around the test piece.

なお、本発明は腐食疲労試験装置、各種環境試験装置に
応用できる。
Note that the present invention can be applied to corrosion fatigue testing equipment and various environmental testing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の腐食試験装置の1例を示すフローシート
、第2図は第1図の腐食液槽の詳細側断面図、第3図は
第2図のA−A断面図、第4図は本発明の実施例を示す
腐食試験装置のフローシート、第5図は第4図に於ける
窒素ガス封入容器の詳細断面図、第6図は13クローム
ステンレス鋼の疲労試験結果を示す線図である。 図の主要部分の説明、18・・・・・・貯液タンク、1
9・・・・・・腐食液、20・・・・・・窒素ガスボン
ベ、21・・・・・・散気管、25・・・・・・腐食液
槽、26・・・・・・試験片、27・・・・・・窒素ガ
ス封入容器、28a、28b・・・・・・採集壜、23
,30,34・・・・・・配管、31・・・・・・窒素
ガス配管。
Fig. 1 is a flow sheet showing an example of a conventional corrosion test device, Fig. 2 is a detailed side sectional view of the corrosive liquid tank in Fig. 1, Fig. 3 is a sectional view taken along line A-A in Fig. 2, and Fig. The figure is a flow sheet of a corrosion test device showing an embodiment of the present invention, Figure 5 is a detailed sectional view of the nitrogen gas-filled container in Figure 4, and Figure 6 is a line showing fatigue test results for 13 chrome stainless steel. It is a diagram. Explanation of main parts of the figure, 18...Liquid storage tank, 1
9...Corrosion liquid, 20...Nitrogen gas cylinder, 21...Diffuser pipe, 25...Corrosion liquid tank, 26...Test piece , 27... Nitrogen gas sealed container, 28a, 28b... Collection bottle, 23
, 30, 34... Piping, 31... Nitrogen gas piping.

Claims (1)

【特許請求の範囲】[Claims] 1 試験片を腐食液中にさらす腐食液槽、同腐食液槽に
腐食液を供給する液タンク、同液タンク及び前記腐食液
槽の間に腐食液を循環させる循環機構とを有する腐食試
験装置に於いて、液タンクを気密構造とし、前記腐食液
中の溶存酸素量を減少させるため前記液タンク内の腐食
液中に窒素ガスをバブリングさせるバブリング機構、前
記腐食液槽を大気から隔離させるため内部に窒素ガスを
封入した隔離室、及び前記腐食液循環配管系内に設けら
れ溶存酸素濃度を検出するため前記腐食液を採集する採
集壜を取付けたことを特徴とする腐食試験装置。
1. Corrosion testing equipment that has a corrosive liquid tank in which a test piece is exposed to a corrosive liquid, a liquid tank that supplies corrosive liquid to the corrosive liquid tank, and a circulation mechanism that circulates the corrosive liquid between the liquid tank and the corrosive liquid tank. The liquid tank has an airtight structure, a bubbling mechanism for bubbling nitrogen gas into the corrosive liquid in the liquid tank to reduce the amount of dissolved oxygen in the corrosive liquid, and a bubbling mechanism for isolating the corrosive liquid tank from the atmosphere. 1. A corrosion testing device comprising: an isolation chamber in which nitrogen gas is sealed; and a collection bottle installed in the corrosive liquid circulation piping system to collect the corrosive liquid in order to detect dissolved oxygen concentration.
JP52013855A 1977-02-10 1977-02-10 corrosion test equipment Expired JPS5819219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52013855A JPS5819219B2 (en) 1977-02-10 1977-02-10 corrosion test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52013855A JPS5819219B2 (en) 1977-02-10 1977-02-10 corrosion test equipment

Publications (2)

Publication Number Publication Date
JPS5399995A JPS5399995A (en) 1978-08-31
JPS5819219B2 true JPS5819219B2 (en) 1983-04-16

Family

ID=11844877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52013855A Expired JPS5819219B2 (en) 1977-02-10 1977-02-10 corrosion test equipment

Country Status (1)

Country Link
JP (1) JPS5819219B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717149B2 (en) * 2015-10-06 2020-07-01 日本製鉄株式会社 Test tank, test equipment and test method
CN105547980B (en) * 2015-12-29 2018-08-28 东南大学 A kind of simulation material is in flow fields environment by the experimental provision of reversed bending load
CN105547876A (en) * 2015-12-29 2016-05-04 东南大学 Experimental device for bending corrosion fatigue of materials
CN107727559B (en) * 2017-09-12 2019-08-20 合肥通用机械研究院有限公司 A kind of corrosion testing apparatus and the method using the device
JP7117134B2 (en) * 2018-04-18 2022-08-12 日本製鉄株式会社 Corrosion test apparatus and corrosion test method

Also Published As

Publication number Publication date
JPS5399995A (en) 1978-08-31

Similar Documents

Publication Publication Date Title
US4918975A (en) Method and apparatus for testing fluid-filled systems for leaks
JP6932888B2 (en) Integrated system for quantitative real-time monitoring of hydrogen-induced cracking in a simulated sour environment
US20100147056A1 (en) Top of the Line Corrosion Apparatus
US2987912A (en) Method and apparatus for measurement of gas dissolved in a liquid
US3487677A (en) Method for leak detection
CN109690276A (en) Spent fuel stores pond leakage monitoring system
JPS5819219B2 (en) corrosion test equipment
US3936273A (en) Apparatus for determining the corrosion protection performance of a fluid
JP2020509394A (en) Vehicle engine combustion chamber leak detection kit
CN106288556B (en) Oil content acquisition device and method and air conditioning system
JP3378602B2 (en) Apparatus for measuring liquid flow rate and leak rate in test object
CA2323920A1 (en) Methods and apparatus for monitoring water process equipment
CN212275410U (en) Valve housing strength detection device
RU2261422C2 (en) Method and device for testing items for leak-proofness
JP2006517658A (en) Method and apparatus for recognizing leaks
CN110286081B (en) Pure water immersion type immersion corrosion experiment clamp and experiment device
Papavinasam et al. Inhibitor Selection for Internal Corrosion Control of Pipelines: Comparison of Rates of General Corrosion and Pitting Corrosion Under Gassy-Oil Pipeline Conditions in the Laboratory and in the Field
JP2005315784A (en) Leak detecting method, and detector therefor
CN112748063A (en) Ultra-long-service-life environmental fatigue test system and method for dynamic intelligent control of dissolved oxygen
RU2772614C1 (en) Corrosion testing method and installation for its implementation
US3143877A (en) Lubricant testing apparatus
JPS6020037Y2 (en) High temperature corrosion test equipment
RU2151383C1 (en) System testing leak-tightness of protective envelope of marine nuclear power plant in process of operation
US3446060A (en) Method for determining organic loading on charcoal
JPH0350446Y2 (en)