JPS58192013A - Microscope objective lens - Google Patents
Microscope objective lensInfo
- Publication number
- JPS58192013A JPS58192013A JP57075193A JP7519382A JPS58192013A JP S58192013 A JPS58192013 A JP S58192013A JP 57075193 A JP57075193 A JP 57075193A JP 7519382 A JP7519382 A JP 7519382A JP S58192013 A JPS58192013 A JP S58192013A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- object side
- positive
- group lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
使用しない高倍率の顕微鏡対物レンズに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a high magnification microscope objective lens that is not used.
高倍率の顕微鏡対物レンズは、倍率が高く又聞【]数も
大であることから特に球面収差および色収差の補正が困
難である。さらにプラン対物レンズを得るためにはペッ
ツパール和を小さくしなければならないが、高倍率の場
合焦点距離が小さいためにペツツパール和を小さくする
ことも困難である、。It is particularly difficult to correct spherical aberration and chromatic aberration in a high-magnification microscope objective lens because of its high magnification and large aperture. Furthermore, in order to obtain a plan objective lens, it is necessary to reduce the Petz Pearl sum, but in the case of high magnification, it is difficult to reduce the Petz Pearl sum because the focal length is small.
一般に像面湾曲を補正するためには、第ルンズの物体側
の面を強い凹面にし、又油浸系の対物レンズにおいては
、第1群レンスヲ接合レンストしその接合面の曲率半径
を非常に小さくしてその面に負のパワーをもたせること
によって像面湾曲を補正したレンズ系がよく知られてい
る。Generally, in order to correct field curvature, the object-side surface of the first lens is made strongly concave, and in oil immersion objective lenses, the first lens group is cemented and the radius of curvature of the cemented surface is made very small. A lens system in which field curvature is corrected by imparting negative power to that surface is well known.
また比較的後部にガウスタイプにしたレンズ群を配置し
、このレンズ群の凹面によって像面湾曲を補正したもの
や、メニスカスレンズで肉厚の犬なレンズを配置するこ
とによって像面湾曲と軸外諸収差を補正している対物レ
ンズも知られている。In addition, a Gaussian-type lens group is placed relatively rearward, and the concave surface of this lens group corrects the field curvature, and a thick meniscus lens is placed to correct the field curvature and off-axis. Objective lenses that correct various aberrations are also known.
に数が大きくなるために球面収差の発生が問題であり、
その発生を最小限にとどめるために前群に多くのレンズ
を用いる必要がある。The problem is that spherical aberration occurs due to the large number of
In order to minimize this occurrence, it is necessary to use many lenses in the front group.
また高倍率であるために残留色収差(像位置の色収差)
も大きくなりがちであって、そのために解像力が低下す
る。それを補正するために、従来は異常分散性を有する
借方その他の特殊材料を多用するのが一般的であったQ
以−トのように性能の良い高倍率の顕微鏡対物レンズを
得るためには、レンズ構成枚数を多くする必要があり、
又特殊材料を多く用いるために加工工数が増大する等の
欠点を有していた。Also, due to the high magnification, residual chromatic aberration (chromatic aberration at the image position)
tends to become large, which reduces resolution. In order to correct this, conventionally it was common to make extensive use of anomalous dispersion materials and other special materials. , it is necessary to increase the number of lenses,
Furthermore, since many special materials are used, the number of processing steps increases.
例えば英国特許第702737号明#lE書(で記載さ
れた対物レンズは、7群11枚構成のンンズ系でそのう
ち4枚のレンズにCaF2の特殊材料を用いている。又
英国特許第702690号明細書に記載された対物レン
ズは8群12枚構成のレンズ系であって、そのうち4枚
のレンズにCaF2の特殊桐材を使用している。これら
の例のように従来の高倍率の顕微鏡対物レンズは、レン
ズ構成枚数が多く、特殊材料を多く使用しておりしだが
って前述のような欠点を有するものである。For example, the objective lens described in British Patent No. 702,737 is a lens system consisting of 11 elements in 7 groups, and four of the lenses are made of a special material of CaF2. Also, British Patent No. 702,690 The objective lens described in the book is a lens system consisting of 12 elements in 8 groups, and 4 of the lenses use special paulownia material made of CaF2.As in these examples, conventional high-magnification microscope objectives Lenses have a large number of lenses and use many special materials, and therefore have the drawbacks mentioned above.
された高倍率の顕微鏡対物レンズを提供するものである
。This provides a high-magnification microscope objective lens.
本発明は、レンズ枚数を増やすことなしにペッツバール
和を小さくするだめに各レンズのパワーを大にし、又こ
のことによって残留色収差をも良好に補正するようにし
た。そしてこのように各レンズのパワーを犬にしたこと
によって生ずる各レンズでの収差発生量の増大をレンズ
配置等によって互いに打消し合うようにして補正した。The present invention increases the power of each lens in order to reduce the Petzval sum without increasing the number of lenses, and thereby satisfactorily corrects residual chromatic aberration. In this way, the increase in the amount of aberration generated by each lens caused by increasing the power of each lens is corrected by canceling each other out by adjusting the lens arrangement.
更に球面収差の発生が大きい前群に関しては、アプラナ
テインクに近い形のレンズを用いることGCよって出来
る限り球面収差の発生を小さくした。Furthermore, regarding the front group, where spherical aberration is large, the spherical aberration is minimized as much as possible by using a lens with a shape similar to that of an aplanate lens.
以上のような考えにもとづく本発明顕微鏡対物レンズに
ついて次に説明する。Next, the microscope objective lens of the present invention based on the above idea will be explained.
本発明対物レンズは、物体側に平面を向けた平凸レンズ
の第1群レンズと、物体側に凹面を向けた正のメニスカ
スレンズの第2群レンズと、正レンズの第3群レンズと
、正レンズと負レンズと正レンズの三枚接合レンズの第
4群レンズと、両凸レンズの第5群レンズと、物体側Q
こ凸面を向けた接合メニスカスレンズの第6群レンズと
、物体側に凹面を向けたメニスカスレンズの第7群レン
ズと°より構成されたレンズ系である。更に本発明7・
j物しンズは次に示す各条件を満足するようにしたもの
である。The objective lens of the present invention includes a first lens group of a plano-convex lens with a flat surface facing the object side, a second lens group of positive meniscus lenses with a concave surface facing the object side, a third lens group of positive lenses, and a positive lens group. The fourth group lens is a three-piece cemented lens consisting of a negative lens and a positive lens, the fifth group lens is a biconvex lens, and the object side Q
This lens system is composed of a sixth lens group of a cemented meniscus lens with a convex surface facing the object side, and a seventh group lens of a meniscus lens with a concave surface facing the object side. Furthermore, present invention 7.
J objects are designed to satisfy the following conditions.
(1)]、1f≦ r+5 ≦1.35f(2)1.7
f≦lr 161≦2.7f(3) 1.9 f
< d+5 ≦4.0f(4) 1.5
5 ≦ n、 ≦ 165(5)2.4f≦ 1f、1
≦2.8f(6) 65 ≦ ν8
ただしr15は第6群レンズの像側の面の曲率半径、r
leは第7群レンズの物体側の面の曲率半径、d15は
第6群レンズと第7群レンズの間の空気間隔、n9は第
6群レンズの像側のレンズの屈折率、ν、は第6Nレン
ズの物体側のレンズのアツベ数、f、は第3群レンズ中
の負レンズの焦点距離、fは全系の焦点距離である。(1)], 1f≦r+5≦1.35f(2)1.7
f≦lr 161≦2.7f(3) 1.9 f
<d+5 ≦4.0f(4) 1.5
5 ≦ n, ≦ 165 (5) 2.4f≦ 1f, 1
≦2.8f(6) 65 ≦ ν8 where r15 is the radius of curvature of the image side surface of the sixth group lens, r
le is the radius of curvature of the object side surface of the seventh group lens, d15 is the air gap between the sixth group lens and the seventh group lens, n9 is the refractive index of the image side lens of the sixth group lens, and ν is The Abbe number f of the object-side lens of the 6N lens is the focal length of the negative lens in the third lens group, and f is the focal length of the entire system.
次に上記の各条件の内容について詳細に説明するO
条件(1)はペッツバール和を小さくするだめに設けた
条件である。本発明対物レンズでは第1群レンズの強い
凸面でのペッツバール和のプラスへの寄与を主として第
6群レンズと第7群レンズとのメニスカス状の肉厚の大
きいレンズにて補正するようにしている。そのうちの第
6群レンズにおける条件が条件(1)である。この条件
においてr15が下限を越えて小になるとペッツバール
和の補正には有利であるが、同時にこの面で発生する非
点収差が大になる。この非点収差を第7群レンズで補正
しようとすると第6群レンズ、第7群レンズで発生する
コマ収差の残存量が大になりこれを良好に補正すること
が出来なくなるので望ましく々い。Next, the contents of each of the above conditions will be explained in detail. Condition (1) is a condition provided to reduce the Petzval sum. In the objective lens of the present invention, the positive contribution of the Petzval sum due to the strong convex surface of the first group lens is mainly corrected by the thick meniscus-shaped lenses of the sixth group lens and the seventh group lens. . Among them, the condition for the sixth group lens is condition (1). Under these conditions, if r15 exceeds the lower limit and becomes small, it is advantageous for correcting the Petzval sum, but at the same time, astigmatism occurring on this surface becomes large. If this astigmatism is attempted to be corrected by the seventh lens group, the residual amount of coma aberration generated in the sixth and seventh group lenses becomes large, which is undesirable because it becomes impossible to correct this satisfactorily.
またr15が条件(1)の上限を越えると第7群レンズ
でのペッツバール和の補正のだめの負担が大きくなる。Furthermore, if r15 exceeds the upper limit of condition (1), the burden of correcting the Petzval sum in the seventh lens group becomes large.
しかもこの第7群レンズを通る主光線高が高いのでこの
レンズでペッツバール和を良好なものにしようとすると
発生する非点収差が犬になる。Moreover, since the height of the chief ray passing through this seventh group lens is high, astigmatism that occurs when trying to obtain a good Petzval sum with this lens becomes a problem.
条件(2)も条件(1)と同様にペッツバール和を小き
くするために設けたものである。lr +elが条件の
下限を越えて小さくなるとペッツバール和を小さくする
だめには有利であるが非点収差の発生が大きくなる。ま
た1r161が上限を越えると第6群レンズで発生t7
た非点収差を補正しきれなくなり、これを第4群レンズ
、第5群レンズで補正しようとするとコマ収差が増大す
る。Condition (2), like condition (1), is also provided to reduce the Petzval sum. If lr +el becomes smaller than the lower limit of the condition, it is advantageous to reduce the Petzval sum, but the occurrence of astigmatism increases. Also, when 1r161 exceeds the upper limit, t7 occurs in the 6th group lens.
Astigmatism cannot be corrected completely, and if this is attempted to be corrected using the fourth and fifth lens groups, comatic aberration increases.
条件(3)は条件(1) 、 (2)と合わせて非点収
差、コマ収差を補正するだめの条件である。第7群レン
ズをより後方に配置すればこれに入射する主光線高が大
になり非点収差、コマ収差への寄与が犬になる。d15
が条件(3)の下限を越えると非点収差を補正するため
には第7群レンズの物体側の面の曲率半径r16 を小
にしてこの面のパワーを強くしなければならなくなるが
、するとコマ収差が補正過剰になってしまう。またd1
5が条件の上限を越えると而r+6 を弱いパワーにせ
ざるを得なくなりコマ収差が補正不足になる。Condition (3), together with conditions (1) and (2), is a condition for correcting astigmatism and coma aberration. If the seventh group lens is placed further back, the height of the chief ray incident thereon will increase, and its contribution to astigmatism and coma will be smaller. d15
If exceeds the lower limit of condition (3), in order to correct astigmatism, it is necessary to reduce the radius of curvature r16 of the object-side surface of the seventh lens group and increase the power of this surface. Coma aberration will be overcorrected. Also d1
If 5 exceeds the upper limit of the condition, then r+6 will have to be made weak in power, resulting in under-correction of coma aberration.
条件(4)はペッツバール和に関する条件である。Condition (4) is a condition regarding the Petzval sum.
第7群レンズの負レンズのパワーが非常に強イので、こ
のレンズの屈折率の選択もペッツバール和を小さくする
ため等で重要である。n、がこの条件の−1−限を越え
て犬になるとこのレンズでのペッツバール和が補正不足
になり像面の平坦性が得られない。又この条件の下限は
色収差補正の点から設けられたものである。つまりn9
が下限を越えて小さくなるとアツベ数の大きな硝子を使
用せざるを得なくなりそのために色収差の補正が困難に
なる。Since the power of the negative lens in the seventh lens group is very strong, the selection of the refractive index of this lens is also important in order to reduce the Petzval sum. If n exceeds the -1- limit of this condition and becomes a dog, the Petzval sum in this lens will be insufficiently corrected and flatness of the image plane will not be obtained. Further, the lower limit of this condition is set from the viewpoint of correcting chromatic aberration. In other words, n9
If it becomes smaller than the lower limit, it becomes necessary to use glass with a large Abbe number, which makes it difficult to correct chromatic aberration.
条件(5)と条件(6)は球面収差と色収差の補正のた
めに設けられたものである。Conditions (5) and (6) are provided to correct spherical aberration and chromatic aberration.
本発明では第4群レンズのうちの負レンズのパワーを強
くすることによって球面収差の補正をはかった。又この
負レンズのパワーを強くすることにより第4群レンズの
正レンズのパワーも強くすることが出来るので色収差補
正にとっても好捷しい。この軸上光線高が高く強いパワ
ーを有するレンズに異常分散性を有する材料を用いるこ
とによって残留色収差の低減を計ることができる。この
負レンズの゛焦点距離f5が条件(5)の下限を越える
とこの負レンズで球面収差が補正過剰になる。3これを
第7群レンズのパワーを強くすることeこよって補正し
ようとすると高次の収差が発生するので好ましくない。In the present invention, spherical aberration is corrected by increasing the power of the negative lens of the fourth lens group. Furthermore, by increasing the power of this negative lens, the power of the positive lens of the fourth lens group can also be increased, which is convenient for correcting chromatic aberration. Residual chromatic aberration can be reduced by using a material with anomalous dispersion for the lens, which has a high axial ray height and strong power. If the focal length f5 of this negative lens exceeds the lower limit of condition (5), the spherical aberration will be overcorrected by this negative lens. 3. If this is attempted to be corrected by increasing the power of the seventh lens group, higher-order aberrations will occur, which is undesirable.
捷たf5が条件(5)の上限をこえて犬になると第4群
レンズでの色収差の補正が不足するだめ残留色収差を減
少させることが出来ない。If the f5 value exceeds the upper limit of condition (5), the residual chromatic aberration cannot be reduced because the correction of chromatic aberration in the fourth group lens is insufficient.
尚第5群レンズの焦点距離f7に関しても−F述のこと
と同じことが云える。したがって第5群レンズも第4群
レンズで発生した球面収差、コマ収差。The same thing as mentioned above can be said about the focal length f7 of the fifth group lens. Therefore, the 5th group lens also has spherical aberration and coma aberration generated in the 4th group lens.
非点収差を補正し得るようにそのパワーを設定すること
が望ましい。そのだめf7は下記条件を満足する程度に
することが望ましい。。It is desirable to set the power so that astigmatism can be corrected. Therefore, it is desirable that f7 be set to a level that satisfies the following conditions. .
8.2 t < 1f71< 8.61次に条件(6)
は色収差に関するものである。第6群レンズの正レンズ
は比較的パワーの強いレンズである。そのため色収差に
与える影響が大きく、このレンズのアツベ数ν8が条件
(6)の下限を越えて小になると残留色収差の補正の上
で好壕しくない1)
次に以上説明した本発明の顕微鏡対物レンズの各実施例
を示す。8.2 t < 1f71 < 8.61 Next condition (6)
is related to chromatic aberration. The positive lens of the sixth lens group is a lens with relatively strong power. Therefore, it has a large effect on chromatic aberration, and if the Atsube number ν8 of this lens becomes smaller than the lower limit of condition (6), it is not suitable for correction of residual chromatic aberration.1) Next, the microscope objective of the present invention described above Each example of the lens is shown.
実施例1
rに(1)
d+ = 1.5833 1+ = 1.51825
ν、 = 64.15r2−” 1.0460
d2二0.0361
r3= 4.3333
d3= 1.0000 n2= 1.68613
’2 = 44.65r4=−2,6128
d、 = 0.0667
rs ニ11.8822
d5= 1.1278 13= 1.49846 ’
3= gl、6゜r、ニー3.3139
do” 0.4444
rt = 27.5822
d7”1.8167 n+=1.49846 シ4
=81.60r8ニー4.0328
ds = 1.1111 n! = 1.81990
ν5”44.45rg = 5.0850
do ”” 1.6111 n6 ” 1.4349
7 シロ=95.15rlo”” 9.4667
duo = 0.1222
ro = 6.4439
r、2 =−10,9778
du2= 0.4000
rt3” 4.0944
du:+ = 2・3333 nt = 1.434
97 νT=95.15ru ”−6,1833
(Ls ”” 1.1732
(L5二3.2722
r+a”’ 2.3550
(1+a−3,2389no = 1.72794
ν。=37.95r+7= 3.5572
f=1.β=100X、NA=1.25実施例2
rl −■
du = 1.5833 11 = 1.51825
シ、=64.15r2=−10497
d2= 0.0317
r:t ”” −4,3333
d3”” 0.9944 12= 1.68613
’2 = 44.65r、 = −2,6128
d4= 0.0833
r5 = −11,8822
d5= 1.1278 ns” 1.49846
’3”” 81.6Or6” 3.3139
d6二0.4444
r7= 27.5822
d7 ”” 1.8167 n4 = 1.
49846 9゜ =8+、60rg = −4,
0328
ds 二1.1111 15= 1.81990 1’
5 = 44.45rQ = 5.0850
do = 1.6111 n6 ” 1.
43497 1’e = 95.15r、。=
−94667
d、。= 0.1222
1’+−二6.4389
du = 1.6111 n7”” 1.49846
シフ”81.6Or+2 ” 10.9778
cL2= 0.4000
r+3== 4.0944
du3=2.3333 na=1.43497
ν5=95.15r14= 6.1833
d14= 6.2833 no = 1.59261
1’Q = 41.08r+i ”” 1.169
9
d15二3.2722
rt6二−2,3550
dua = 3.2389 1eo二1.72794
ν+o ” 37.95r1□ =−3,5572
f=1 、β=100X、NA=1.25実施例3
r、二ω
du = 1.5833 11 = 1.51825
シ1=64.15r2= 1.0460
d2= 0.0361
r3ニー4.3333
d:+ = 1.0000 n2=1.68613
ν2””44.65r、 =−2,6128
d、=0.0667
r5ニー11.8822
ds ” 1.1278 ns = 1.49846
シ3=81.60ra=3.3139
d、=0.4444
r、 = 27.5822
d7” 1.8167 n4−’ 1.49846
’4 = 81.60r& ”’ −4,0328
ds = 1.1111 n5 ”1.81990
ν5=44.45ru = 5.0850
d9=1.6111 ne=1.43497 ’e
=95.15r、。=−9,4667
duo = 0.1222
rlt 264439
dll” 1.6111 n7= 1.49846
シフ=81.6Or+2 = 10.9778
dll−04000
rl3” 4.0944
du:+ = 2.3333 n@ = 1.434
97 νs = 95.15rn = −6,,1
833
dn = 6.2833 TI ” 1.59261
&、 = 41.081”+5 ” 1.173
2
(L5= 3.2722
r+a= 2.3550
duo = 3.2389 1eo = 1.7279
4 シ、o= 37.95rl?” 3.5572
f=1 、β=100X、NA=1.25実施例4
r+=ω
du ” 1.5833 nl = 1.51825
シ、=64.15r2ニー1.0618
d2= 0.0327
r3= 4.3564
ds” 0.9947 n2= 1.68613
シ2=44.65r、= 2.6089
d4= 0.0865
r5=−11,7569
ds ” 1.1312 n3=1.49846
シ3=81.60ra ” 3.3051
do” 0.4474
r7= 30.9547
d7= 1.8208 14 = 1.49846
ν4”81.6Or、: 4.1679
ds ” 1.1187 n5= 1.81990
ν5”44.45ro = 5.1423
do ” 1.6124 no” 1.43497
νe=95.15r+o= 9.3433
duo = 0.1233
r、=6.4566
du = 1.9281 nl” 1.49846
シフ= 81..60r+2 : 10.807
1
d、2 = 0.3932
rl3 == 4.0908
d+3= 2.3328 ns = 1.43497
νg=95.15r+<= 6.1647
dn=6.2822 no=1.59261
1’g=41.08r+s ° 1.1136
cp5= 3.8889
rl6= 2.5147
dua =3.2372 neo := 1.727
94 ν+o = 37.95rlt = 3.
6601
f−1、β−100X、NA=1.25ただしrl +
+21 ”’ + rltはレンズ各面の曲率半径、
dl+d2+・・、d16は各レンズの肉厚および空気
間隔、nl r 12 +・・・+ nl(1は各レン
ズの屈折率、シ1.シ2.・・、ν1oは各レンズのア
ツベ数、βは倍率である。Example 1 r (1) d+ = 1.5833 1+ = 1.51825
ν, = 64.15r2-” 1.0460 d22 0.0361 r3= 4.3333 d3= 1.0000 n2= 1.68613
'2 = 44.65r4=-2,6128 d, = 0.0667 rs d5= 1.1278 13= 1.49846'
3=gl, 6°r, knee 3.3139 do” 0.4444 rt = 27.5822 d7”1.8167 n+=1.49846 c4
=81.60r8 knee 4.0328 ds = 1.1111 n! = 1.81990
ν5”44.45rg = 5.0850 do ”” 1.6111 n6 ” 1.4349
7 Shiro = 95.15rlo"" 9.4667 duo = 0.1222 ro = 6.4439 r, 2 = -10,9778 du2 = 0.4000 rt3" 4.0944 du: + = 2・3333 nt = 1. 434
97 νT=95.15ru ”-6,1833 (Ls ”” 1.1732 (L52 3.2722 r+a”’ 2.3550 (1+a-3,2389no = 1.72794
ν. =37.95r+7=3.5572 f=1. β=100X, NA=1.25 Example 2 rl −■ du = 1.5833 11 = 1.51825
shi, =64.15r2=-10497 d2= 0.0317 r:t ”” -4,3333 d3”” 0.9944 12= 1.68613
'2 = 44.65r, = -2,6128 d4 = 0.0833 r5 = -11,8822 d5 = 1.1278 ns" 1.49846
'3""81.6Or6" 3.3139 d62 0.4444 r7= 27.5822 d7 "" 1.8167 n4 = 1.
49846 9° = 8+, 60rg = -4,
0328 ds 21.1111 15= 1.81990 1'
5 = 44.45rQ = 5.0850 do = 1.6111 n6 ” 1.
43497 1'e = 95.15r,. =
-94667 d,. = 0.1222 1'+-2 6.4389 du = 1.6111 n7"" 1.49846
Schiff "81.6Or+2" 10.9778 cL2= 0.4000 r+3== 4.0944 du3=2.3333 na=1.43497
ν5=95.15r14=6.1833 d14=6.2833 no=1.59261
1'Q = 41.08r+i "" 1.169
9 d152 3.2722 rt62-2,3550 dua = 3.2389 1eo2 1.72794
ν+o ” 37.95r1□ =-3,5572 f=1, β=100X, NA=1.25 Example 3 r, 2ω du = 1.5833 11 = 1.51825
Si1=64.15r2=1.0460 d2=0.0361 r3 knee4.3333 d:+=1.0000 n2=1.68613
ν2""44.65r, =-2,6128 d, =0.0667 r5 knee 11.8822 ds" 1.1278 ns = 1.49846
shi3=81.60ra=3.3139 d, =0.4444 r, = 27.5822 d7" 1.8167 n4-' 1.49846
'4 = 81.60r &"' -4,0328 ds = 1.1111 n5 "1.81990
ν5=44.45ru=5.0850 d9=1.6111 ne=1.43497 'e
=95.15r,. =-9,4667 duo = 0.1222 rlt 264439 dll" 1.6111 n7 = 1.49846
Schiff=81.6Or+2 = 10.9778 dll-04000 rl3” 4.0944 du:+ = 2.3333 n@ = 1.434
97 νs = 95.15rn = -6,,1
833 dn = 6.2833 TI” 1.59261
&, = 41.081"+5" 1.173
2 (L5 = 3.2722 r+a = 2.3550 duo = 3.2389 1eo = 1.7279
4 shi, o= 37.95rl? "3.5572 f=1, β=100X, NA=1.25 Example 4 r+=ω du" 1.5833 nl = 1.51825
= 64.15 r2 knee 1.0618 d2 = 0.0327 r3 = 4.3564 ds” 0.9947 n2 = 1.68613
shi2=44.65r,=2.6089 d4=0.0865 r5=-11,7569 ds ” 1.1312 n3=1.49846
shi3=81.60ra ” 3.3051 do” 0.4474 r7= 30.9547 d7= 1.8208 14 = 1.49846
ν4”81.6Or,: 4.1679 ds” 1.1187 n5= 1.81990
ν5”44.45ro = 5.1423 do” 1.6124 no” 1.43497
νe=95.15r+o=9.3433 duo=0.1233 r,=6.4566 du=1.9281 nl” 1.49846
Schiff = 81. .. 60r+2: 10.807
1 d, 2 = 0.3932 rl3 == 4.0908 d+3 = 2.3328 ns = 1.43497
νg=95.15r+<= 6.1647 dn=6.2822 no=1.59261
1'g=41.08r+s ° 1.1136 cp5= 3.8889 rl6= 2.5147 dua =3.2372 neo := 1.727
94 ν+o = 37.95rlt = 3.
6601 f-1, β-100X, NA=1.25 but rl +
+21 ”' + rlt is the radius of curvature of each lens surface,
dl+d2+..., d16 is the wall thickness and air gap of each lens, nl r 12 +...+ nl (1 is the refractive index of each lens, shi1.shi2..., ν1o is the Atsube number of each lens, β is a magnification.
上記の各実施例はいずれも無限遠設計のものでそれのみ
では結像しない。そのため収差カーブは第2図に示すレ
ンズ構成で下記のデーターを有する特開昭56−799
19号公報に示されているr、B = +4.会今治4
dus ” 2.2222 no−1,48915ν
11= 70.15r+g−62,6306
dlQ二1.1111
r2o: 31.9428
d2o = 1.1111 n+2” L74618
ν12 = 28.29r、、 =−67,900
0
d2+ −” 8.3333
rz2 = 24.4072
d22”−1,0000n+3” 1.48915 1
’+3 = 70.15r、J−109122
上記結像レンズのデーターはf=1に対するもので、各
実施例の収差カーブもf=1に対して描いである。Each of the above-mentioned embodiments has an infinite distance design and cannot form an image by itself. Therefore, the aberration curve is calculated using the lens configuration shown in Fig. 2 and the following data.
r, B = +4. shown in Publication No. 19. Kai Imabari 4 dus ” 2.2222 no-1, 48915ν
11= 70.15r+g-62,6306 dlQ21.1111 r2o: 31.9428 d2o = 1.1111 n+2" L74618
ν12 = 28.29r,, = -67,900
0 d2+ -” 8.3333 rz2 = 24.4072 d22”-1,0000n+3” 1.48915 1
'+3 = 70.15r, J-109122 The data of the above imaging lens is for f=1, and the aberration curves of each example are also drawn for f=1.
以ト説明したように本発明の顕微鏡対物レンズは倍率が
高く開口数が犬であってしかもレンズ枚数が少なく又異
常分散性の特殊材料の使用も少ないにもかかわらず諸収
差の良好に補正されたレンズ系である。As explained above, the microscope objective lens of the present invention has a high magnification, a small numerical aperture, a small number of lenses, and a small number of special materials with anomalous dispersion, and yet various aberrations are well corrected. It is a lens system.
第1図は本発明対物レンズの構成を示す図、第2図は本
発明対物レンズと共に用いられる結像レンズの一例の構
成を示す図、第3図乃至第6図は夫々本発明の実施例1
乃至実施例4の収差状況を示す図である。
出願人 オリンパス光学工業株式会社
代理人 向 寛 二
球面収差 o 5 G’ 非点収差歪、収
差 倍率の色収に
5.0
歪曲収差 倍率の色収差
−to 1.0 −2.0
20−+u
+u −tu
tiJ −’p、u
’:+、u歪曲収差
倍率の色収差
球面収差 o s c’ フト点収差歪曲
収差 倍率の色収差FIG. 1 is a diagram showing the configuration of the objective lens of the present invention, FIG. 2 is a diagram showing the configuration of an example of an imaging lens used together with the objective lens of the present invention, and FIGS. 3 to 6 are examples of the present invention, respectively. 1
6 is a diagram showing aberration situations in Examples to Example 4. FIG. Applicant Olympus Optical Co., Ltd. Agent Hiroshi Mukai Bosphere aberration o 5 G' Astigmatism Distortion, Aberration Chromatic aberration of magnification 5.0 Distortion Aberration Chromatic aberration of magnification -to 1.0 -2.0
20-+u
+u -tu
tiJ −'p, u
': +, u distortion aberration
Lateral chromatic aberration Spherical aberration o s c' Foot point aberration Distortion Lateral chromatic aberration
Claims (1)
体側に凹面を向けた正のメニスカスレンズの第2群レン
ズと、正レンズの第3群レンズと、正レンズと負レンズ
と正レンズよりなる三枚接合レンズの第4群レンズと、
両凸レンズの第5群レンズと、物体側に凸面を向けた接
合メニスカスレンズの第6群レンズと、物体側に凹面を
向けたメニスカスレンズの第7群レンズとにて構成され
次の各条件を満足する顕微鏡対物レンズ。 (1)1.1f≦ r15≦1.35f(2)1.7f
≦Ir+el≦2.7f(3)1.9f≦ dl5 ≦
4.0f(4)1.55≦ n、≦1.65 (5)2.4f≦1f、1≦2,8f (6) 65≦ ν8 ただしr15は第6群レンズの像側の面の曲率半径、r
、6は第7群レンズの物体側の面の曲率半径、dl、は
第6群レンズと第7群レンズの間の空気間隔、n9は第
6群レンズの像側のレンズの屈折率、ν8は第6群レン
ズの物体側のレンズのアツベ数、f、は第4群レンズ中
の負レンズの焦点距離、fは全系の焦点距離である。[Claims] A first lens group of a plano-convex lens with a flat surface facing the object side, a second group lens of a positive meniscus lens with a concave surface facing the object side, a third lens group of positive lenses, and a positive lens group. a fourth lens group of a three-piece cemented lens consisting of a lens, a negative lens, and a positive lens;
It consists of a 5th group lens that is a biconvex lens, a 6th group lens that is a cemented meniscus lens that has a convex surface facing the object side, and a 7th group lens that is a meniscus lens that has a concave surface facing the object side, and meets the following conditions. A satisfying microscope objective lens. (1) 1.1f≦r15≦1.35f (2) 1.7f
≦Ir+el≦2.7f (3) 1.9f≦ dl5≦
4.0f (4) 1.55≦n, ≦1.65 (5) 2.4f≦1f, 1≦2,8f (6) 65≦ν8 However, r15 is the curvature of the image side surface of the 6th group lens radius, r
, 6 is the radius of curvature of the object side surface of the seventh group lens, dl is the air distance between the sixth group lens and the seventh group lens, n9 is the refractive index of the image side lens of the sixth group lens, ν8 is the Abbe number of the object-side lens of the sixth group lens, f is the focal length of the negative lens in the fourth group lens, and f is the focal length of the entire system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57075193A JPS58192013A (en) | 1982-05-07 | 1982-05-07 | Microscope objective lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57075193A JPS58192013A (en) | 1982-05-07 | 1982-05-07 | Microscope objective lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58192013A true JPS58192013A (en) | 1983-11-09 |
Family
ID=13569108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57075193A Pending JPS58192013A (en) | 1982-05-07 | 1982-05-07 | Microscope objective lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58192013A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5502596A (en) * | 1992-11-20 | 1996-03-26 | Olympus Optical Co., Ltd. | Immersion microscope objective |
-
1982
- 1982-05-07 JP JP57075193A patent/JPS58192013A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5502596A (en) * | 1992-11-20 | 1996-03-26 | Olympus Optical Co., Ltd. | Immersion microscope objective |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3541983B2 (en) | Wide-angle lens | |
US4810072A (en) | Zoom lens | |
JPH08313804A (en) | Wide angle lens | |
JPH0743606A (en) | Wide angle lens | |
JPH06235858A (en) | High performance photographic lens | |
JPH05150161A (en) | Variable power lens | |
JPS6040604B2 (en) | Gauss type large aperture ratio photographic lens | |
US4458991A (en) | Photographic objective of reduced size | |
JPH07218825A (en) | Retrofocus lens | |
JPS6132654B2 (en) | ||
JPS5834813B2 (en) | attachment lens | |
JP3518886B2 (en) | High-performance wide-angle lens | |
JPS6128972B2 (en) | ||
JP3426378B2 (en) | Endoscope objective lens | |
JPS598803B2 (en) | All-purpose lens | |
JPH052134A (en) | Keplerian type zoom finder optical system | |
JPS60260910A (en) | Small-sized high-performance telephoto lens | |
JP2726261B2 (en) | Eyepiece | |
JPS58192013A (en) | Microscope objective lens | |
JPH0763996A (en) | Super-wide visual field eyepiece lens | |
JPS63199312A (en) | Compact lens system | |
US4235519A (en) | Compact retrofocus type wide angle objective | |
JPS59142514A (en) | Bright zoom lens | |
JPH1195130A (en) | Eyepiece | |
JPH05142469A (en) | Large-aperture intermediate telephoto lens |