JPS58191586A - Picture signal inserting system - Google Patents

Picture signal inserting system

Info

Publication number
JPS58191586A
JPS58191586A JP57072557A JP7255782A JPS58191586A JP S58191586 A JPS58191586 A JP S58191586A JP 57072557 A JP57072557 A JP 57072557A JP 7255782 A JP7255782 A JP 7255782A JP S58191586 A JPS58191586 A JP S58191586A
Authority
JP
Japan
Prior art keywords
image
image signal
signal
pixel
interpolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57072557A
Other languages
Japanese (ja)
Other versions
JPH0548030B2 (en
Inventor
Yuichi Ninomiya
佑一 二宮
Yoshimichi Otsuka
大塚 「よし」道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP57072557A priority Critical patent/JPS58191586A/en
Publication of JPS58191586A publication Critical patent/JPS58191586A/en
Publication of JPH0548030B2 publication Critical patent/JPH0548030B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction

Abstract

PURPOSE:To restore the frequency band of an original picture signal, by mixing picture signals with the mixing ratio changed continuously in response to the amount of detection of the movement of the picture signals after interpolation between frames and between fields and performing picture element interpolation without the generation of unnatural feeling. CONSTITUTION:The picture signals of adjacent frames are extracted sequentially from input and output terminals of two frame memories 1, 2 of cascade connection, applies to a movement amount detection circuit 4 and the movement of the picture is detected. The picture signal after interpolation for picture element interpolation is obtained from both the terminals of the memories 1, 2 to an input picture signal for band compression at least 2:1 sampling and averaged at an adder 5 and a multiplier 6. The picture signal between intermediate frame periods between the memories 1, 2 is applied to a two-dimension filter 3 to output the picture signal after interpolation, and the signal is applied to a multiplier 7 and the output of the multiplier 6 is applied to a multiplier 8. The signals are mixed at an adder 9 in the mixing ratio of continuous change in response to the detection of the movement of the picture signal detected at the circuit 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、サンプリング、%に、サブサンプリングによ
り帯域圧縮を施した画像信号の周波数帯域を復元する画
像信号内挿方式に関し、特に、内挿に伴う動き画像の画
質劣化を防止するようにしたものである。 一般に、高品位テレビジ目ン儒号等の広帯域画像信号を
伝送する場合には、その伝送に要する伝送路の周波数帯
域をなるべく狭くし得るよう圧することが伝送帯域の有
効利用のうえから極めて重要である。 しかして、伝送路の所要帯域幅を狭くし得るようにする
ために、伝送すべき画像信号に施す帯域圧縮方法の一つ
に、画像信号のフレーム間相1mを利用し、画像信号を
画素単位にてサブサンプルし7て伝送する帯域圧縮方式
がある。かかる画素単位のサブサンプリングのうち、い
わゆる2:lドツトインターレースと同様にして、最も
簡単に、一つおきの画素信号をサンプルする2:1サブ
サンプリングを例にとって説明すると、第1図に示すよ
うに、インターレース走査によりメインサンプリングを
施した一本おきの走査線上にて一つおきの画素信号をサ
ブサンプルすれば、2フレ一ム分のサンプルIm素信号
によって原Im儂信号の復元が完結することになり、順
次のフレーム九ついてかかるサブサンプリングを施し九
画像信号の伝送に要する伝送帯域幅は1理的に牛減し得
ることになる。 しかして、かかる2:1サブサンプリングにより所要周
波数帯域を半減させて伝送し良画像信号の周波数帯域を
伝送路の受信側にて復元するには、通例、フレームメモ
リを備えて、順次の各フレームにそれぞれ欠除している
画素信号をそのフレームメモリに一時記憶させた前フレ
ームにおける該当IIjI素信号全信号して代替させる
ようにする。しかし7ながら、かかる画素信号の代替補
flJIti、静止画像について#′i原画像を完全罠
復元し得るも、動き画像については相隣る2フレ一ム間
における同一画素点の画像の動きによる変化を復元I−
得ないので偽信号が発生することになり、原動き画像を
忠実に復元し得ない。 一方、動き画像については、画像の動き部分圧相当のぼ
けが生じていても、視覚がその動き部分の動きに十分に
追随し得ないの−で視覚的にはそれ程画質の劣化を感じ
ない、という視覚の特性を利用して、その動き部−分に
おける画素信号のサブサンプリングによる欠落を同一フ
ィールド内の近接画素信号により補間するようKするの
が一般であった。従来、かかる画素補間については、動
き補正フレーム間符号化装置などにこれを適用して相尚
の効果が得られることが実証されている。 しかしながら、かかる従来の画素補間にはつぎのような
具体的な問題点があった。すなわち、(1)画像の動き
の有無に応じて、フレームfliJ1相関を利用した内
挿による画素補間と同一フイールド内近接画素間の内挿
によるiiI素補関補間相互に切替えることにより復元
した画glK新たな不自然さが生ずる。 (2)画像の動き部分の検出を単純にフレーム間差分の
大小のみに応じて行なったのでは、例えば、画像信号の
高域成分が増大するエツジ部分等においては、画像のわ
ずかな動きによっても大きいフレーム間差分が生じ、画
像に大きい動きがあるのと同等の検出結果となるなど、
動き検出が不完全であり、かかる動きの誤検出に伴って
新たな画質劣化が生ずる。 (−7たがって、従来の画像信号内挿方式においては、
いずれの方式によっても、充分に良質の画像が得られる
ような画素補間を行なって原画像信号の周波数帯域を充
分に復元するのが困難である、という欠点があった。 本発明の目的は、上述した従来の問題を解決してその欠
点を除去し、新たな不自然さを伴うことなく適切な内挿
信号を用いてII!il累補間を行ない、原画像信号の
周波数帯域を復元し得るようにした画像信号内挿方式を
提供することにある。 すなわち、本発明画像信号内挿方式は、少なくとも2:
1の比によりサンプリングして所要周波数帯域を削減し
た画像信号の周波数帯域を復元するにあたり、前記画像
信号が表わす画像の動きを、少なくとも1フレ一ム期間
異なる画素間のフレーム間差分の絶対値および同一フィ
ールド内にて前記画素と前記画素に近接した複数画素の
それぞれとの間におけるフィールド内画素間差分のそれ
ぞれの絶対値に基づいて検出するとともに、フレーム間
内挿済み画像信号およびフィールド内内挿済み画像信号
を前記画像の動きの検出量にに5じ連続的に変化させた
混合比により互いに混合するようにしたことを特徴とす
るものである。 以下に図面を参照して実施例につき本発明の詳細な説明
する。 筐ず、本発明方式による画像信号内挿装置の原理的構成
の例を第2図に示す。なお、図示の原理的構成罠おいて
は2個のフレームメモリ1および2を使用しているが、
構成を簡略化して単一のフレームメモリを用いても同様
に後述するような作用効果が得られる。しかしながら、
単一のフレームメモリのみを使用しまた場合には、前述
したように、画像の動き部分にフレーム間相関利用の内
挿によって生ずる偽信号のためKSFh像の動き部分に
その動きの方向の位置ずれが生じ、単なるフィールド内
二次元フィルタ作用によって生ずる通常の画像はけと同
様のぼけに位置ずれKよる画質劣化をも伴うことになり
、後述するように、フレーム間の内挿と同一フィールド
内の内挿とを並用して切替えた際K iil f&の位
置ずれが目立つので、本発明方式による画像信号内挿の
所期の作用効果が充分に得られないことになる。 しかして、図示の構成においては、縦続接続した2個の
フレームメモリ1および2の各入出力熾から、順次に相
隣る8フレームの画像信号を取出12て勧き量検出回路
4に供給し、後述するように(7て画像の動き量を検出
する。この動き量検出回路8の検出出力信号信号レベル
は、画像の動きの大きさに応じて変化し、画像の動きの
大きい部分では信号レベルが高く、画像の動きの小さい
部分では信号レベルが低くなる。 一方、例えば2:1サブサンプリングにより帯域圧縮を
施した入力画像信号に対して画素補間を行なった内挿済
み画像信号としては、2フレーム、メモリー、2の縦続
接続の両端から得た2フレーム周期距った画像信号す、
cを加算器5および−掛算器6により平均化した静止画
像用の内挿済み画像信号と、2フレームメモリ1.2の
縦続接続の中間接続点から得た中間フレーム周期の画像
信号aを二次元フィルタ8に導いて内挿を施した動き画
像用の内挿済み画像信号とを掛算器8と7とにそれぞれ
導いて、図示のように、双方の内挿済み画像信号の混合
比αについて、それぞれ(l−α)およびαの掛は算を
施したうえで加算器9に導き、双方の内挿済み画像信号
を適切に混合して出力内神済み画像信号として取出すの
であるが、双方の内挿済み画像信号の混合比αを上述し
念動き量検出回路4の検出信号信号レベルによって制御
17、画像動き量の変化に応じ適切な速度にて混合比α
を連続的に円滑に変化させる。したがって、ii!Il
儂の動きの有無に応じてフレーム間内挿済み画像信号と
同一フイールド内画素間内挿済み画(lI信号との切替
えを行なうことは従来の内挿方式によるのと同様である
が、その切替えを連続的に円滑に行なうので、従来のよ
う罠、かかる内挿済み画像信号の切替えに伴って新たな
画質劣化を生ずるおそれは全くなくなる。 つぎに、上述のような態様の内挿済み画像信号の切替え
を行なうに要する画像の動きを的確に検出するための動
き量検出回路鳴の詳細構成の例を@8図に示す。しかし
て、図示の構成による画像の動き量検出はつぎのような
原理に従って行なうものである。 すなわち、例えば相隣る8フレ一ム間における画像信号
の相関の有無により画像の動きを検出する場合に、その
2フレ一ム間にて得られるフレーム間差分の大きさは、
そのまま画像の動き量を表わしているわけではなく、例
えば、画像の動きはわずかであっても、画像信号の高域
成分が多い画像のエツジ部分などに動きがあれば、その
動きエツジ部分については2フレ一ム間にて大きいフレ
一台間差分が生ずることになる。したがって、本発明内
挿方式圧用いる動き量検出回路においては、上述のよう
なフレーム間差分の大小のみ罠はよらず、例えば第4図
に示すような構成配置九よる同・−フレーム内のいわゆ
るインフレーム画素間差分、すなわち、8画素信号間の
差分の大小、すなわち、画像信号の高域成分の大小をも
併わせ考慮して画像の動きを的確に検出し得るようにし
ている。 [2かして、第4図に示す画素群の構成配置としては、
同一フレーム内にて順次に相隣る8走査線の中央に位置
する走査線上の中心画素に注目し、その注目画素を挾ん
で22画素間隔ずつ前後に離隔した3画素と注目画素と
の間における各画素間差分り。、およびり。、と、図示
のように注目iiI素を対角線の交点とした#1ぼ正方
形の各頂点にそれぞれ位置する隣接走査線上のgiii
素相互間におけるライン間差分DtよおよびDt、と、
注目画素自体に関する通常のフレーム間差分D/とを動
き量検出、したがって、前述したフレーム間内挿済み画
像信号とフィールド内画素間内挿済み画像信号との混合
比α設定の対象とすることにより、上述したフレーム間
差分と画像信号高域成分とを勘案した動き量検出を行な
うこととする。なお、動き量検出の対象とする上述の各
差分Del I Delm l Dtl 1 D、、。 D7はいずれもその絶対値を動き量検出の対象とする。 I7か(7て、上述した各画素間差分De1’ DeU
および各ライン間差分り、11 Dtilによれば、注
目画素を中心とした微小画像領域における画像信号レベ
ルの変化の状態、すなわち、iii儂信号^域成分の大
小を判別することができるので、それらの各差分の絶対
値のうちの最大の絶対値りを選べば、その最大絶対mD
とフレーム間差分DIの絶対値との大小関係の組合わせ
によって、画像信号高域成分の存在を勘案した的確な動
き量検出を行なうことができる。すなわち、 D ;maX (D61 e D61 * DtX t
 Dtl )とすれば、 α−/ (D7 、 D ) なる関数fにより、上述したフレーム間内挿済み画像信
号とフィールド内画素間内挿済み画像信号との混合比α
を適切に選定することができる。その関数fを、例えば
、 と設定すれば、 (1)画像の動き量が一小さい場合には、Df→小、D
→大となるのでα→0とな9、フレーム間内挿済み画像
信号の混合比率を増大させることになる。 (2)画像の動き量が大きい場合には、Df→大、D→
小となるのでα→lとなり、フィールド内自累間内挿済
み画像信号の混合比率を増大させることになる。 なお、Dj→大、D→大となる場合、例えば画像のエツ
ジ部分の動き量が大きい場合も想定されるが、実際には
、エツジ部分の動きが速い場合には、かかる動きエツジ
の撮像出力信号中の高域成分は静止エツジの場合に比し
て格段に低下するので、Df→大、D→小の場合に近似
することになる。しか(〜、厳密には、かかる場合にも
適切な動き量検出を行ない得るように、かかる場合も考
慮した適切な関数/ (D7 、 D )の構成を選定
する必要がある。 また、かかるD/ 、 Dの大小関係に基づく関数/ 
(Dl 、 D )の演算は画像信号レートの高速にて
行なう必要があるので、絶対値D 、 D7の種々の値
の組合わせ罠対してあらかじめ演算した関数fの値を格
納しであるリードオンリメモリROMを絶対値DI、D
の測定値によりアクセスして所要の関数値を求めるよう
にするのが好適である。 なお、上述の動き量検出の過程によれば、画像信号高域
成分の存在を考慮して有効的確な動き量検出を行ない得
るが、第2図示の回路構成にみられるように、信号処理
系統中に掛は算回路が存在するので、その掛は算の過程
において不所望の高域成分が発生するのを防止するため
に、検出出力信号を適切な低域通過フィルタに導いて適
正な値の関数値乃至混合比を取出すようにするのが好適
である。 17か1.て、第4図示の構成配置による画素間差分の
検出に基づいて上述の過程により動き鍬を検出し得るよ
うに、上述の過程に忠実に従って動き量検出回路を構成
The present invention relates to an image signal interpolation method for restoring the frequency band of an image signal that has been subjected to band compression by subsampling in sampling percentage, and in particular to a method for preventing image quality deterioration of moving images due to interpolation. It is. In general, when transmitting wideband image signals such as high-definition television programs, it is extremely important to make the frequency band of the transmission line required for transmission as narrow as possible from the viewpoint of effective use of the transmission band. be. Therefore, in order to narrow the required bandwidth of the transmission path, one of the band compression methods applied to the image signal to be transmitted is to use a 1m interframe phase of the image signal, and to compress the image signal pixel by pixel. There is a band compression method that sub-samples the signal and transmits it. Among such pixel-based subsampling, the simplest example is 2:1 subsampling, which samples every other pixel signal in the same way as the so-called 2:l dot interlace, as shown in FIG. If every other pixel signal is sub-sampled on every other scanning line subjected to main sampling by interlaced scanning, the restoration of the original Im signal is completed with the sample Im elementary signal for two frames. Therefore, by performing such subsampling on nine successive frames, the transmission bandwidth required for transmitting nine image signals can be theoretically reduced. However, in order to transmit the required frequency band by half by such 2:1 subsampling and restore the frequency band of a good image signal on the receiving side of the transmission path, a frame memory is usually provided and each frame is sequentially transmitted. The missing pixel signals are replaced by all corresponding IIjI pixel signals in the previous frame temporarily stored in the frame memory. However, although it is possible to completely restore the #'i original image for a still image by using alternative compensation flJIti for such a pixel signal, for a moving image, changes due to the movement of the same pixel point between two adjacent frames Restore I-
Therefore, false signals are generated, and the original motion image cannot be faithfully restored. On the other hand, for a moving image, even if there is blur equivalent to the pressure of the moving part of the image, the visual sense cannot sufficiently follow the movement of the moving part - so the image quality does not visually deteriorate much. Taking advantage of this visual characteristic, it has been common practice to interpolate the loss of pixel signals in the moving part due to subsampling with adjacent pixel signals in the same field. Conventionally, it has been demonstrated that such pixel interpolation can be applied to motion compensated interframe coding devices and the like to obtain significant effects. However, such conventional pixel interpolation has the following specific problems. That is, (1) the image glK restored by switching between pixel interpolation by interpolation using frame fliJ1 correlation and iii pixel interpolation by interpolation between adjacent pixels in the same field, depending on the presence or absence of image movement; A new unnaturalness arises. (2) If the detection of moving parts of an image is performed simply according to the magnitude of the difference between frames, for example, in edge parts where the high-frequency components of the image signal increase, even a slight movement of the image A large difference between frames occurs, resulting in a detection result equivalent to that of a large movement in the image.
Motion detection is incomplete, and new image quality degradation occurs due to such erroneous detection of motion. (-7 Therefore, in the conventional image signal interpolation method,
Either method has the disadvantage that it is difficult to sufficiently restore the frequency band of the original image signal by performing pixel interpolation to obtain an image of sufficiently high quality. The object of the present invention is to solve the above-mentioned conventional problems and eliminate their drawbacks, and to use a suitable interpolation signal without introducing new artifacts. An object of the present invention is to provide an image signal interpolation method that performs il cumulative interpolation to restore the frequency band of an original image signal. That is, the image signal interpolation method of the present invention has at least 2:
In restoring the frequency band of an image signal whose required frequency band has been reduced by sampling at a ratio of Detection is performed based on the respective absolute values of intra-field pixel differences between the pixel and each of a plurality of pixels adjacent to the pixel within the same field, and inter-frame interpolated image signals and intra-field interpolation are performed. The present invention is characterized in that the detected image signals are mixed with each other at a mixing ratio that is continuously changed by five times the amount of detected image motion. In the following, the invention will be described in detail by way of example embodiments with reference to the drawings. FIG. 2 shows an example of the basic configuration of an image signal interpolation device according to the present invention. In addition, although two frame memories 1 and 2 are used in the principle configuration trap shown in the figure,
Even if the configuration is simplified and a single frame memory is used, the same effects as described later can be obtained. however,
In the case where only a single frame memory is used, as mentioned above, the moving part of the KSFh image may be misaligned in the direction of its movement due to false signals caused by interpolation using interframe correlation in the moving part of the image. This results in the same blurring as normal image blurring caused by a simple intra-field two-dimensional filter effect, as well as image quality deterioration due to the positional shift K. Since the positional deviation of K iil f& is noticeable when interpolation and interpolation are used simultaneously, the intended effects of image signal interpolation according to the method of the present invention cannot be sufficiently obtained. In the illustrated configuration, image signals of eight adjacent frames are sequentially extracted 12 from each input/output terminal of two cascade-connected frame memories 1 and 2 and supplied to the recommended amount detection circuit 4. , as will be described later (7), detects the amount of movement of the image.The detection output signal level of the movement amount detection circuit 8 changes depending on the size of the movement of the image, and in parts of the image where the movement is large, the signal level changes. The signal level is high and the signal level is low in parts with small image movement.On the other hand, for example, as an interpolated image signal obtained by performing pixel interpolation on an input image signal that has been subjected to band compression using 2:1 subsampling, 2 frame, memory, 2 frame cycle distance image signals obtained from both ends of the 2 cascade connection,
The interpolated image signal for still images obtained by averaging c by the adder 5 and the -multiplier 6, and the image signal a of the intermediate frame period obtained from the intermediate connection point of the cascade connection of the two frame memories 1.2 are divided into two. The interpolated image signal for the motion image that has been guided to the dimensional filter 8 and subjected to interpolation is guided to the multipliers 8 and 7, respectively, and as shown in the figure, the mixing ratio α of both interpolated image signals is calculated. , the multiplication of (l-α) and α is calculated and then sent to the adder 9, and both interpolated image signals are appropriately mixed and extracted as an output internalized image signal. The mixing ratio α of the interpolated image signals is controlled 17 by the detection signal level of the telekinetic motion detection circuit 4, and the mixing ratio α is adjusted at an appropriate speed according to the change in the image motion amount.
change continuously and smoothly. Therefore, ii! Il
Switching between the inter-frame interpolated image signal and the inter-pixel interpolated image within the same field (lI signal) depending on the presence or absence of movement is the same as in the conventional interpolation method, but the switching This is done continuously and smoothly, so there is no risk of new image quality deterioration due to the switching of the interpolated image signal, as in the conventional case.Next, the interpolated image signal as described above An example of the detailed configuration of the motion amount detection circuit for accurately detecting the image motion required for switching is shown in Figure @8.The principle of image motion amount detection using the illustrated configuration is as follows. In other words, when detecting image motion based on the presence or absence of correlation between image signals between eight adjacent frames, for example, the magnitude of the inter-frame difference obtained between the two frames is teeth,
It does not directly represent the amount of movement in the image; for example, even if the movement in the image is slight, if there is movement in the edge part of the image where there are many high-frequency components of the image signal, the amount of movement in the edge part will be A large difference will occur between two frames. Therefore, in the motion amount detection circuit using the interpolation method of the present invention, the trap does not depend only on the size of the difference between frames as described above, but the so-called so-called within the same frame due to the configuration arrangement 9 as shown in FIG. The in-frame pixel difference, that is, the magnitude of the difference between 8 pixel signals, that is, the magnitude of the high frequency component of the image signal is also taken into consideration to accurately detect the movement of the image. [2] The arrangement of the pixel group shown in FIG. 4 is as follows:
Focusing on a central pixel on a scanning line located in the center of eight sequentially adjacent scanning lines in the same frame, the pixel is located between the pixel of interest and three pixels spaced 22 pixels apart from each other, sandwiching the pixel of interest. Difference between each pixel. , and Tori. , and giii on the adjacent scanning lines located at each vertex of the #1 square with the attention iii element as the intersection of the diagonal lines as shown in the figure.
The line-to-line difference Dt and Dt between the elementary elements,
By detecting the amount of motion and using the normal inter-frame difference D/ regarding the pixel of interest itself, the mixing ratio α of the inter-frame interpolated image signal and the intra-field inter-pixel interpolated image signal described above is set. , the amount of motion is detected taking into account the above-mentioned inter-frame difference and image signal high-frequency components. Note that each of the above-mentioned differences Del I Delml Dtl 1 D, . In both cases, the absolute value of D7 is used for motion amount detection. I7 (7, the above-mentioned difference between each pixel De1' DeU
and the difference between each line, 11 Dtil, it is possible to determine the state of change in the image signal level in a minute image area centered on the pixel of interest, that is, the magnitude of the individual signal ᄒ area component. If you choose the maximum absolute value among the absolute values of each difference, its maximum absolute mD
By combining the magnitude relationship between the absolute value of the inter-frame difference DI and the absolute value of the inter-frame difference DI, accurate motion amount detection can be performed taking into account the presence of the high frequency component of the image signal. That is, D ; maX (D61 e D61 * DtX t
Dtl), then the mixing ratio α of the inter-frame interpolated image signal and the intra-field inter-pixel interpolated image signal is determined by the function f α-/(D7, D).
can be selected appropriately. For example, if the function f is set as follows: (1) When the amount of image movement is one small, Df → small, D
→ becomes large, so α → 0.9 This increases the mixing ratio of interframe interpolated image signals. (2) When the amount of image movement is large, Df→large, D→
Since α becomes smaller, α→l, which increases the mixing ratio of the intra-field self-interpolated image signal. Note that when Dj→Large or D→Large, for example, it is assumed that the amount of movement at the edge part of the image is large, but in reality, when the movement of the edge part is fast, the imaging output of such a moving edge Since the high-frequency components in the signal are much lower than in the case of a stationary edge, they are approximated by the cases where Df→large and D→small. However, (~, strictly speaking, in order to perform appropriate motion amount detection even in such a case, it is necessary to select an appropriate configuration of the function / (D7, D) that takes such a case into consideration. / , a function based on the magnitude relationship of D /
Since the calculation of (Dl, D) needs to be performed at a high image signal rate, a read-only system is used that stores the values of the function f that have been calculated in advance for various combinations of the absolute values D and D7. Absolute value DI, D of memory ROM
It is preferable to obtain the desired function value by accessing the measured value of . According to the above-described motion amount detection process, effective and accurate motion amount detection can be performed taking into account the presence of high-frequency components of the image signal, but as shown in the circuit configuration shown in the second figure, the signal processing system Since there is a multiplication circuit inside, the multiplication circuit guides the detection output signal to an appropriate low-pass filter and converts it to an appropriate value in order to prevent undesired high-frequency components from occurring during the calculation process. It is preferable to extract the function value or the mixing ratio. 17 or 1. Then, a motion amount detection circuit is constructed in accordance with the above-described process faithfully so that a motion hoe can be detected by the above-described process based on the detection of inter-pixel differences using the configuration shown in FIG.

【−たのが第8図示の構成例である。すなわち、図示の
構成においては、第2図示の構成において縦続接続した
2個のフレームメモリ1.2の中間接続点から取出した
画像信号af同様に縦続接続したラインメモリ10.I
IK供給し、その中間接続点から取出【7た画像信号を
同様に縦続接続したlクロック遅延器16.17に供給
するとともに、上述したフレームメモリ1゜2の縦続接
続の両端から取出した2フレ一ム間差の画像信号す、c
を引算器24に供給する。ついで、ラインメモリ10.
11の縦続接続の両端から取出した1iIil偉信号を
引算器12に供給して順次のライン間差分を取出し、そ
の引算出力を絶対値器18に導いてその絶対値を求める
。一方、】クロック遅延器16.17の縦続接続の両端
から取出した2画素間差の画素信号を引算器18に供給
して順次の画素間差分を取出し、その引算出力を絶対値
器19に導いτその絶対値を求める。ついで、第4図示
の構成配置におけるライン間差分検出画素点と画素間差
分検出画素点との1画素間隔の位置ずれを修正する1ク
ロツク遅延器14を介した絶対値器18からのライン間
差分絶対値と絶対値器19からの画素間差分絶対値とを
最大値器15に供給して両者間の最大絶対値を求め、そ
の最大絶対値出力を縦続接続した2個の1クロック遅a
r=g O、B 1に供給して、その縦続接続の両端か
らの最大絶対値を最大値器22に供給して、第4図示の
構成配置における左半部の画素群における最大絶対値と
右半分の画素群における最大結文1値との最大値を求め
、前述の式による最大絶対f[Dを取出す。一方、引算
器24から得られるフレーム間差分を絶対値器25に導
いてその絶対値を求め、上述、した最大絶対値りとのタ
イミングを合わせるために縦続接続した2個の1クロッ
ク遅蜆器26.27を介したフレーム間差分絶対値DJ
と最大値器22からの最大絶対値りとによりアクセス(
7て、それらの測定値に対応した所要の関数値f1すな
わち、所要の混合比αをリードオンリメモリ(ROM)
28から取出す。 以上の説明から明らかなように、本発明によれば、帯域
圧縮のため罠画素単位のサブサンプリングt−施し九画
像信号の周波数帯域を、画像の動きの如何に拘わりなく
画質の劣化を伴わずに復元することができるのであるか
ら、画像信号K11ii素単位のサブサンプリングを施
して所要伝送量を削減したうえで、適切な符号化伝送を
行なうことができる。 なお、かかる画素単位のサブサンプリングは画像信号の
アナログ伝送にも適用して所要伝送帯域圧縮の効果を得
ることができるのであるから、広帯域画像信号の伝送一
般について広く本発明内挿方式を適用することができる
[- is the configuration example shown in Figure 8. That is, in the configuration shown in the figure, the image signal af taken out from the intermediate connection point of the two frame memories 1.2 connected in cascade in the configuration shown in the second figure is transmitted to the line memories 10.2, which are connected in cascade in the same way. I
The image signals taken out from the intermediate connection point are supplied to l clock delay devices 16 and 17 which are connected in cascade in the same way, and the two frames taken out from both ends of the cascade connection of the frame memories 1. One frame difference image signal S, c
is supplied to the subtracter 24. Next, line memory 10.
The 1iIil signals taken out from both ends of the cascade connection of 11 are supplied to a subtracter 12 to extract sequential line-to-line differences, and the subtracted output is led to an absolute value unit 18 to obtain its absolute value. On the other hand, the pixel signal of the difference between two pixels taken out from both ends of the cascade connection of the clock delay devices 16 and 17 is supplied to the subtracter 18 to extract the difference between the pixels sequentially, and the subtracted output is sent to the absolute value unit 19. and find the absolute value of τ. Next, the inter-line difference from the absolute value unit 18 is transmitted through the 1-clock delay device 14, which corrects the positional deviation of 1 pixel interval between the inter-line difference detection pixel point and the inter-pixel difference detection pixel point in the configuration shown in FIG. The absolute value and the inter-pixel difference absolute value from the absolute value unit 19 are supplied to the maximum value unit 15 to obtain the maximum absolute value between the two, and the maximum absolute value output is connected in cascade to two 1-clock delay a.
r=g O, B 1, and the maximum absolute value from both ends of the cascade connection is supplied to the maximum value unit 22, and the maximum absolute value in the left half pixel group in the configuration shown in FIG. Find the maximum value with respect to the maximum resultant 1 value in the right half pixel group, and extract the maximum absolute f[D according to the above formula. On the other hand, the inter-frame difference obtained from the subtracter 24 is guided to the absolute value unit 25 to obtain its absolute value, and in order to match the timing with the maximum absolute value mentioned above, two 1-clock delay units connected in cascade are used. Inter-frame difference absolute value DJ via devices 26 and 27
and the maximum absolute value from the maximum value unit 22 (
7, the required function value f1 corresponding to those measured values, that is, the required mixture ratio α, is stored in a read-only memory (ROM).
Take it out from 28. As is clear from the above description, according to the present invention, the frequency band of an image signal can be subsampled in pixel units for band compression without deterioration of image quality, regardless of image movement. Therefore, after subsampling the image signal in units of K11ii elements to reduce the required transmission amount, appropriate encoded transmission can be performed. Note that such pixel-by-pixel subsampling can also be applied to analog transmission of image signals to obtain the effect of compressing the required transmission band, so the interpolation method of the present invention can be widely applied to general transmission of wideband image signals. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は画像信号サブサンプリングのS+様の例を示す
線図、 第2図は本発明方式による1iii+偉信号内挿回路の
原理的構成の例を示すブロック線図、 第8図は同じくその内挿回路における動き量検出回路の
鮮細構成の例を示すブロック線図、第4図は同じくその
動き量検出回路における差分検出の態様の例を示す線図
である。 】、2・・・フレームメモリ、8・・・二次元フィルタ
、4・・動き量検出回路、5,9・・・加算器、617
18 掛算器、10.11・・ラインメモリ、12゜1
8.24・・・引算器、18,19,2ト・・絶対値器
、14,20,21,26,2フ・・・1クロツク遅砥
器、15.22・・最大値器、28・・・リードオンリ
メモリ。 相許出願人 日 本 放 送 協 会 第1図 −−<トー→<−+−イー−0−一片一ベトーーー一一
水−+−H−−0−一ゆヒー◇−−汁一一一第3図 第4図 A
FIG. 1 is a diagram showing an example of S+-like image signal subsampling, FIG. 2 is a block diagram showing an example of the basic configuration of a 1iii+ signal interpolation circuit according to the method of the present invention, and FIG. FIG. 4 is a block diagram showing an example of a detailed configuration of a motion amount detection circuit in the interpolation circuit, and FIG. 4 is a diagram showing an example of a mode of difference detection in the motion amount detection circuit. ], 2... Frame memory, 8... Two-dimensional filter, 4... Motion amount detection circuit, 5, 9... Adder, 617
18 Multiplier, 10.11...Line memory, 12゜1
8.24... Subtractor, 18, 19, 2 digits... Absolute value unit, 14, 20, 21, 26, 2 digits... 1 clock delay sharpener, 15.22... Maximum value unit, 28...Read-only memory. Mutual Applicant: Japan Broadcasting Association Figure 1--<To→<-+-E-0-One Piece One Beto-11 Water-+-H--0-One Yu-Hee◇--Juice 111 Figure 3 Figure 4 A

Claims (1)

【特許請求の範囲】 L 少なくとも2:1の比によりサンプリングして所要
周波数帯域を削減した画像信号の周波数帯域を復元する
にあたり、前記画像信号が表わす画像の動きを、少なく
とも1フレ一ム期間異なる画素間のフレーム間差分の絶
対値および同一フィールド内にて前記wJ素と前記画素
に近接した複数画素のそれぞれとの間におけるフィール
ド内画素間差分のそれぞれの絶対値に基づいて検出する
とともに、フレーム間内挿済み画像信号およびフィール
ド内内挿済み画像信号を前記画像の動きの検出量に応じ
連続的に変化させた混合比により互いに混合するように
したことを特徴とする画像信号内挿方式。 亀 特許請求の範囲第1項記載の内挿方式において、前
記フレーム間内挿済みmi儂傷信号前記フィールド内内
挿済み画像信号とが時間的に互いに対応するようにした
ことを特徴とする1iIj儂信号内挿方式。 龜 特許請求の範囲第1項ま九は第S項記載の内挿方式
において、前記フレーム間差分の絶対値と前記フィール
ド内画素間差分の絶対値のうち最大の絶対値との比に基
づいて前記画像の動きを検出するよう圧したことを特徴
とする画像信号内挿方式。
[Claims] L: In restoring the frequency band of an image signal whose required frequency band has been reduced by sampling at a ratio of at least 2:1, the motion of the image represented by the image signal is different by at least one frame period. Detection is performed based on the absolute value of the inter-frame difference between pixels and the absolute value of the intra-field inter-pixel difference between the wJ element and each of a plurality of pixels adjacent to the pixel within the same field, and the frame An image signal interpolation method characterized in that an interpolated image signal and an intra-field interpolated image signal are mixed with each other at a mixing ratio that is continuously changed according to the detected amount of motion of the image. In the interpolation method according to claim 1, the inter-frame interpolated mi defect signal and the intra-field interpolated image signal temporally correspond to each other. My signal interpolation method.龜 Claims 1 to 9 are based on the interpolation method described in Clause S, based on the ratio of the absolute value of the inter-frame difference to the maximum absolute value of the absolute value of the intra-field pixel difference. An image signal interpolation method characterized in that pressure is applied to detect movement of the image.
JP57072557A 1982-05-01 1982-05-01 Picture signal inserting system Granted JPS58191586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072557A JPS58191586A (en) 1982-05-01 1982-05-01 Picture signal inserting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072557A JPS58191586A (en) 1982-05-01 1982-05-01 Picture signal inserting system

Publications (2)

Publication Number Publication Date
JPS58191586A true JPS58191586A (en) 1983-11-08
JPH0548030B2 JPH0548030B2 (en) 1993-07-20

Family

ID=13492769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072557A Granted JPS58191586A (en) 1982-05-01 1982-05-01 Picture signal inserting system

Country Status (1)

Country Link
JP (1) JPS58191586A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264982A (en) * 1985-05-20 1986-11-22 Victor Co Of Japan Ltd Moving point detecting device
JPS63245085A (en) * 1987-03-31 1988-10-12 Pioneer Electronic Corp Subsample interpolating method
JPH0281588A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Motion adapted type signal processing circuit and motion detecting circuit used for it
WO1993018618A1 (en) * 1992-03-03 1993-09-16 Kabushiki Kaisha Toshiba Time-varying image encoder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539813A (en) * 1976-07-16 1978-01-28 Taisei Prefab Constr Method of producing concrete product having hollow cross section

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539813A (en) * 1976-07-16 1978-01-28 Taisei Prefab Constr Method of producing concrete product having hollow cross section

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264982A (en) * 1985-05-20 1986-11-22 Victor Co Of Japan Ltd Moving point detecting device
JPS63245085A (en) * 1987-03-31 1988-10-12 Pioneer Electronic Corp Subsample interpolating method
JPH0281588A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Motion adapted type signal processing circuit and motion detecting circuit used for it
WO1993018618A1 (en) * 1992-03-03 1993-09-16 Kabushiki Kaisha Toshiba Time-varying image encoder

Also Published As

Publication number Publication date
JPH0548030B2 (en) 1993-07-20

Similar Documents

Publication Publication Date Title
JPS58117788A (en) Color television signal processing circuit
RU2118066C1 (en) Device for processing of video signals by preprocessor for generation of non-interlaced video signals from interlaced video signals
US5144427A (en) Television receiver decoder apparatus for bandwidth-compressed high definition television signal
JPS6370689A (en) Motion detecting circuit
JPH0750927B2 (en) Image signal converter
JPS58191586A (en) Picture signal inserting system
JPS60153682A (en) Detection system of movement in high-definition tv subsample transmission system
JPH0418887A (en) Still picture transmitting system
KR950005648B1 (en) Interpolation circuit of muse decoder
JPH0569350B2 (en)
JP3285892B2 (en) Offset subsampling decoding device
JPH0591369A (en) Nonlinear edge signal generator for muse decoder
JP2846427B2 (en) PAL signal / CIF signal conversion circuit
JP2893744B2 (en) Motion detection circuit
JPS6246386Y2 (en)
JPH11196295A (en) Noise reduction circuit
JP2784806B2 (en) Motion area detection circuit
KR960002045B1 (en) Sampling frequency converting method and circuit therefor
KR0166713B1 (en) Interlace/non-interlace scanning transfer circuit and method thereof
JPH07154791A (en) Interpolation device for simultaneously generating interpolated video signal
JPS63119394A (en) Picture signal interpolation circuit
JPH01137789A (en) Movement detection circuit
JPH04293381A (en) Moving picture area detection circuit
JPH07327148A (en) Line interpolation method and line interpolation device
JPH04293382A (en) Moving picture area detection circuit