JPS58190921A - Optical demultiplex element - Google Patents

Optical demultiplex element

Info

Publication number
JPS58190921A
JPS58190921A JP7271382A JP7271382A JPS58190921A JP S58190921 A JPS58190921 A JP S58190921A JP 7271382 A JP7271382 A JP 7271382A JP 7271382 A JP7271382 A JP 7271382A JP S58190921 A JPS58190921 A JP S58190921A
Authority
JP
Japan
Prior art keywords
waveguide
light
optical
electro
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7271382A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nishiwaki
西脇 由和
Haruji Matsuoka
松岡 春治
Kenji Okamoto
賢司 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7271382A priority Critical patent/JPS58190921A/en
Priority to CA000425909A priority patent/CA1211868A/en
Priority to EP88111594A priority patent/EP0303836A1/en
Priority to DE8383302132T priority patent/DE3381755D1/en
Priority to EP83302132A priority patent/EP0092395B1/en
Priority to US06/486,171 priority patent/US4560249A/en
Publication of JPS58190921A publication Critical patent/JPS58190921A/en
Priority to US06/786,028 priority patent/US4673241A/en
Priority to CA000496892A priority patent/CA1227678A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To vary the wavelength of the light which should be divided, by forming an optical waveguide on a substrate with a material which can vary reversibly its refractive index and then writing a diffraction grating by a double luminous flux interference method or an optical beam scanning method. CONSTITUTION:An otical waveguide 2 using single crystals of BSO and BGO is formed on a substrate 1. Transparent electrodes 3 and 3 are formed by vapor deposition on both end surfaces of the substrate 1 and the waveguide 2 respectively. Then the DC voltage is impressed to the electrodes 3 and 3 from a power supply 4 via a switch 5. Both BSO and BGO show an electro-optical effect only when a DC field exists and produces the photosensitivity. The diameter is enlarged for two lumnous fluxes given from a laser, and these luminous fluxes are irradiated to the waveguide 2 of an electro-optical material with equal incident angle phi. An interference is given to the two luminous fluxes when an electric field exists to generate a change of refractive index in response to the interference fringes. The change of the refracive index corresponds to the interference fringes. When the space between gratings is set as (d), only lambda1 is diffracted for mlambda1=2nd cosQ (Q: incident angle of waveguide light 8 and m: number of order).

Description

【発明の詳細な説明】 この発明は、可逆的な光分波素子に関する。[Detailed description of the invention] The present invention relates to a reversible optical demultiplexing device.

1本の光ファイバに波長のちがう多数の光波を同時に伝
送する光波長多重通信方式(WDM)は、大容量の通信
可能性から、現在1.さかんに研究されている。
Optical wavelength division multiplexing (WDM), which simultaneously transmits multiple light waves with different wavelengths through a single optical fiber, is currently in the 1. It is being extensively researched.

光分波素子は、多重化された光信号の中から、ある特定
の波長λの光を取出すための素子である。
An optical demultiplexing element is an element for extracting light of a certain wavelength λ from a multiplexed optical signal.

光波長多重通信方式に於て、重要な役割を果す素子のひ
とつである。
It is one of the elements that plays an important role in optical wavelength division multiplexing communication systems.

現在、はぼ実用化されている分波素子は、回折格子、多
層膜フィルタなど立体的、三次元的に構成したものであ
る。
Currently, the demultiplexing elements that are in practical use are three-dimensional structures such as diffraction gratings and multilayer filters.

第11図は公知の回折格子型分波素子の一例を示す断面
図である。
FIG. 11 is a sectional view showing an example of a known diffraction grating type demultiplexing element.

この分波素子は、箱型のケーシング30・の中に、回折
格子3】を収容し、波長λlの光と波長式2の光とを含
む光ファイバ32からの光を受け、回折格子31によっ
て、波長λ1の光と波長λ2の光を異なる方向へ回折す
ることにより、分波する。所定の回折角に対応する位置
に設けた光出口33 、34から、λl、λ2の波長の
光をとり出すことかできる。
This demultiplexing element houses a diffraction grating 3 in a box-shaped casing 30, receives light from an optical fiber 32 containing light of wavelength λl and light of wavelength formula 2, and receives light from an optical fiber 32 containing light of wavelength λl and light of wavelength formula 2. , by diffracting the light with the wavelength λ1 and the light with the wavelength λ2 in different directions. Light having wavelengths λl and λ2 can be extracted from the light exits 33 and 34 provided at positions corresponding to predetermined diffraction angles.

第12図は公知の多層膜フィルタ型分波素子の一例を示
す断面図である。
FIG. 12 is a sectional view showing an example of a known multilayer filter type demultiplexing element.

箱型のケーシング30に、多層膜フィルタ35を収容し
た三次元的な分波素子で、光ファイバ32から入射した
光は、多層膜フィルタ35によって、波長λlの光と、
λ2の光に分けられる。多層膜は、屈折率の異なる誘電
体薄膜を多数枚重ねたもので、境界面からの反射光が互
に干渉する。特定の波長の光は殆ど100%反射する事
かでき、特定の波長の光は、逆に、殆ど100%透過さ
せることかできる。
It is a three-dimensional demultiplexing element in which a multilayer filter 35 is housed in a box-shaped casing 30. Light incident from the optical fiber 32 is separated by the multilayer filter 35 into light with a wavelength λl,
It is divided into λ2 light. A multilayer film is made by stacking many dielectric thin films with different refractive indexes, and the reflected light from the boundary surfaces interferes with each other. Light of a specific wavelength can be almost 100% reflected, and conversely, light of a specific wavelength can be transmitted almost 100%.

これらの分波素子は、立体的、三次元的で、大型な素子
になる。より小型の素子であることか望ましい。
These demultiplexing elements are three-dimensional, three-dimensional, and large-sized elements. A smaller element is desirable.

小型化をめさして、二次元的な導波路型分波素子か提案
された。これは、小型、安定であるので、有望視され、
研究開発かさかんである。
Aiming at miniaturization, a two-dimensional waveguide-type demultiplexing element was proposed. This is considered promising because it is small and stable.
There is a lot of research and development going on.

第13図は公知の導波路型分波素子の斜視図である。FIG. 13 is a perspective view of a known waveguide type demultiplexing element.

導波路型分波素子36は、たとえば、フォI−’Jンク
ラフイ技術によって、周期的凹凸を、基板37の上の感
光材料38に形成し、回折格子39としたものである。
The waveguide-type demultiplexing element 36 is a diffraction grating 39 in which periodic irregularities are formed on a photosensitive material 38 on a substrate 37 using, for example, a photosensitive material 37 technique.

回折格子39を貫き、或は折曲る形状の二次元的な導波
路40か設けてあって、ここに波長がλ1.λ2 、1
1.[P の波か光ファイバから導入されたとする。回
折格子に対しブラッグ条件を満足する波長λ2の光だけ
回折され、残りの光は直進する。
A two-dimensional waveguide 40 having a shape that penetrates or bends through the diffraction grating 39 is provided, and the wavelength is λ1. λ2, 1
1. [Suppose that a wave of P is introduced from an optical fiber. Only the light of wavelength λ2 that satisfies the Bragg condition is diffracted by the diffraction grating, and the remaining light travels straight.

導波路型分波素子は、導波路と回折格子とか同−東面上
にあり、二次元的であるので、小型の素rにすることか
できる。
The waveguide-type demultiplexing element has the waveguide and the diffraction grating on the same east plane and is two-dimensional, so it can be made into a small element.

導波路を含む平面上に、回折格子を作る方法は、三光束
干渉法、光ビーム走査法などかある。
There are several methods for creating a diffraction grating on a plane that includes a waveguide, such as three-beam interferometry and optical beam scanning.

第14図は二元”束干渉法の略光学系構成図である。FIG. 14 is a schematic diagram of the optical system configuration of the two-dimensional beam interference method.

レーザ41の光をハーフミラ−42で2光束a、bに分
け、コリメータ43 、43で拡径し、ビーム径の広い
平行光とする。これをミラー44.44により、基板3
7上の感光材料38に対し、左右から等しい入射角φて
入射する。
The light from the laser 41 is divided into two beams a and b by a half mirror 42 and expanded by collimators 43 and 43 to form parallel beams with a wide beam diameter. The substrate 3
The light enters the photosensitive material 38 on the photosensitive material 7 from the left and right sides at the same angle of incidence φ.

2光束a、l)はコヒーレントなレーザ光であるから、
基板の表面に、干渉縞を作る。干渉縞の間隔dは 2 sinφ            (1)で与えら
れる。露光した感光材料を現像し、IF弦波状の凹凸を
作り、回折格子とする。
Since the two beams a and l) are coherent laser beams,
Creates interference fringes on the surface of the substrate. The interval d between the interference fringes is given by 2 sinφ (1). The exposed photosensitive material is developed and IF sinusoidal irregularities are created to form a diffraction grating.

第15図は光ビーム走査法の略光学系構成図である。レ
ーザ光45をレンズ46で絞って、感光材料38上に、
平行な格子線47を描くよう走査させる。
FIG. 15 is a schematic diagram of the optical system configuration of the light beam scanning method. The laser beam 45 is focused by a lens 46 and onto the photosensitive material 38.
Scanning is performed to draw parallel grid lines 47.

レーザビームを走査させて、1本1本の格子線を描いて
ゆき、回折格子とする。
A laser beam is scanned to draw grating lines one by one, forming a diffraction grating.

三光束干渉法、光ビーム走査法は、光学的に回折格子を
作製する方法として公知である。
The three-beam interferometry and the light beam scanning method are known methods for optically producing a diffraction grating.

第13図の導波路型分波素子3Gは、このような光学的
方法で作製することができ、有望な素子であるか、分岐
ずべき光の波長は固定されている。回折格子の格子間隔
は固定されているから、ブラッグの回折条件を満足する
波長は予め規定される。
The waveguide type demultiplexing element 3G shown in FIG. 13 can be manufactured by such an optical method and is a promising element, or the wavelength of the light to be split is fixed. Since the grating spacing of the diffraction grating is fixed, the wavelength that satisfies Bragg's diffraction conditions is defined in advance.

分波すべき肢長か自由に選択できる分波素子があれは、
より有用である。
If there is a demultiplexing element that allows you to freely select the limb length to be demultiplexed,
More useful.

波長を自由に選択できれは、波長ことに多種類の回折格
子を作製する必要がない。また選択波長を即時に変える
事ができるならば、光スィッチの機能をもたせる事もで
きる。
If the wavelength can be selected freely, there is no need to fabricate many types of diffraction gratings for each wavelength. Furthermore, if the selected wavelength can be changed instantly, it can also function as an optical switch.

本発明は、このように、分岐すべき光の波長を可変にし
た分波素子を与える事を目的とする。
The object of the present invention is thus to provide a demultiplexing element that can vary the wavelength of light to be demultiplexed.

本発明は、可逆性のある感光材料を用いて導波路型分波
素子を作製するものである。
According to the present invention, a waveguide type demultiplexing element is manufactured using a reversible photosensitive material.

ある種の電気光学結晶、アモルファス半導体、サーモプ
ラスチック素子は、電界により屈折率変化を生しさせる
事かできる。屈折率変化は可逆的で、熱なとを加えると
元の状態に戻る。繰返し何度も使用できる。
Certain electro-optic crystals, amorphous semiconductors, and thermoplastic devices can have their refractive index changed by an electric field. The change in refractive index is reversible, and it returns to its original state when heat is applied. Can be used over and over again.

Bix2Si02o (ビスマスシリコンオキサイド、
Bso素子と略す)単結晶、Bi 1zGeo2o (
ヒフ、 77゜ゲルマニウムオキザイド、BGO素子と
略す)単結晶は、直流電圧をある方向に印加した状態で
、電気光学効果を現わし、光波を照射すれは、光波に応
じた屈折変化を生する。直流電界かない時は感光性かな
い。
Bix2Si02o (Bismuth silicon oxide,
Bso element) single crystal, Bi 1zGeo2o (abbreviated as Bso element)
A single crystal (77° germanium oxide, abbreviated as BGO element) exhibits an electro-optic effect when a DC voltage is applied in a certain direction, and when irradiated with light waves, it produces a refraction change according to the light waves. . There is no photosensitivity when there is no DC electric field.

直流電界か印加された状態で、光波がBSO素子、BG
O素子に照射されると屈折率か変化するが、この屈折率
変化は暗黒状態に保つと比較的長い時間記憶される。再
び光波を照射矛ると、以前の屈折率変化は消去され、新
しい照射光に応した屈折率変化か生ずる。
When a DC electric field is applied, light waves are transmitted to the BSO element, BG
When the O element is irradiated, its refractive index changes, but this change in refractive index is memorized for a relatively long time if kept in a dark state. When the light wave is irradiated again, the previous change in the refractive index is erased, and a change in the refractive index corresponding to the new irradiation light occurs.

Se 、 Sをベースとしたアモルファス半導体(カル
コゲナイドガラス)も、光波を照射すると、光波の電界
に応した屈折率変化を生ずる。従って、光学的方法によ
り、回折格子をアモルファス半導体に書込むことかでき
る。書込んだ屈折率分布は、加熱することにより消去す
ることかできる。
When an amorphous semiconductor (chalcogenide glass) based on Se or S is irradiated with light waves, the refractive index changes depending on the electric field of the light waves. It is therefore possible to write diffraction gratings into amorphous semiconductors by optical methods. The written refractive index distribution can be erased by heating.

サーモプラスチック素子は、光導電性材料と紹合せるこ
とにより、可逆性を持った光記録素子となることが知ら
れている。
It is known that a thermoplastic element can become a reversible optical recording element by being combined with a photoconductive material.

第6図〜第10図はサーモプラスチック素子の光記録過
程を示す断面IZ+である。
6 to 10 are cross sections IZ+ showing the optical recording process of the thermoplastic element.

サーモプラスチックは熱を加えると軟化して可塑性を示
し、冷却すると固化する性質を有する。
Thermoplastics have the property of softening and exhibiting plasticity when heated, and solidifying when cooled.

第6図に於て、サーモプラスチックAの裏面に光導電材
料Bか組合わされたサーモプラスチック素子を、コロナ
放電により帯電させる。
In FIG. 6, a thermoplastic element in which photoconductive material B is combined with the back surface of thermoplastic A is charged by corona discharge.

第7図に於て、サーモプラスチックへ光Cが照射される
。この露光過程に於て、光Cを受けた部分の光導電材料
Bは伝導体になり、負電荷はサーモプラスチックAの裏
面に移動する。
In FIG. 7, the thermoplastic is irradiated with light C. During this exposure process, the portion of the photoconductive material B that receives the light C becomes a conductor, and negative charges move to the back surface of the thermoplastic A.

第8図は再帯電過程を示す。正負の電荷がサーモプラス
チックAの表面、光導電材料Bの裏面に追加される。
FIG. 8 shows the recharging process. Positive and negative charges are added to the front side of thermoplastic A and the back side of photoconductive material B.

この状態で加熱すると、サーモプラスチックは軟化する
。サーモプラスチックAの表裏面間の正負の電荷は静電
引力を及はし合い、サーモプラスチックを塑性変形させ
る。第9図は加熱現像した状態を示す。照射した光の強
度に応じた凹凸かサーモプラスチック表面に形成されて
いる。冷却すると、この凹凸は保持される。
When heated in this state, the thermoplastic softens. The positive and negative charges between the front and back surfaces of thermoplastic A exert electrostatic attraction to each other, causing plastic deformation of the thermoplastic. FIG. 9 shows the state after heat development. Roughness is formed on the thermoplastic surface depending on the intensity of the irradiated light. Upon cooling, this unevenness is retained.

再ひ加熱すると、第10図のように、元の一様な厚みの
状態へ復元する。
When reheated, it returns to its original uniform thickness as shown in Figure 10.

このように書込み、消去の可能な光記録素子を使うと、
光の波長を自由に選択できる分波素子を作製することか
できる。
Using an optical recording element that allows writing and erasing in this way,
It is possible to create a demultiplexing element that can freely select the wavelength of light.

す、下、実施例を示す図面によって、本発明の構成、作
用、及び効果を説明する。
Below, the structure, operation, and effects of the present invention will be explained with reference to drawings showing embodiments.

第1図は、電気光学結晶を導波路として用いた実施例に
係る分岐素子の斜視図である。
FIG. 1 is a perspective view of a branching element according to an embodiment using an electro-optic crystal as a waveguide.

基板1の上には、電気光学材料を用いた導波路2を形成
する。電気光学材料導波路2は例えは、前記のBSO,
BGO単結晶などである。
A waveguide 2 made of an electro-optic material is formed on the substrate 1. The electro-optic material waveguide 2 is, for example, the above-mentioned BSO,
BGO single crystal, etc.

基板1、電気光学材料導波路2の両端面には、透明電極
3.3を蒸着法等により設けである。透明電極3は、A
u薄膜、I n 203等である。
Transparent electrodes 3.3 are provided on both end faces of the substrate 1 and the electro-optic material waveguide 2 by vapor deposition or the like. The transparent electrode 3 is A
u thin film, I n 203, etc.

直流電源4はスイッチ5を介して、両端面の透明電極3
.3に直流電圧を印加する。B S O、BCO素子は
、直流電界が存在する時のみ、電気光学効果を有し、直
流電界かないとき、感光性を示さない。
The DC power supply 4 connects the transparent electrodes 3 on both end faces via the switch 5.
.. Apply DC voltage to 3. BSO, BCO elements have an electro-optical effect only in the presence of a DC electric field and do not exhibit photosensitivity in the absence of a DC electric field.

同一のレーザから出た2つの光束を、拡径し、等しい入
射角φて、電気光学材料導波路2へ照射する。既に述へ
た三光束干渉法による露光である。
Two light beams emitted from the same laser are expanded in diameter and irradiated onto the electro-optic material waveguide 2 at the same incident angle φ. This is exposure using the three-beam interferometry described above.

露光用レーザ光の波長をλとすると、三光束を照射する
ことによってできる干渉縞の間隔は(1)式で与えられ
る。
When the wavelength of the exposure laser beam is λ, the interval between interference fringes created by irradiating the three beams is given by equation (1).

スイッチ5が閉じており、直流電界が電気光学材料導波
路2に印加されている時に、三光束が導波路2を照射す
ると、導波路2の上に、干渉縞に対応した屈折率の変化
が起る。屈折率変化は、平行で等間隔の干渉縞に対応し
ているから、これは、回折格子7としての機能を有する
When the switch 5 is closed and a DC electric field is applied to the electro-optic material waveguide 2, when the three beams irradiate the waveguide 2, a change in the refractive index corresponding to the interference fringes appears on the waveguide 2. It happens. Since the refractive index change corresponds to parallel, equally spaced interference fringes, it functions as a diffraction grating 7.

回折格子の格子間隔をdとすると、式 %式%(2) を満足する波長λlの光のみが回折される。0は導波光
8の入射角で、回折格子7の格子線に直角な線と、導波
光の光軸との挟角として定義した。
When the grating spacing of the diffraction grating is d, only light with a wavelength λl that satisfies the formula (2) is diffracted. 0 is the incident angle of the guided light 8, defined as an included angle between a line perpendicular to the grating line of the diffraction grating 7 and the optical axis of the guided light.

nは導波路の、導波光に対する屈折率である。mは回折
次数を示す整数である。
n is the refractive index of the waveguide for guided light. m is an integer indicating the order of diffraction.

導波光8が波長λ1.λ2.λ3の光を含むものとする
。この内、式(2)を満足するものかλlであるとする
と、回折格子7によって、波長λ1の光だけが回折され
る。この例では、回折光9となって透明電極3のある面
から取出される。残りの、λ2.λ3の光は(2)式を
満さないので回折されない。
The guided light 8 has a wavelength λ1. λ2. It is assumed that light of λ3 is included. Among these, if λl satisfies equation (2), only the light of wavelength λ1 is diffracted by the diffraction grating 7. In this example, the diffracted light 9 is extracted from a certain surface of the transparent electrode 3. The remaining λ2. Since the light of λ3 does not satisfy equation (2), it is not diffracted.

回折格子7を直進して通り抜ける。Go straight through the diffraction grating 7.

こうして、(λ1+λ2+λ3)の導波光から、λ1の
波長の光だけを分波することができる。
In this way, only the light of wavelength λ1 can be separated from the guided light of (λ1+λ2+λ3).

回折光の波長λ1を変える必要があれは、回折格子7の
格子間隔dを変えれは良い。このためには、露光用光束
6.6の入射角φを変えるか、或は露光用のレーザの彼
長久を変えるかすれは良い。
If it is necessary to change the wavelength λ1 of the diffracted light, it is better to change the grating spacing d of the diffraction grating 7. To this end, it is best to change the incident angle φ of the exposure light beam 6.6 or change the length of the exposure laser.

φ又はλを変えて、λ2か(2)式を満足するようにな
ったとすれは、(λ1+λ2+λ3)の導波光の内、λ
またけを分波することができるようになる。
If φ or λ is changed and λ2 satisfies equation (2), then out of the guided light of (λ1+λ2+λ3), λ
You will be able to split the waves.

このように、直流電界を与えた状態で、φ、λを適当に
変えて、任意の波長の光のみを(2)式に適合するよう
にし、この波長の光のみを取出すことができる。
In this way, by appropriately changing φ and λ while applying a DC electric field, it is possible to make only light of a given wavelength conform to equation (2), and to extract only light of this wavelength.

回折格子7は、直流電界が印加され続けている限り、露
光用光束6.6の照射を同時に中止しても、そのまま記
録されて、電気光学材料導波路2の上に残る。導波光λ
1+λ2+・・・・・は、通常、露光用レーザの波長よ
り長く、電気光学効果も小さい。導波光によって、回折
格子7が消去されることのないようにしである。
As long as the DC electric field continues to be applied, the diffraction grating 7 is recorded and remains on the electro-optic material waveguide 2 even if the irradiation of the exposure light beam 6.6 is simultaneously stopped. Guided light λ
1+λ2+... is usually longer than the wavelength of the exposure laser, and the electro-optic effect is also small. This is to prevent the diffraction grating 7 from being erased by the guided light.

直流電界が印加され続けている場合でも、三光束の内、
いずれか−光束を切って、−光束だけで導波路2を照射
すれば、回折格子7は消滅する。
Even if a DC electric field is continuously applied, among the three luminous fluxes,
If one of the light beams is cut off and the waveguide 2 is irradiated with only the light beam, the diffraction grating 7 will disappear.

−光束たけなので干渉が起らす、電気光学材料導波路2
の面上で、三光束による定在波がもはや形成されないか
らである。
- Electro-optic material waveguide 2, which causes interference due to the large luminous flux
This is because standing waves due to the three beams are no longer formed on the surface of .

直流電界を除くことによっても、回折格子7を消滅させ
ることかできる。
The diffraction grating 7 can also be eliminated by removing the DC electric field.

第2図は回折格子が消滅した状態の斜視図である。FIG. 2 is a perspective view of the state in which the diffraction grating has disappeared.

スイッチ5が切れており、電界が印加されていないか、
又は、どちらか一方の光束だけが導波路を照射している
時、回折格子は存在しない。導波光8はそのまま透過し
てゆく。分波機能はない。
Is switch 5 turned off and no electric field is applied?
Alternatively, when only one beam is illuminating the waveguide, no grating is present. The guided light 8 passes through as it is. There is no demultiplexing function.

回折格子は瞬時に形成し、或は消滅させることができる
ので、回折光λ1に対して、光スィッチとして用いる事
もてきる。
Since the diffraction grating can be instantaneously formed or destroyed, it can also be used as an optical switch for the diffracted light λ1.

アモルファス半導体(カルコゲナイドガラス)を電気光
学材料導波路2として用いることもてきる。カルコゲナ
イドアモルファス半導体としては、(1)  As −
S系 (2)  As −S −Ge系 (3)  As −S −Se −Ge系などのものは
、電気光学効果を持つので、同様な方法で、可逆的に回
折格子を作製することができる。
An amorphous semiconductor (chalcogenide glass) can also be used as the electro-optic material waveguide 2. As a chalcogenide amorphous semiconductor, (1) As −
S-based systems (2) As-S-Ge-based systems (3) As-S-Se-Ge systems have electro-optical effects, so diffraction gratings can be reversibly produced using a similar method. .

書きこみは従来の不可逆導波路型回折格子を作るばあい
と同様に、三光束干渉法、光ビーム走査法を用いる。
The writing uses the three-beam interference method and the light beam scanning method, as in the case of making conventional irreversible waveguide type diffraction gratings.

光によって屈折率変化を生じ、これか回折格子となる。The refractive index changes depending on the light, and this becomes a diffraction grating.

これは記憶されるが、加熱すれば消去できる。This is memorized, but can be erased by heating.

消去は第3図に示すように、赤外線ランプ13を一様に
照射して、アモルファス半導体よりなる電気光学材料導
波路2の上の回折格子を消去している。
As shown in FIG. 3, erasing is performed by uniformly irradiating an infrared lamp 13 to erase the diffraction grating on the electro-optic material waveguide 2 made of an amorphous semiconductor.

また第4図は、ジュール熱によって、消去する構成を示
している。基板1とアモルファス半導体導波路の間に抵
抗層15を設け、これに通電すると、ジュール熱か発生
し、書き込まれた回折格子が消去される。抵抗層15は
、電源16、スイッチ17に接続されている。
Further, FIG. 4 shows a configuration for erasing by Joule heat. A resistive layer 15 is provided between the substrate 1 and the amorphous semiconductor waveguide, and when electricity is applied to it, Joule heat is generated and the written diffraction grating is erased. The resistance layer 15 is connected to a power source 16 and a switch 17.

サーモプラスチック素子を導波路として用いることがで
きる。既に説明したように、これは加熱すれは軟化して
可塑性を生じ、冷却すれば固化する。
Thermoplastic elements can be used as waveguides. As already explained, this material softens and becomes plastic when heated, and solidifies when cooled.

電気光学効果はなく、光波によって、屈折率分布を生じ
ない。しかし、光導電素子と組合わせて、帯電、露光す
ると、光のエネルギーに応じて凹凸かサーモプラスチッ
ク表面に現われる。これを回折格子とすることができる
。三光束干渉法又は光ビーム走査法により書込みかでき
るのは、前二例と同様である。
There is no electro-optic effect and no refractive index distribution is generated by light waves. However, when combined with a photoconductive element, charged and exposed to light, irregularities appear on the thermoplastic surface depending on the energy of the light. This can be used as a diffraction grating. As in the previous two examples, writing can only be done by the three-beam interferometry or the light beam scanning method.

第5図はサーモプラスチック材料を用いた分波素子の例
を示す断面図である。
FIG. 5 is a sectional view showing an example of a wavelength splitting element using a thermoplastic material.

らにサーモプラスチック材料23を重ねる。Thermoplastic material 23 is further layered.

この他にコロナ放電用の電極が上方に設けられて、第6
図〜第10図に示すような帯電、露光、再帯電加熱など
の過程を行う。
In addition, an electrode for corona discharge is provided above, and a sixth electrode is provided above.
Processes such as charging, exposure, recharging and heating as shown in FIGS. 10 to 10 are performed.

加熱のためには、導電体導波路21に通電し、ジュール
熱を発生させることとしても良い。
For heating, the conductor waveguide 21 may be energized to generate Joule heat.

本発明によれば、光によって、書込み、消去の可能な回
折格子により、可逆的な分波素子を作製する事ができる
According to the present invention, a reversible demultiplexing element can be manufactured using a diffraction grating that can be written and erased using light.

選択すべき光の波長を可変にするので、光波長多重通信
方式に於て、広い用途かある。
Since the wavelength of the light to be selected is made variable, it has a wide range of applications in optical wavelength division multiplexing communication systems.

また、瞬時に回折格子を消去すること、形成することか
できるから、光スイッチイング素子として使うこともて
きる。
Furthermore, since a diffraction grating can be instantly erased or formed, it can also be used as an optical switching element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にかかる分波素子の斜視図で、
三光束干渉法によって電気光学材料導波路の上に回折格
子を発生させた状態を示す。 第2図は同し分波素子で、一方の光束がなく、回折格子
か消去された状態を示す斜視図である。 第3図はアモルファス半導体を導波路とし三光束干渉法
により導波路上に回折格子を作り、これを赤外線ランプ
照射によって消去する構成を示す断面図。 第4図はアモルファス半導体を導波路とし三光束干渉法
により導波路上に回折格子を作り、これを抵抗体に通電
して加熱消去する構成を示す断面図。 第5図はサーモプラスチック材料により本発明の分波素
子を作製した実施例の断面図。 第6図は光導電材料とサーモプラスチックを組合わせた
素子の帯電過程を示す断面図。 第7図は同しものの露光過程を示す断面図。 第8図は同じものの再帯電過程を示す断面図。 第9図は同じものの加熱現像過程を示す断面図。 第10図は同じものの加熱消去後の状態を示す断面図。 第11図は公知の回折格子型分波素子の断面図。 第12図は公知の多層膜フィルタ型分波素子の断面図。 第13図は公知の導波路型分波素子の斜視図。 第14図は三光束干渉法による露光のための光学系構成
図。 第15図は光ビーム走査法による回折格子作製過程を示
す光学系構成図。 1・・・・・・基  板 2・・・・・・電気光学材料導波路 3・・・・・・透明電極 4・・・・・・直流電源 5・・・・・・スイッチ 6・・・・・露光用光束 7・・・・・・回折格子 8・・・・・・導 波 光 9・・・・・・回 折 光 10・・・・・・透 過 光 13・・・・・・赤外線ランプ 15・・・・・・抵抗層 20・・・・・・基   板 21・・・・導電体導波路 22・・・・・・光導電薄膜 23・・・・・サーモプラスチック材料発  明  者
        西  脇  由  和松  岡  春
  冶 岡  本  賢  司 特許出願人  住友電気工業株式会社 第1図 第2図 第3図 第5図 第10図 第11図           第12図第13図 6 第δ図
FIG. 1 is a perspective view of a demultiplexing element according to an embodiment of the present invention.
This figure shows a state in which a diffraction grating is generated on an electro-optic material waveguide using three-beam interferometry. FIG. 2 is a perspective view of the same demultiplexing element, showing a state in which one of the light beams is absent and the diffraction grating is erased. FIG. 3 is a cross-sectional view showing a configuration in which a diffraction grating is created on the waveguide using an amorphous semiconductor by three-beam interferometry and is erased by irradiation with an infrared lamp. FIG. 4 is a sectional view showing a configuration in which a diffraction grating is created on the waveguide using an amorphous semiconductor as a waveguide by three-beam interference method, and the grating is heated and erased by passing current through a resistor. FIG. 5 is a cross-sectional view of an embodiment of the splitting element of the present invention made of thermoplastic material. FIG. 6 is a cross-sectional view showing the charging process of an element combining photoconductive material and thermoplastic. FIG. 7 is a sectional view showing the exposure process of the same thing. FIG. 8 is a sectional view showing the recharging process of the same material. FIG. 9 is a sectional view showing the heat development process of the same product. FIG. 10 is a sectional view showing the same state after heating and erasing. FIG. 11 is a sectional view of a known diffraction grating type demultiplexing element. FIG. 12 is a sectional view of a known multilayer filter type demultiplexing element. FIG. 13 is a perspective view of a known waveguide type demultiplexing element. FIG. 14 is a configuration diagram of an optical system for exposure using three-beam interference method. FIG. 15 is an optical system configuration diagram showing the diffraction grating manufacturing process using the light beam scanning method. 1... Substrate 2... Electro-optic material waveguide 3... Transparent electrode 4... DC power supply 5... Switch 6... ...Light beam for exposure 7...Diffraction grating 8...Guided light 9...Diffracted light 10...Transmitted light 13... ... Infrared lamp 15 ... Resistance layer 20 ... Substrate 21 ... Conductor waveguide 22 ... Photoconductive thin film 23 ... Thermoplastic material Inventors: Yu Nishiwaki, Haru Kazumatsu, Kenji Moto, Patent applicant: Sumitomo Electric Industries, Ltd. Figure 1 Figure 2 Figure 3 Figure 5 Figure 10 Figure 11 Figure 12 Figure 13 Figure 6 Figure δ figure

Claims (6)

【特許請求の範囲】[Claims] (1)基板の上に、光照射によって屈折率をi1逆的に
変化させることができる材料で光を平面内に導く導波路
を形成し、三光束干渉法又は光ビーム走査法によって導
波路上に回折路Tを書込み或は消去するようにした事を
特徴とする分波素子。
(1) A waveguide that guides light in a plane is formed on the substrate using a material that can reversely change the refractive index i1 by light irradiation, and the waveguide is 1. A splitting element characterized in that a diffraction path T is written or erased in the wavelength division element.
(2)導波路の材料か電気光学結晶である特許請求の範
囲第(1)項記載の分波素子。
(2) The demultiplexing element according to claim (1), wherein the material of the waveguide is an electro-optic crystal.
(3)電気光学結晶かB112SiOzo (ビスマス
シリコンオキサイド)又はBir2GeOzo (ビス
マスゲルマニウムオキサイド)である特許請求の範囲第
(2ン項記載の分波素子。
(3) The splitting element according to claim 2, wherein the electro-optic crystal is B112SiOzo (bismuth silicon oxide) or Bir2GeOzo (bismuth germanium oxide).
(4)導波路の材料がアモルファス半導体である特許請
求の範囲第(1)項記載の分波素子。
(4) The splitting element according to claim (1), wherein the material of the waveguide is an amorphous semiconductor.
(5)  アモルファス半導体は、As−5系、As−
S −Ge系、As −S −Se −Ge系の力/l
/ Dゲナイドガラスである特許請求の範囲第(4)項
記載の分波素子。
(5) Amorphous semiconductors include As-5 series, As-
Force/l of S-Ge system, As-S-Se-Ge system
/ The branching element according to claim (4), which is D genide glass.
(6)導波路の材料がサーモプラスチックである特許請
求の範囲第(1)項記載の分波素子。
(6) The demultiplexing element according to claim (1), wherein the material of the waveguide is thermoplastic.
JP7271382A 1982-04-16 1982-04-30 Optical demultiplex element Pending JPS58190921A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7271382A JPS58190921A (en) 1982-04-30 1982-04-30 Optical demultiplex element
CA000425909A CA1211868A (en) 1982-04-16 1983-04-14 Method of forming diffraction gratings and optical branching filter elements produced thereby
EP88111594A EP0303836A1 (en) 1982-04-16 1983-04-15 Optical branching filter element
DE8383302132T DE3381755D1 (en) 1982-04-16 1983-04-15 METHOD FOR THE PRODUCTION OF DIFFERENTIAL GRIDS.
EP83302132A EP0092395B1 (en) 1982-04-16 1983-04-15 Method of forming diffraction gratings
US06/486,171 US4560249A (en) 1982-04-16 1983-04-18 Method of forming diffraction gratings and optical branching filter elements produced thereby
US06/786,028 US4673241A (en) 1982-04-16 1985-10-10 Diffraction gratings and optical branching filter elements
CA000496892A CA1227678A (en) 1982-04-16 1985-12-04 Optical branching filter elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7271382A JPS58190921A (en) 1982-04-30 1982-04-30 Optical demultiplex element

Publications (1)

Publication Number Publication Date
JPS58190921A true JPS58190921A (en) 1983-11-08

Family

ID=13497264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7271382A Pending JPS58190921A (en) 1982-04-16 1982-04-30 Optical demultiplex element

Country Status (1)

Country Link
JP (1) JPS58190921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260024A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulating element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497054A (en) * 1978-01-14 1979-07-31 Nippon Telegr & Teleph Corp <Ntt> Transmission controlling system for optical signals
JPS5766466A (en) * 1980-10-13 1982-04-22 Sumitomo Electric Ind Ltd Hologram element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497054A (en) * 1978-01-14 1979-07-31 Nippon Telegr & Teleph Corp <Ntt> Transmission controlling system for optical signals
JPS5766466A (en) * 1980-10-13 1982-04-22 Sumitomo Electric Ind Ltd Hologram element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260024A (en) * 1984-06-07 1985-12-23 Kokusai Denshin Denwa Co Ltd <Kdd> Optical modulating element
JPH0561618B2 (en) * 1984-06-07 1993-09-06 Kokusai Denshin Denwa Co Ltd

Similar Documents

Publication Publication Date Title
US4560249A (en) Method of forming diffraction gratings and optical branching filter elements produced thereby
US6067391A (en) Multiply periodic refractive index modulated optical filters
JP2005521076A (en) OPTICAL FIBER DEVICE HAVING VOLUME BRAG GRATING ELEMENT
JP2001503529A (en) Bragg grating made in photo-derivative
Domash et al. Programmable beamlet generator, dynamic lens, and optical memory using electrically switched holographic devices
JPS5817475A (en) Holographic record reading method and apparatus for executing same
WO2002065201A1 (en) Method for spectral filtering of optical radiation
US20150198812A1 (en) Photo-Mask and Accessory Optical Components for Fabrication of Three-Dimensional Structures
JPS58190921A (en) Optical demultiplex element
JP4988683B2 (en) Optical deflector
CN104238232B (en) Method and device for generating photo refraction optical spatial solitons as well as application thereof
Petrov et al. Electric field selectivity and multiplexing of volume holograms in LiNbO3
US20160116656A1 (en) Large bandwidth volume holographic phase converter apparatus, methods, and applications
US4461533A (en) Forming and reading holograms
Li et al. Dynamic optical grating based on a photomechanical molecular crystal
JP3324083B2 (en) Optical element fabrication method
JPS6057561B2 (en) Manufacturing method of dielectric diffraction grating
Yang et al. Multiple volume Bragg gratings with layered structure and their fabrication methods
Yin et al. Reconfigurable mid-infrared optical elements using phase change materials
Woods et al. Spatial phase shift during hologram writing in lithium niobate
RU2199769C2 (en) Process recording holographic diffraction grating
US20190324181A1 (en) Large Bandwidth Volume Holographic Phase Converter Apparatus, Methods, and Applications
JP2774346B2 (en) Spatial light matrix switch device
KR100311908B1 (en) Volume hologram based wavelength division multiplexing / demultiplexing channel forming device
JPS63174002A (en) Optical integrated circuit