JPS5819019B2 - Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material - Google Patents

Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material

Info

Publication number
JPS5819019B2
JPS5819019B2 JP55081847A JP8184780A JPS5819019B2 JP S5819019 B2 JPS5819019 B2 JP S5819019B2 JP 55081847 A JP55081847 A JP 55081847A JP 8184780 A JP8184780 A JP 8184780A JP S5819019 B2 JPS5819019 B2 JP S5819019B2
Authority
JP
Japan
Prior art keywords
film
aluminum material
salt
selective absorption
absorption film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55081847A
Other languages
Japanese (ja)
Other versions
JPS579895A (en
Inventor
小橋隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP55081847A priority Critical patent/JPS5819019B2/en
Publication of JPS579895A publication Critical patent/JPS579895A/en
Publication of JPS5819019B2 publication Critical patent/JPS5819019B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】 この発明は、アルミニウムまたはアルミニウム合金を基
体とした太陽熱集熱板等のアルミニウム材の表面に、太
陽熱エネルギーの選択吸収膜を形成する方法、特に電解
着色法による選択吸収膜の、形成方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a selective absorption film of solar energy on the surface of an aluminum material such as a solar heat collector plate made of aluminum or an aluminum alloy as a base, particularly a selective absorption film using an electrolytic coloring method. The present invention relates to an improvement in the formation method.

浅田法とも称される電解着色法は、アルミニウム材の表
面に太陽熱エネルギーの選択吸収膜を形成するための一
般的な方法として既知であり、近時多く採用されている
The electrolytic coloring method, also called the Asada method, is known as a general method for forming a selective absorption film for solar thermal energy on the surface of an aluminum material, and has been widely adopted recently.

この方法は、一般に二段二浴法によるものでありす、第
1工程として、硫酸、シュウ酸、リン酸等の水溶液を電
解液とし、対極にアルミニウム、カーボン、ステンレス
等を用い、直流(電流密度0.01〜0.5A/dtr
?)もしくは交流(電流密度0.1〜0.8A/dm”
)を印加して電解を行い、アミルミニラム材の表面に多
孔性の陽極酸化皮膜を生成させ、次いで第2工程として
、この酸化皮膜を有するアルミニウム材を、ニッケル塩
、コバルト塩、銅塩、錫塩等の金属塩を含む水溶液中で
交流(電流密度0.1〜0.8A/dm”)を印加して
電解ンを行い、前記酸化皮膜の微細孔中に金属を析出充
填させて黒色化し、所期する選択吸収膜を得るものであ
る。
This method is generally based on a two-stage, two-bath method. In the first step, an aqueous solution of sulfuric acid, oxalic acid, phosphoric acid, etc. is used as the electrolyte, aluminum, carbon, stainless steel, etc. are used as the counter electrode, and direct current (current density) is used. 0.01~0.5A/dtr
? ) or alternating current (current density 0.1 to 0.8 A/dm"
) is applied to perform electrolysis to generate a porous anodic oxide film on the surface of the amyl minilum material, and then in the second step, the aluminum material with this oxide film is treated with nickel salt, cobalt salt, copper salt, and tin salt. Electrolysis is performed by applying alternating current (current density 0.1 to 0.8 A/dm") in an aqueous solution containing a metal salt such as, to precipitate and fill the fine pores of the oxide film to blacken the oxide film, The desired selective absorption membrane is obtained.

しかしながら、従来のかかる電解着色法においては、電
解時間にかなり長時間を要する難点かあ;つた。
However, the conventional electrolytic coloring method has the disadvantage that the electrolysis time is quite long.

即ち第1工程の処理に通常10〜15分を要し、第2工
程の黒色化処理にも、早くて5分、通常は10〜15分
以上を必要とし生産性が悪い欠点があった。
That is, the first step usually requires 10 to 15 minutes, and the second step blackening treatment also requires 5 minutes at the earliest, but usually 10 to 15 minutes or more, resulting in poor productivity.

のみならず、生成しうる選択吸収膜は、必ずしもその選
択吸収性において充分な満足を得られるものではなく、
更なる改善が望まれるものであった。
In addition, the selective absorption membranes that can be produced do not necessarily have sufficient selective absorption properties;
Further improvement was desired.

本発明者らは、このような問題点に対し、種々研究を重
ねた結果、次のようなことを解明し得た。
The present inventors have conducted various studies to address these problems, and as a result have found the following.

一般的に選択吸収膜の評価は、太陽光に対する吸収率α
と放射率εとの関係で比較するのが普通であり、好まし
い選択吸収膜としては少なくともαが0.90以上、ε
が0.10以下であることが必要であるが、これを満足
するためには、先ず皮膜厚さを1μ以下の厚さで生成せ
しめることが必要である。
Generally, the evaluation of a selective absorption film is based on the absorption rate α for sunlight.
Usually, the comparison is made in terms of the relationship between
is required to be 0.10 or less, but in order to satisfy this requirement, it is first necessary to form a film with a thickness of 1 μm or less.

これが1μを超えると、太陽熱エネルギーを吸収しても
その多くを輻射エネルギーとして放出してしまうので、
放射率εが悪くなる。
If this exceeds 1 μ, even if solar thermal energy is absorbed, much of it will be emitted as radiant energy.
Emissivity ε becomes worse.

従ってこの皮膜厚さは薄ければ薄いほど放射率εに好結
果をもたらすが、あまりに薄いと第2工程の黒色化操作
において良好な黒色化が得られない。
Therefore, the thinner the coating, the better the emissivity ε, but if it is too thin, good blackening cannot be obtained in the second step of blackening.

このため、皮膜厚さは少なくとも0.2μ程度以上は必
要であり、特に0.3〜0.5μの範囲が好適である。
For this reason, the film thickness must be at least about 0.2 microns or more, and a range of 0.3 to 0.5 microns is particularly preferred.

一方において、1μ以下の酸化皮膜を生成せしめた場合
でも、その表面状態が選択吸収性に大きな影響を及ぼし
、選択吸収性、特に放射率εに優れた選択吸収膜を得る
ためには、酸化皮膜の生成過程において生成速度と溶解
速度のバランスが保たれ、皮膜の生成が増加しない平衡
状態に至った皮膜を用いるのが好適である。
On the other hand, even when an oxide film with a thickness of 1μ or less is formed, its surface condition has a great effect on selective absorption. It is preferable to use a film that maintains a balance between the production rate and the dissolution rate during the production process, and reaches an equilibrium state in which the production of the film does not increase.

この理由は発明者等においても明確ではないが、安定し
た均一な酸化皮膜が得られ、そのために皮膜の着色性(
黒色化)が良くなるためと考えられてG、)る。
The reason for this is not clear even to the inventors, but a stable and uniform oxide film can be obtained, and the coloring property of the film (
This is thought to be due to improved blackening (G,).

この発明は、上記のような解明を基にし、更に繰返し実
験と研究の結果、第1工程の陽極酸化処理、および第2
工程の金属塩処理の各電解操作条件の改変により、極め
て選択吸収性の良好な選択吸収膜を、極めて短時間の処
理で形成せしめ得ることを見出し、これを完成したもの
である。
This invention is based on the above findings, and as a result of repeated experiments and research, the first step of anodizing treatment and the second step
By modifying the electrolytic operating conditions of the metal salt treatment process, we have discovered that a selective absorption membrane with extremely good selective absorption properties can be formed in an extremely short treatment time, and this has been completed.

而して、この発明の第1は、アルミニウム材の表面に多
孔質の陽極酸化皮膜を生成せしめる第1工程の処理条件
をその対象とするものであり、該第1工程の陽極酸化処
理を、液濃度509/を以上のリン酸水溶液中で、かつ
液温を35−780℃に保持して行うことを特徴とする
ものである。
Therefore, the first aspect of the present invention is to treat the treatment conditions of the first step of forming a porous anodic oxide film on the surface of the aluminum material, and the first step of the anodic oxidation treatment is to The method is characterized in that it is carried out in a phosphoric acid aqueous solution having a liquid concentration of 509/m above, and the liquid temperature is maintained at 35-780°C.

また、第2の発明は、上記第1の発明の構成のすべてを
包含した上で、更に第2工程の処理条件を付加限定する
ものであり、当該第2工程の電解処理を、これに用いる
電解液中の金属塩の濃度がニッケル塩において50〜2
00 ?/l、コバルト塩において50〜200 t/
l、銅塩において15〜1001?/l、錫塩において
5〜50f!/l。
In addition, the second invention includes all of the configurations of the first invention, and further limits the processing conditions of the second step, and the electrolytic treatment of the second step is used for this. The concentration of metal salt in the electrolyte is 50 to 2 in nickel salt.
00? /l, 50-200 t/l in cobalt salt
l, 15-1001 in copper salt? /l, 5-50f in tin salt! /l.

鉄塩において5〜50 t/lであるような常法の液濃
度よりも高濃度の金属塩水溶液中で、しかも液温を35
〜85℃に保持して行うことを特徴とするものである。
In a metal salt aqueous solution with a higher concentration than the conventional method, such as 5 to 50 t/l for iron salts, and at a temperature of 35 t/l.
It is characterized by being carried out at a temperature of ~85°C.

そこで、先ず、上記第1発明の要旨とする第1工程の処
理条件につき更に詳しく説明する。
Therefore, first, the processing conditions of the first step, which is the gist of the first invention, will be explained in more detail.

この発明による第1工程の実施は、アルミニウム又はア
ルミニウム合金からなるアルミニウム材を予め常法によ
り前処理したのち、該アルミニウム材を一方の極とし、
ステンレス、カーボン、鉛等を他方の極として、濃度5
01/を以上の高濃度のリン酸水溶液中で、かつ液温度
を35〜80℃に保ち、たとえば電圧10〜30V、電
流密度0.6〜4A/d−の直流、交流又はそれに準す
る波形を印加して電解し、アルミニウム材の表面に厚さ
1μ以下の多孔質陽極酸化皮膜を生成せしめるものであ
る。
In carrying out the first step according to the present invention, an aluminum material made of aluminum or an aluminum alloy is pretreated in advance by a conventional method, and then the aluminum material is used as one electrode,
With stainless steel, carbon, lead, etc. as the other electrode, the concentration is 5.
01/ in a highly concentrated phosphoric acid aqueous solution, and the liquid temperature is maintained at 35 to 80°C, for example, a DC, AC, or similar waveform with a voltage of 10 to 30 V and a current density of 0.6 to 4 A/d-. is applied to electrolyze the aluminum material to form a porous anodic oxide film with a thickness of 1 μm or less on the surface of the aluminum material.

この処理時間は0.5〜5分間で充分である。A treatment time of 0.5 to 5 minutes is sufficient.

ここに、特に電解液としてリン酸水溶液を用いるのは、
硫酸やシュウ酸等の水溶液を用いる場合に較べて、生成
しつる皮膜厚さが薄く、しかもその微細孔の孔径の大き
いものが得られ、結果的に金属の析出量を大として一層
良好な選択吸収膜を得ることができることに基づく。
In particular, the use of phosphoric acid aqueous solution as the electrolyte is
Compared to the case of using an aqueous solution such as sulfuric acid or oxalic acid, the thickness of the resulting film is thinner and the pore size of the pores is larger, resulting in a larger amount of metal precipitation, making it a better choice. It is based on the fact that an absorbent membrane can be obtained.

リン酸水溶液を用いる陽極酸化処理の従来の一般的な処
理条件は、液濃度20〜30 t/11液温20〜30
℃、電流密度0.2〜0.4A/drr?Dcであり、
その処理時間は概ね15分間程度であった。
Conventional general treatment conditions for anodizing using a phosphoric acid aqueous solution are: solution concentration 20-30 t/11 solution temperature 20-30
°C, current density 0.2-0.4A/drr? Dc,
The processing time was approximately 15 minutes.

このような従来の一般的な処理条件に較べて、本発明の
液濃度及び液温はかなり高い値に設定されるものである
Compared to such conventional general processing conditions, the liquid concentration and liquid temperature of the present invention are set to considerably higher values.

而して、本発明の液濃度は、509/を以上であり、上
限は特に限定されるものではないが、経済性、お孝び皮
膜の良好な生成状態を考慮した場合、一応800 f/
を程度が上限値と考えられる。
Therefore, the liquid concentration of the present invention is 509 f/ or more, and the upper limit is not particularly limited, but considering economic efficiency and a good state of formation of the Otakashi film, it is 800 f/
is considered to be the upper limit.

一方50 t/を未満の濃度では、必要とする皮膜厚さ
を得るのに長時間を要し、短時間では安定した皮膜が得
られない。
On the other hand, if the concentration is less than 50 t/, it takes a long time to obtain the required film thickness, and a stable film cannot be obtained in a short time.

かかる事項から、特に好適な濃度範囲は80〜300
f/lである。
From this point of view, a particularly suitable concentration range is 80 to 300
f/l.

また、液温度は、液濃度との相対関係で決められるもの
であるが、35℃未満では必要とする酸化皮膜厚さを得
るのに長時間を要し、安定した皮膜が得られず、逆に8
0℃を超える場合は、皮膜の溶解作用が大となるため、
必要な皮膜厚さを得ることが困難になり、又パウダー状
の乳白色皮膜となる不都合が派生する。
In addition, the liquid temperature is determined by the relative relationship with the liquid concentration, but if it is less than 35°C, it will take a long time to obtain the required oxide film thickness, and a stable film will not be obtained. to 8
If the temperature exceeds 0℃, the dissolution effect of the film becomes large, so
It becomes difficult to obtain the necessary film thickness, and the disadvantage is that the film becomes powdery and milky white.

液濃度と温度との関係で相対的な好適範囲を示せば、濃
度70 f/l〜150r/Zに対し、液温45℃〜5
5℃程度の範囲が好ましい。
In terms of the relationship between liquid concentration and temperature, the relative preferable range is 70 f/l to 150 r/Z for a liquid temperature of 45°C to 5.
A range of about 5°C is preferable.

上記のようなこの発明による第1工程の実施によれば、
アルミニウム材の表面に黒色化に必要な皮膜厚さを得る
のに、0.5〜3.0分の極めて短かい処理時間で足り
、従来の常法による場合には10〜15分程度か程度て
いた処理時間を大幅に短縮して、コイルでの連続高速化
処理が可能となり生産性の顕著な向上を期することがで
きる。
According to the implementation of the first step according to the present invention as described above,
An extremely short treatment time of 0.5 to 3.0 minutes is sufficient to obtain the film thickness necessary for blackening the surface of an aluminum material, whereas conventional methods take about 10 to 15 minutes. It is possible to significantly shorten the processing time previously used, and to enable continuous high-speed processing using coils, resulting in a significant improvement in productivity.

のみならず、生成される皮膜は1.0μ以下の、なかで
も特に好適な0.3〜0.5μの厚さの薄膜に形成。
In addition, the resulting film is formed into a thin film with a thickness of 1.0 μm or less, particularly preferably 0.3 to 0.5 μm.

することができ、しかも安定したものが得られると共に
、リン酸水溶液を用いることで孔径の比較的大きな微細
孔をもつ皮膜が得られることも相俟って、これに第2工
程の金属塩処理をすることにより、吸収率αが0.90
以上、放射率εが0.10゜以下という極めて良好な選
択吸収膜が得られるものである。
Moreover, it is possible to obtain a stable product, and by using an aqueous phosphoric acid solution, a film with relatively large pores can be obtained. By doing this, the absorption rate α becomes 0.90
As described above, an extremely good selective absorption film having an emissivity ε of 0.10° or less can be obtained.

次に、第2工程の金属塩処理に関する処理条件につき説
明する。
Next, processing conditions regarding the metal salt treatment in the second step will be explained.

該第2工程は、上記第1工程の実施によって得られた多
孔酸化皮膜を有するアルミニウム材を、常法の金属塩処
理に使用される濃度よりも高濃度の金属塩水溶液中で、
しかも液温を35〜85℃に保持して電解処理し、もっ
て酸化皮膜の孔に金属を析出充填せしめ皮膜を黒色化す
るものである。
In the second step, the aluminum material having the porous oxide film obtained in the first step is treated in a metal salt aqueous solution with a higher concentration than that used in conventional metal salt treatment.
Furthermore, electrolytic treatment is carried out while maintaining the liquid temperature at 35 to 85° C., whereby the pores of the oxide film are precipitated and filled with metal, thereby blackening the film.

かかる金属塩処理において、対極にはステンレス、カー
ボン等を用いることができる。
In such metal salt treatment, stainless steel, carbon, etc. can be used for the counter electrode.

電源も交流、直流、それらに準する波形のいずれを用い
ても良く、電圧10V〜30V、電流密度0.5〜2.
5A/drr?にて、0.5〜5分の電解時間で皮膜の
良・好な黒色化を達成しうる。
The power source may be AC, DC, or a similar waveform, with a voltage of 10V to 30V and a current density of 0.5 to 2.
5A/drr? Good blackening of the film can be achieved with an electrolysis time of 0.5 to 5 minutes.

ところで、これに用いる金属塩としては、従来法にて用
いられているのと同様に、ニッケル塩、コバルト塩、銅
塩、錫塩、鉄塩等の一種以上を挙げることができる。
By the way, as the metal salt used for this, one or more of nickel salts, cobalt salts, copper salts, tin salts, iron salts, etc. can be mentioned, as in the case of conventional methods.

かつ、これらの金属塩の水溶液中の濃度の点に関し、こ
の明細書にいう「常法の金属塩処理に使用される濃度」
とは、次のような濃度をいうものである。
In addition, regarding the concentration of these metal salts in the aqueous solution, the "concentration used in conventional metal salt treatment" as referred to in this specification.
refers to the following concentration.

ニッケル塩 20〜309/l コバルト塩 20〜30 t/を 銅 塩 151/を 錫 塩 5グ/を未満 鉄 塩 209/を未満 従って又、本発明における上記濃度よりも「高濃度」と
いうのは、特に次の範囲をいうものである。
Nickel salt 20-309/l Cobalt salt 20-30 t/l Copper salt 151/l Tin salt Less than 5 g/l Iron salt Less than 209/l Therefore, in the present invention, "higher concentration" than the above concentration means , especially the following ranges:

ニッケル塩 50〜200 f/l コバルト塩 50〜200 f/を 銅 塩 15〜100 f/を 錫 塩 5〜50 t/を 鉄 塩 20〜200 t/l この濃度範囲および前述の液温35〜85℃の範囲の限
定は、いずれも下限未満であると、良好な選択吸収膜を
生成せしめるのに長時間を要する欠点があり、また濃度
が上限値を超えるとコスト高になると共に、着色性が悪
くなって良好な選択吸収膜の生成が困難になり、また温
度が上限値を超えると皮膜の溶解作用が大きくなってや
はり良好な選択吸収膜が得られないことに基づくもので
ある。
Nickel salt 50-200 f/l Cobalt salt 50-200 f/copper salt 15-100 f/tin salt 5-50 t/l Iron salt 20-200 t/l This concentration range and the above liquid temperature 35~ The limitation of the range of 85°C is that if the concentration is below the lower limit, it will take a long time to form a good selective absorption film, and if the concentration exceeds the upper limit, the cost will increase and the coloring property will increase. This is because the temperature becomes worse, making it difficult to produce a good selective absorption film, and if the temperature exceeds the upper limit, the dissolution effect of the film increases, making it impossible to obtain a good selective absorption film.

特に好ましい濃度範囲は、ニッケル塩において80〜1
30 t/l、コバルト塩において80〜130 ?/
l、銅塩において30〜501/1.錫塩において15
〜30 t/11鉄塩において60〜100 ?/lの
範囲であり、また温度は特に40〜60℃の範囲が好適
である。
A particularly preferred concentration range for nickel salts is 80 to 1
30 t/l, 80-130 in cobalt salt? /
l, 30-501/1 in copper salt. 15 in tin salt
~30 t/60-100 in 11 iron salts? /l, and the temperature is particularly preferably in the range of 40 to 60°C.

この発明による第2工程の実施によれば、黒色化のため
の金属塩処理を、上述したような高濃度、高温度の金属
塩含有水溶液中で電解処理することにより、0,5〜5
.0分の極めて短かい処理時間で、酸化皮膜の良好な黒
色化を達成することができ、従来の一般的な処理条件に
よるときは、当該処理に通常10〜15分を要していた
のに較べ、処理時間を大幅に短縮してコイルでの連続高
速化処理が可能となり生産性の顕著な向上をはかりつる
ものである。
According to the implementation of the second step according to the present invention, the metal salt treatment for blackening is carried out by electrolytic treatment in the above-mentioned high concentration, high temperature metal salt-containing aqueous solution.
.. Good blackening of the oxide film can be achieved in an extremely short treatment time of 0 minutes, compared to the usual 10 to 15 minutes required under conventional treatment conditions. In comparison, processing time can be significantly shortened and continuous high-speed processing can be performed using a coil, leading to a significant improvement in productivity.

次に、この醸明の具体的な実施例を示す。Next, a specific example of this brewing will be shown.

尚、実施例1〜5は、第1工程および第2工程のいずれ
にも本発明による改善方法を実施したものであリ、実施
例6〜7は、第1工程のみに本発明を実施し、第2工程
は従来の常法による金属塩処理を用いたものである。
In Examples 1 to 5, the improvement method according to the present invention was implemented in both the first step and the second step, and in Examples 6 to 7, the present invention was implemented only in the first step. , the second step uses a conventional metal salt treatment.

実施例 1 JIS−A1030の純度を有するアルミニウム板を用
い、これを通常の前処理方法で脱脂したのも、第1表に
示す電解液の組成と電解条件で、第1工程、第2工程の
電解処理を順次行った。
Example 1 An aluminum plate having a purity of JIS-A1030 was used, and it was degreased by a normal pretreatment method.The composition of the electrolytic solution and the electrolytic conditions shown in Table 1 were used in the first and second steps. Electrolytic treatments were performed sequentially.

第1工程および第2工程の合計電解時間は3分であり、
得られた選択吸収被膜は、膜厚0.4μ、吸収率α=0
.94、放射率ε=0.06の極めて良好な太陽熱エネ
ルギーの選択吸収性を有するもの螢であった。
The total electrolysis time of the first step and the second step is 3 minutes,
The obtained selective absorption film has a film thickness of 0.4μ and an absorption rate α=0.
.. 94, the firefly had an extremely good selective absorption of solar thermal energy with an emissivity ε=0.06.

実施例 2 実施例1と同様にして、第2表に示す電解液組成と電解
条件で処理した。
Example 2 The same procedure as in Example 1 was carried out using the electrolyte composition and electrolytic conditions shown in Table 2.

。電解処理時間は合計3分であり、得られた選択吸
収被膜は、膜厚0.2μ、α=0.94、ε=OD6の
良好な選択吸収性を有するものであった。
. The electrolytic treatment time was 3 minutes in total, and the selective absorption film obtained had a film thickness of 0.2μ, α=0.94, and ε=OD6, and had good selective absorption properties.

2 実施例1と同様にして、第3表に示す電解液組成と
電解条件で処理した。
2 In the same manner as in Example 1, treatment was performed using the electrolytic solution composition and electrolytic conditions shown in Table 3.

合計電解処理時間は3分であり、得られた選択吸収被膜
は、膜厚0.3μ、α=0.95、ε=0.07の良好
な選択吸収性を有するものであった。
The total electrolytic treatment time was 3 minutes, and the obtained selectively absorbing film had a thickness of 0.3μ, and good selectively absorbing properties with α=0.95 and ε=0.07.

(実施例 4 実施例1と同様にして、第4表に示す電解液組成と電解
条件で処理した。
(Example 4) Treatment was carried out in the same manner as in Example 1 using the electrolytic solution composition and electrolytic conditions shown in Table 4.

合計電解処理時間は3分であり、得られた選択吸収膜は
、膜厚0.5μ、α=0.95、ε=0.06゜の良好
な選択吸収性を有するものであった。
The total electrolytic treatment time was 3 minutes, and the obtained selective absorption membrane had a thickness of 0.5μ, α=0.95, and ε=0.06°, and had good selective absorption properties.

実施例 5 1 実施例1と同様にして、第5表に示す電解液組成と
電解条件で処理した。
Example 5 1 Processing was carried out in the same manner as in Example 1 using the electrolytic solution composition and electrolytic conditions shown in Table 5.

合計電解処理時間は3分であり、得られた選択。The total electrolytic treatment time was 3 minutes and the resulting selection.

吸収膜は厚さ0.5μ、α=0.95、ε=0.06の
良好な選択吸収性を有するものであった。
The absorbing film had a thickness of 0.5 μm and good selective absorption properties with α=0.95 and ε=0.06.

〉:実施例 6 実施例1と同様にして、第6表に示す電解液組成と電解
条件で処理した。
>: Example 6 In the same manner as in Example 1, treatment was performed using the electrolytic solution composition and electrolytic conditions shown in Table 6.

第1工程の電解時間1分に対し、第2工程の電′解時間
に10分を要したが、得られた選択吸収膜は、厚さ0.
3μ、α=0.95、ε=0.07の良好な選択吸収性
を有するものであった。
Although the electrolysis time in the second step was 10 minutes compared to the 1 minute electrolysis time in the first step, the resulting selective absorption membrane had a thickness of 0.5 mm.
It had good selective absorption properties of 3μ, α=0.95, and ε=0.07.

*実施例 7 実施例1と同様にして、第7表に示す電解液組成と電解
条件により処理した。
*Example 7 Processing was carried out in the same manner as in Example 1 using the electrolyte composition and electrolysis conditions shown in Table 7.

合計電解時間は9分であり、得られた選択吸収被膜は、
膜厚0.4μ、α=0.94、ε=0.06の良好な選
択吸収性を有するものであった。
The total electrolysis time was 9 minutes, and the selective absorption film obtained was
It had a film thickness of 0.4μ, α=0.94, and ε=0.06, and had good selective absorption properties.

Claims (1)

【特許請求の範囲】 1 アルミニウム材を陽極酸化処理したのち、金属塩を
含む水溶液中で電解処理して太陽熱エネルギーの整択吸
収膜を形成する方法において、前記陽極酸化処理を、液
濃度50 t/を以上のリン酸水溶液中で、かつ液漢を
35〜80℃に保持して、′行うことを特徴とするアル
ミニウム材の表面に太陽熱エネルギーの選択吸収膜を形
成する方法。 2 多孔酸化皮膜を1μ以下の厚さで生成させる特許請
求の範囲第1項記載のアルミニウム材の表面に太陽熱エ
ネルギーの選択吸収膜の形成する方、法。 3 アルミニウム材を陽極酸化処理したのち、金属塩を
含む水溶液中で電解処理して太陽熱エネルギーの選択吸
収膜を形成する方法において、前記陽極酸化処理を、液
濃度501?/を以上の。 リン酸水溶液中で、かつ液温を35〜80℃に保持して
行うこと、および 前記電解処理を、電解液中の金属塩の濃度がニッケル塩
において50〜2009/l、コバルト塩において50
〜2001/l、銅塩において15〜100v/11錫
塩におイエ5〜501j!/11鉄塩において5〜50
9/lであるような、常法の該電解処理に用いられる液
濃度よりも相対的に高濃度の金属塩水溶液中で、かつ液
温を35〜85℃に保持して行うことを特徴とするアル
ミニウム材の表面に太陽熱エネルギーの選択吸収膜を形
成する方法。 4 第1工程による多孔酸化皮膜を1μ以下の厚さで生
成させる特許請求の範囲第3項記載のアルミニウム材の
表面に太陽熱エネルギーの選拓吸収膜を形成する方法。
[Scope of Claims] 1. A method of anodizing an aluminum material and then electrolytically treating it in an aqueous solution containing a metal salt to form a selective absorption film for solar thermal energy, wherein the anodizing treatment is performed at a solution concentration of 50 t. A method for forming a selective absorption film of solar thermal energy on the surface of an aluminum material, characterized in that / is carried out in the above phosphoric acid aqueous solution and while maintaining a liquid pot at 35 to 80°C. 2. A method for forming a selective solar energy absorption film on the surface of an aluminum material according to claim 1, which produces a porous oxide film with a thickness of 1 μm or less. 3. In a method of anodizing an aluminum material and then electrolytically treating it in an aqueous solution containing a metal salt to form a selective solar energy absorption film, the anodizing treatment is performed at a solution concentration of 501? / or more. The electrolytic treatment is carried out in an aqueous phosphoric acid solution at a temperature of 35 to 80°C, and the electrolytic treatment is carried out at a concentration of metal salt in the electrolytic solution of 50 to 2009/l for nickel salt and 50 to 2009/l for cobalt salt.
~2001/l, copper salt 15~100v/11 tin salt 5~501j! /11 5-50 in iron salt
The method is characterized in that it is carried out in a metal salt aqueous solution with a relatively higher concentration than that used in the conventional electrolytic treatment, such as 9/l, and while maintaining the liquid temperature at 35 to 85 ° C. A method of forming a film that selectively absorbs solar thermal energy on the surface of an aluminum material. 4. A method for forming a selective absorption film for solar thermal energy on the surface of an aluminum material according to claim 3, wherein the porous oxide film in the first step is produced with a thickness of 1 μm or less.
JP55081847A 1980-06-16 1980-06-16 Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material Expired JPS5819019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55081847A JPS5819019B2 (en) 1980-06-16 1980-06-16 Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55081847A JPS5819019B2 (en) 1980-06-16 1980-06-16 Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material

Publications (2)

Publication Number Publication Date
JPS579895A JPS579895A (en) 1982-01-19
JPS5819019B2 true JPS5819019B2 (en) 1983-04-15

Family

ID=13757864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55081847A Expired JPS5819019B2 (en) 1980-06-16 1980-06-16 Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material

Country Status (1)

Country Link
JP (1) JPS5819019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092540A (en) * 1983-10-25 1985-05-24 ナショナル住宅産業株式会社 Concrete panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534721B (en) * 2012-02-17 2015-03-25 上海安美特铝业有限公司 Method for preparing solar selective absorption film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385716A (en) * 1977-01-10 1978-07-28 Nippon Fuirutaa Kk Method of recovering metal from acid waste
JPS5514827A (en) * 1978-07-13 1980-02-01 Sumitomo Alum Smelt Co Ltd Production of selective absorbing material of solar heat energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385716A (en) * 1977-01-10 1978-07-28 Nippon Fuirutaa Kk Method of recovering metal from acid waste
JPS5514827A (en) * 1978-07-13 1980-02-01 Sumitomo Alum Smelt Co Ltd Production of selective absorbing material of solar heat energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092540A (en) * 1983-10-25 1985-05-24 ナショナル住宅産業株式会社 Concrete panel

Also Published As

Publication number Publication date
JPS579895A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US2231373A (en) Coating of articles of aluminum or aluminum alloys
US5407550A (en) Electrode structure for ozone production and process for producing the same
SE444585B (en) MATERIALS FOR SELECTIVE ABSORPTION OF SOLAR ENERGY AS WELL AS MANUFACTURING THE MATERIAL
US4571287A (en) Electrolytically producing anodic oxidation coat on Al or Al alloy
JPS5819019B2 (en) Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material
Zamora et al. Impact of the type of anodic film formed and deposition time on the characteristics of porous anodic aluminium oxide films containing Ni metal
CN1014726B (en) Treating method for electrolytic etching of metal
JPH0127155B2 (en)
EP0182479B1 (en) Nickel sulphate colouring process for anodized aluminium
US2756131A (en) Method for glossing articles made of aluminum and particularly pure aluminum and its alloys
JPS5819948B2 (en) Method for forming a selective absorption film for solar thermal energy on the surface of aluminum material
Neufeld et al. The Influence of Anions on the Structure of Porous Anodic Al2 O 3 Films Grown in Alkaline Electrolytes
JPH08246190A (en) Anodically oxidized film and its formation
US3330744A (en) Anodic treatment of zinc and zinc-base alloys and product thereof
US3912602A (en) Process for colouring aluminum electrolytically
JPH0433870B2 (en)
EP0015279A4 (en) Coating system.
JPH01225793A (en) Anodic oxide film composition on titanium and titanium alloy and production thereof
JPS5920759B2 (en) Coloring method for aluminum or aluminum alloy
JPS5963456A (en) Solar heat selective absorption material and manufacture thereof
JPS5986863A (en) Manufacture of selective absorption film for solar heat energy
Zemanová et al. A new approach to nickel electrolytic colouring of anodised aluminium
RU2371390C1 (en) Method of obtaining thin layers of zirconium pyrophosphate
JPS5812359B2 (en) Surface treatment method for anodic oxide film on aluminum or aluminum alloy
RU2166570C1 (en) Method of coatings application