JPS58190167A - Solid-state image pickup element - Google Patents

Solid-state image pickup element

Info

Publication number
JPS58190167A
JPS58190167A JP57071221A JP7122182A JPS58190167A JP S58190167 A JPS58190167 A JP S58190167A JP 57071221 A JP57071221 A JP 57071221A JP 7122182 A JP7122182 A JP 7122182A JP S58190167 A JPS58190167 A JP S58190167A
Authority
JP
Japan
Prior art keywords
film
light
region
scanning
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57071221A
Other languages
Japanese (ja)
Inventor
Norio Koike
小池 紀雄
Taiji Shimomoto
下元 泰治
Akira Sasano
笹野 晃
Toshihisa Tsukada
俊久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57071221A priority Critical patent/JPS58190167A/en
Publication of JPS58190167A publication Critical patent/JPS58190167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To improve the sensitivity of the receiving region of light of a short wavelength, by decreasing the thickness of a region to which the light in short wavelength range is made incident and increasing the thickness of a region to which light of a long wavelength is made incident for a photoconductive film that is laminated on a scanning IC substrate. CONSTITUTION:An MOSFET2 is formed with a source 3, a drain 4 and a gate 5 on a semiconductor substrate 1 to constitute a scanning circuit or a switch which is opened and closed by the output of the scanning circuit. Picture element electrodes 6 are arrayed in a matrix form on the top surface of a scanning IC substrate. A photoelectric converting film 7' and a transparent electrode 8 which applies the target voltage are formed on the electrode 6. For the film 7', the thinnest film 12-1, the intermediate thickness film 12-2 and the thickest film 12-3 form light of a short wavelength receiving region, light of an intermediate wavelength receiving region and light of a long wavelength receiving region respectively.

Description

【発明の詳細な説明】 (1)発明の利用分野 本発明は、半導体基板上に走査回路および光電変換膜t
−集積化した固体撮像素子に関する本のである。
Detailed Description of the Invention (1) Field of Application of the Invention The present invention provides a scanning circuit and a photoelectric conversion film t on a semiconductor substrate.
-This is a book about integrated solid-state image sensors.

Q) 従来技術 固体撮像素子を構成する有力全担手としてCCD= (
Charge  Coupled  Devices 
)およびMOS型(MO8スイッチのソース接合金光ダ
イオードとして利用する素子)の2fk類が考えられて
きた。
Q) CCD = (
Charge Coupled Devices
) and 2fk types of MOS type (devices used as source junction gold optical diodes of MO8 switches) have been considered.

これらの素子はいずれも集積度の高いMO8プロセス技
術を用いて製作できるという利点を有している。し力・
しながら、感光部が電極の下(CCDの場合)筐たは走
査スイッチおよび信号出力線と同一平面上(MOS型の
場合)におるため、電極fスイッチ部に工り光の入射が
さまたげられる領域が多く、すなわち光損失が大きいと
いう欠点がめる。さらに、感光部と走査部が前述のよう
に同一平面上にあるため絵素の占有面積が大さくなる、
すなわち絵素の集積度を上げることが出来なくて解像F
iLi上げることができないという問題点を有している
All of these devices have the advantage that they can be manufactured using MO8 process technology with a high degree of integration. Strength・
However, since the photosensitive part is located under the electrode (in the case of CCD) or on the same plane as the scanning switch and signal output line (in the case of MOS type), the incidence of artificial light on the electrode f switch part is blocked. The disadvantage is that the area is large, which means that the optical loss is large. Furthermore, since the photosensitive section and the scanning section are on the same plane as mentioned above, the area occupied by the picture element becomes large.
In other words, it is not possible to increase the density of picture elements, and the resolution is F.
The problem is that the iLi cannot be raised.

これら問題点(光感度、解像度)を解決する構造として
、考案者らは走査部の上に感光用の光電変換膜を設ける
二階建構造の固体撮像素子を出願した(%願昭49−7
6372.%出願昭49年7月5日)。この二階建固体
撮像素子’tM08型素子で構成した場合を例にとり、
素子構造の概略を第1図に示す。CCD型で構成される
場合もあり、この場合はMO8電界効果トランジスタ′
frCCDで置き換えればよい。1は第1導伝型の半導
体基板、2は走査回路(図示せず)あるいは走査回路の
出力によって開閉するスイッチを構成するMO8電界効
果トランジスタであり、ソース3、ドレイン4、ゲート
5がら成る。6は1m素の寸法を決める電極でここでは
ソースに接続されている。7に感光材料となる光電変換
膜、また8は光電変換111、を駆動する電圧印加用の
透明電極である。9は絶縁用の酸化膜であり、電極6に
蓄積され九光信号電荷はスイッチ2を介しドレイン4に
接続逼れた信号出力線10に取り出される。この図から
分るように、半導体基板1と走査回路およびスイッチ2
を集積化した走査用IC基板と7および8から成る光電
変換部とが二階建構造になっている。
In order to solve these problems (photosensitivity, resolution), the inventors applied for a solid-state image sensor with a two-story structure in which a photoelectric conversion film for exposure to light is provided above the scanning section.
6372. (filed on July 5, 1972). Taking as an example the case where this double-decker solid-state image sensor 'tM08 type element is used,
An outline of the device structure is shown in FIG. It may be composed of a CCD type, in which case an MO8 field effect transistor'
It can be replaced with frCCD. 1 is a semiconductor substrate of a first conductivity type; 2 is an MO8 field effect transistor constituting a scanning circuit (not shown) or a switch that is opened and closed by the output of the scanning circuit; Reference numeral 6 denotes an electrode that determines the dimensions of the 1m element, which is connected to the source here. 7 is a photoelectric conversion film serving as a photosensitive material, and 8 is a transparent electrode for applying a voltage to drive the photoelectric conversion 111. Reference numeral 9 denotes an insulating oxide film, and the nine optical signal charges accumulated on the electrode 6 are taken out via the switch 2 to the signal output line 10 connected to the drain 4. As can be seen from this figure, a semiconductor substrate 1, a scanning circuit and a switch 2
The scanning IC substrate integrated with the photoelectric converter 7 and 8 has a two-story structure.

したがって、面積利用率が高く絵素当りの寸法11が小
さくなる、すなわち解儂度が高い。光電変換部が光入射
面に対して上部にある喪め光損失択することにより所望
の分光感度を得ることができる等、従来の固体撮像素子
に較べて極めて優れた性能を期待することができる本の
である。
Therefore, the area utilization rate is high and the dimension 11 per picture element is small, that is, the degree of decomposition is high. Extremely superior performance can be expected compared to conventional solid-state image sensors, such as the ability to obtain the desired spectral sensitivity by selecting the photoelectric conversion section located above the light incidence surface and reducing optical loss. It's a book.

しかしながら、低照度撮像、高感度光検出装置など応用
分野を拡げるためには素子の感度をさらに上げることが
必要である。現行素子は色フィルタとして1東色方式金
採用している場合、青色、緑色、赤色を受光する3つの
領域で構成されている。
However, in order to expand the range of applications such as low-light imaging and high-sensitivity photodetection devices, it is necessary to further increase the sensitivity of the device. When the current element uses Toshiki gold as a color filter, it is composed of three regions that receive blue, green, and red light.

また、補色方式の色フィルタを採用している場合に11
例えばシアン、黄、緑、白色を受光する4つの領域で構
成されている。この素子の感度は前述のMOS型あるい
はCCD型素子の場合と同様青色光に刈する感度で制限
されている。これは赤色や緑色に較べて吸収係数の大き
い短波長光は光電変換膜の表面近傍で吸収され、入射光
が該膜の深部まで到達できないためである。したがって
、この対策として光!変換膜の膜厚を薄くすること等が
考えられるが、これは逆に赤色光等に対する感度が低下
するという弊害を生じることになシ好ましい策とは言え
ない。
In addition, if a complementary color filter is used, 11
For example, it is composed of four areas that receive cyan, yellow, green, and white light. The sensitivity of this element is limited by the sensitivity to blue light, as in the case of the MOS type or CCD type element described above. This is because short wavelength light having a larger absorption coefficient than red or green light is absorbed near the surface of the photoelectric conversion film, and the incident light cannot reach deep into the film. Therefore, light as a countermeasure! It is conceivable to reduce the thickness of the conversion film, but this cannot be said to be a preferable measure since it may have the disadvantage of decreasing the sensitivity to red light or the like.

(3)発明の目的 本発明の目的は短波長光を受光する領域の感度を長波長
光を受光する領域の感度を低下きせることなく向上する
ことである。
(3) Purpose of the Invention The purpose of the present invention is to improve the sensitivity of the region that receives short wavelength light without reducing the sensitivity of the region that receives long wavelength light.

(4)発明の詳細説明 基板の上に積層する光導電性膜の膜厚を色フィルタによ
って決まる各色毎に異なる値に設定する、すなわち短波
長光が入射する領域の膜厚は薄く、長波長光が入射する
領域の膜厚は厚くするようにしたものである。
(4) Detailed description of the invention The film thickness of the photoconductive film laminated on the substrate is set to a different value for each color determined by a color filter, that is, the film thickness is thinner in the region where short wavelength light is incident, and the film thickness is thinner in the region where short wavelength light is incident, and long wavelength light is incident. The film thickness in the region where light is incident is made thicker.

(5)  実施例 以下、本発明1r:実施例を参照して詳細に説明する。(5) Example Hereinafter, the present invention 1r will be described in detail with reference to Examples.

第2図に本発明の固体撮像素子の骨子となる絵素構造を
示す。ここでは、説明の便宜上隣接する3個の絵素を示
し喪。1九、同図には走査用ICの基板としてMOS 
トランジスタで構成する基板を記載したが、CCDで構
成し九基板であっても勿論構わない。この場合も絵素電
極の上に形成場れる光電変換膜の構造は同図の場合と全
く同様である。6は走査IC基板の最上面にマトリック
ス状に配列烙れた絵素電極、7′は所定の絵素電極に対
応して膜厚の異なる光電変換膜、8はターゲット電圧v
 tar印加する透明電極である。ここで、膜厚の一番
薄い光電変換膜12−1は短波長光(例えば青色、シア
ン色など)を受光する領域、中間膜厚の12−21d中
間波長光(例えば緑色)を受光する領域、膜厚の厚い1
2−3は長波長光(例えば赤色)を受光する領域に相当
している。このように光電変換膜の膜厚を各絵素の必要
とする感度に応じて各絵素毎に変えることにより撮像上
必要な以下に示すような特性ケ得ることが可能になる。
FIG. 2 shows the pixel structure that is the gist of the solid-state imaging device of the present invention. Here, for convenience of explanation, three adjacent picture elements are shown. 19. The figure shows a MOS as the substrate of the scanning IC.
Although a substrate made up of transistors has been described, it is of course possible to use nine substrates made up of CCDs. In this case as well, the structure of the photoelectric conversion film formed on the picture element electrode is exactly the same as that shown in the same figure. 6 is a picture element electrode arranged in a matrix on the top surface of the scanning IC substrate, 7' is a photoelectric conversion film having a different film thickness corresponding to a predetermined picture element electrode, and 8 is a target voltage v.
This is a transparent electrode that applies tar. Here, the thinnest photoelectric conversion film 12-1 is a region that receives short wavelength light (e.g., blue, cyan, etc.), and the region of intermediate film thickness 12-21d is a region that receives intermediate wavelength light (e.g., green). , thick film 1
2-3 corresponds to a region that receives long wavelength light (for example, red). By changing the thickness of the photoelectric conversion film for each picture element according to the sensitivity required by each picture element in this way, it is possible to obtain the following characteristics necessary for imaging.

(1)膜厚の薄い領域12−1では、(1)入射光によ
って光電荷が発生する場所から絵素電極までの距離が短
い、(11)光電変換膜に加わる電界(ターゲット電圧
)が実効的に強くなる、ため膜中で発生した光電荷が走
行の途中で再結合等によって死滅することなく絵素電極
に到達する。すなわち、短波長光に対する感度が高くな
る。
(1) In the thin film region 12-1, (1) the distance from the place where photocharge is generated by incident light to the pixel electrode is short, and (11) the electric field (target voltage) applied to the photoelectric conversion film is effective. As a result, the photocharges generated in the film reach the picture element electrodes without being destroyed by recombination or the like during their travel. That is, the sensitivity to short wavelength light increases.

(2)領域12−3の膜厚は領域12−1の膜厚に制限
されず独立に所定の厚みに設定することができる。した
がって、12−30膜厚を厚くすることにより吸収係数
が小さく表面近傍から深部(絵素電極側)1で至る所で
光電荷を発生する長波長光に対する感度を現状の値(1
!い換えれば、長波長光に対する感度を低下させないこ
とに相当する)、するいはそれ以上に高めることができ
る。
(2) The film thickness of the region 12-3 is not limited to the film thickness of the region 12-1, and can be independently set to a predetermined thickness. Therefore, by increasing the 12-30 film thickness, the sensitivity to long wavelength light, which has a small absorption coefficient and generates photocharge everywhere from near the surface to the deep part (pixel electrode side) 1, can be reduced to the current value (1).
! In other words, this corresponds to not reducing the sensitivity to long wavelength light), or it can be increased even more.

(3)  前項α)、(2)で述べた感度向上の他に、
光電変換膜の膜厚を所定の値に設定すれは各色に対して
バランスのとれた分光感度を得ることができる。このた
めの膜厚は使用する光電変換膜の材料によって変わって
くる。12−1.12−2゜12−3の膜厚比を決定す
るには、各部分のフィルターを通過した光に対する光電
変換膜の生ずる飽和光′flL流の逆比に膜厚を選べば
よい。例えば水素をドープした非晶質シリコンの場合に
に12−1.12−2.12−3の膜厚比を1:2:3
に遺ぺは青色、緑色、赤色ともにほぼ等しい感度を得る
ことができ、色信号を製作するための信号処理が易しく
なる、良好な色再現性が得られる、などの利点が生ずる
。第2図の実施例では色フィルタの構成色が3色である
場を考えたが、4色おる場合には領域12−1゜12−
2.12−3に加えて、さらに膜厚の一番jll、’h
12−4領域を設ければよい。
(3) In addition to the sensitivity improvement mentioned in the previous section α) and (2),
By setting the thickness of the photoelectric conversion film to a predetermined value, balanced spectral sensitivity for each color can be obtained. The film thickness for this purpose varies depending on the material of the photoelectric conversion film used. To determine the film thickness ratio of 12-1.12-2゜12-3, the film thickness should be selected as the inverse ratio of the saturated light flow generated by the photoelectric conversion film to the light passing through the filter of each part. . For example, in the case of hydrogen-doped amorphous silicon, the film thickness ratio of 12-1.12-2.12-3 is 1:2:3.
Nipei can obtain approximately equal sensitivity for blue, green, and red, and has advantages such as easier signal processing for producing color signals and good color reproducibility. In the embodiment shown in FIG. 2, we considered a case where the color filter consists of three colors, but if there are four colors, the area 12-1°12-
2. In addition to 12-3, the film thickness is the most jll, 'h
12-4 areas may be provided.

短波長光1色のみの感度向上に主点を置いた絵素m造を
第3図に示す。ここで、領域13−1は膜厚が薄く短波
長光を受光する領域に相当し、領域13−2.13−3
は膜厚が同じ、かつ領域13−1エリ厚く、中間波長か
ら長波長光を受光する領域に相当している。本構造の素
子は後述の製作工程力・られかるように製作がより簡単
であるという利点ケ有している。
FIG. 3 shows a picture element structure whose main point is to improve sensitivity to only one color of short wavelength light. Here, the region 13-1 corresponds to a region that has a thin film thickness and receives short wavelength light, and the region 13-2, 13-3
have the same film thickness and are thicker than region 13-1, which corresponds to a region that receives light from intermediate wavelengths to long wavelengths. The device of this structure has the advantage that it is easier to manufacture, as will be explained later in the manufacturing process.

第2図および第3図において、膜厚の薄い領域(凹領域
)、厚い領域(凸領域ンは絵素電極の寸法に較べて小さ
くしても、あるいは大きくしても構わない。凹凸領域の
平面図全第2図に示した構造の場合を例にとり第4図に
示す。同図(a)は絵素電極6′の中間に凹凸領域の境
界12を設けた例(絵素電極より大きい場合に相当する
L(b)VX領域12−1を絵素電極より大きくした場
合(したがって、領域12−2.12−3は絵素電極よ
り小豆くなる)。
In FIGS. 2 and 3, thin regions (concave regions) and thick regions (convex regions) may be made smaller or larger than the dimensions of the picture element electrode. FIG. 4 shows an example of the structure shown in FIG. 2 in a plan view. FIG. L(b) corresponds to the case where the VX region 12-1 is made larger than the picture element electrode (therefore, the regions 12-2 and 12-3 become smaller than the picture element electrode).

本発明の構造を有する固体撮儂素子の製作工程を第5図
に示す。通常のMO8プロセス技術によりMOSトラン
ジスタあるいはCOD素子で構成した走査用IC基板t
a作する(!I〕。ここで、絵素電極6にはMO8型基
板、CCD型基板を問わず一般にAtあるいはMo婢が
使用される。続いて、本走査ICの上部に光導電性膜7
′を直波長光の受光に必要な膜厚(一番厚い膜厚)たけ
グロー放電法あるいはスパッタ法により蒸着する(b)
。ここで、光導電性材料としては撮儂用電子管に利用さ
れティる、8 e−A a−T e 、 8b、8s 
、 PbO。
FIG. 5 shows the manufacturing process of a solid-state imaging device having the structure of the present invention. Scanning IC substrate t constructed with MOS transistors or COD elements using normal MO8 process technology
(!I). Here, At or Mo is generally used for the picture element electrode 6 regardless of whether it is an MO8 type substrate or a CCD type substrate. Next, a photoconductive film is formed on the top of the main scanning IC. 7
' is deposited by glow discharge method or sputtering method to the thickness necessary for receiving direct wavelength light (the thickest film thickness) (b)
. Here, as the photoconductive material, 8e-Aa-Te, 8b, 8s, which are used in electron tubes for photography, are used.
, PbO.

Zn−Cd−Te、Cd8eTe−As、8e、 Iあ
るいは太陽電池の材料として開発されている非晶質シリ
コン(S i :H)等を使用することができる。
Zn-Cd-Te, Cd8eTe-As, 8e, I, or amorphous silicon (S i :H), which has been developed as a material for solar cells, can be used.

次に、走査IC基板の製作と同様のホトエツチング技術
により前記光導電性材料金一番厚い領域(第2図の12
−3>’e除いて所定の膜厚だけエツチングし、中間の
膜厚領域(第2図の12−2)全形成する(C)。さら
に、ホトエツチング技術により一番薄い膜厚に相当する
領域のみ所定の膜厚だけエツチングし、一番薄い膜厚領
域(第2図の12−1)を形成する。最後に透明電極(
8nIt。
Next, the thickest region of the photoconductive material gold (12
Etching is performed by a predetermined film thickness except for -3>'e, and the entire intermediate film thickness region (12-2 in FIG. 2) is formed (C). Furthermore, only the region corresponding to the thinnest film thickness is etched by a predetermined film thickness using a photoetching technique, thereby forming the thinnest film thickness region (12-1 in FIG. 2). Finally, the transparent electrode (
8nIt.

Ink、等)をスパッタ等により蒸着して素子製作を完
了する(d)。ここで、第3図の実施例のように光導電
性材料の膜厚が厚い領域と薄い領域の2領域からできて
いる場合は光導電性材料のホトエツチング工程は1回で
よく、一番厚い領域を除く部分?所定の膜厚だけエツチ
ングし、膜厚の薄い領域(13−1)を形成すればよい
Ink, etc.) is deposited by sputtering or the like to complete the device fabrication (d). Here, if the photoconductive material film is made up of two regions, a thick region and a thin region, as in the example shown in FIG. The part excluding the area? Etching is performed by a predetermined thickness to form a thin region (13-1).

本素子の製作工程は上記の他にも攬々の方法が考えられ
、第6図に示すような工程も実用的である。(ここでは
説明を簡単にするため第3図の実施例の場合について記
載する。)走査用IC基板に所定の膜厚の光導電性材料
7′−1を蒸着した後、ホトエツチング技術により一番
薄い領域13−1に相当する部分のみエツチングする(
a)。
In addition to the above-mentioned methods, many other methods can be considered for the manufacturing process of this device, and the process shown in FIG. 6 is also practical. (Here, to simplify the explanation, the case of the embodiment shown in FIG. 3 will be described.) After depositing the photoconductive material 7'-1 with a predetermined thickness on the scanning IC substrate, the photoconductive material 7'-1 is first etched by photo-etching. Etch only the part corresponding to the thin area 13-1 (
a).

さらに1所定の膜厚だけ光導電性材料7′−2を全面に
蒸着し、最後に透明電極を蒸着して素子製作全完了する
(b)。この結果、第2回目の蒸着膜厚によって決まる
薄い領域(13−1)と第1回目と第2回目の蒸着膜厚
の和によって決まる厚い領域(13−2,13−3)が
形成される。ここで、光導電性材料として非晶質シリコ
ンを使用する場合にはシリコン中にドープする水素の量
を第1回目と第2回目の蒸着時で異なる値にし、第2回
目の蒸着時におけるドープ量を増やせば薄い領域(13
−1)におけるドープth多くなる。この結果、薄い領
域の非晶質シリコンのバンドギャップはより大きくなり
短波長光に対する感度をより高めることが可能になる。
Further, a photoconductive material 7'-2 is deposited to a predetermined thickness over the entire surface, and finally a transparent electrode is deposited to complete the device fabrication (b). As a result, a thin region (13-1) determined by the second evaporation film thickness and a thick region (13-2, 13-3) determined by the sum of the first and second evaporation film thicknesses are formed. . Here, when amorphous silicon is used as the photoconductive material, the amount of hydrogen doped into the silicon is set to a different value during the first and second evaporation, and the doping during the second evaporation is If the amount is increased, thin areas (13
-1) The doping th increases. As a result, the band gap of the amorphous silicon in the thin region becomes larger, making it possible to further increase the sensitivity to short wavelength light.

以上実施例を用いて詳細に説明したように、本発明の固
体撮像素子では光感度、特に従来素子の問題と烙れてき
た短波長感度を高めることができ、さらにバランスの取
れた分光感度を得ることが可工程に1〜2回のホトエッ
チング工程金加えるだけで簡単に実施できるため、本発
明の実用価値は極めて高いものとなる。
As explained in detail using the embodiments above, the solid-state image sensor of the present invention can improve photosensitivity, especially the short wavelength sensitivity, which has been criticized as a problem with conventional elements, and can also achieve well-balanced spectral sensitivity. The practical value of the present invention is extremely high because it can be easily carried out by adding one or two photoetching steps to the existing process.

なお、上記の実施例では走査用IC基板を構成する素子
としてMO8電界効果トランジスタを使用したが、罰に
述べたCOD、BBD、あるいはCI D (Char
ge  Injection  Dericea )を
用いた場合も本考案と同様の構造を適用することができ
る。これらの素子においても、製作技術にはMOSプロ
セスが使用されるので、該当する接合部へf&続する絵
素用電極の形成の方法およびその構造は前述の実施例と
全く同一のものとなる。さらに、本発明の主旨を逸脱し
ない範囲で、走査用IC基板の構成素子として接合型電
界効果トランジスタあるいはバイポーラトランジスタが
使用できる。
In addition, in the above embodiment, an MO8 field effect transistor was used as an element constituting the scanning IC substrate, but COD, BBD, or CI D (Char
The same structure as the present invention can also be applied when using GE Injection Dericea). Since the MOS process is used as the manufacturing technology for these elements as well, the method of forming the picture element electrode connected to the corresponding junction and its structure are exactly the same as in the above-described embodiments. Furthermore, a junction field effect transistor or a bipolar transistor can be used as a component of the scanning IC substrate without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の固体撮像素子の構造金示す図、第2図は
本発明の固体撮像素子の骨子となる構造を示す図、第3
図は本発明の固体撮像素子の第2図とけ別の実施例を示
す図、第4図は本発明の固体撮m素子の平面構成を示す
図、第5図は本発明の固体撮像素子の製作工程の一例を
示す図、第6図は本発明の固体撮像素子の製作工程の別
の例を示す図である。 1・・・半導体基板、2・・・MO8電界効果トランジ
スタ、3・・・ソース、4・・・ドレイン、5・・・ケ
ート、6・・・絵素電極、7.7’・・・光電変換膜、
訃・・透明電極、9・・・酸化膜、1o・・・信号出力
線、12−i。 12−2.12−3.12−4・・・領域、12・・・
境界、13−1・・・薄い領域、13−2.13−3・
・・厚い領域。 =354
FIG. 1 is a diagram showing the structure of a conventional solid-state image sensor, FIG. 2 is a diagram showing the main structure of the solid-state image sensor of the present invention, and FIG.
The figure shows an embodiment of the solid-state image sensing device of the present invention other than that shown in FIG. 2, FIG. 4 shows the planar configuration of the solid-state image sensing device of the present invention, and FIG. FIG. 6 is a diagram showing an example of the manufacturing process. FIG. 6 is a diagram showing another example of the manufacturing process of the solid-state image sensor of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... MO8 field effect transistor, 3... Source, 4... Drain, 5... Kate, 6... Pixel electrode, 7.7'... Photoelectric conversion membrane,
..Transparent electrode, 9..Oxide film, 1o..Signal output line, 12-i. 12-2.12-3.12-4... area, 12...
Boundary, 13-1...Thin region, 13-2.13-3.
...Thick region. =354

Claims (1)

【特許請求の範囲】[Claims] 1、二次元状に配列した絵素電極を備えるスイッチ、該
スイッチを介して取出した光学像に相当する光電荷を転
送する走査素子を集積化した走査用半導体基板の上部に
該光電荷を発生する光電変換用光導電性膜および透明状
の電極を積層した二階建構造の固体機gI素子において
、該光導電性膜の膜厚を該二次元面を構成する絵素領域
に応じて異なる厘を持たせ、各々の絵素領域に各々の絵
素に必要とされる光感度を持たせるようにしたことを特
徴とする固体機gI素子。
1. A switch equipped with two-dimensionally arranged picture element electrodes, and generation of the photocharges on the upper part of a scanning semiconductor substrate integrated with a scanning element that transfers photocharges corresponding to an optical image taken out through the switch. In a two-story solid-state GI device in which a photoconductive film for photoelectric conversion and a transparent electrode are laminated, the thickness of the photoconductive film is varied depending on the pixel area constituting the two-dimensional surface. 1. A solid-state gI element characterized in that each picture element region has a light sensitivity required for each picture element.
JP57071221A 1982-04-30 1982-04-30 Solid-state image pickup element Pending JPS58190167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071221A JPS58190167A (en) 1982-04-30 1982-04-30 Solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071221A JPS58190167A (en) 1982-04-30 1982-04-30 Solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS58190167A true JPS58190167A (en) 1983-11-07

Family

ID=13454396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071221A Pending JPS58190167A (en) 1982-04-30 1982-04-30 Solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS58190167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170959A (en) * 1987-01-08 1988-07-14 Matsushita Electronics Corp Color solid-state image sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170959A (en) * 1987-01-08 1988-07-14 Matsushita Electronics Corp Color solid-state image sensing device

Similar Documents

Publication Publication Date Title
KR101975153B1 (en) Solid-state imaging element, process for producing solid-state imaging element, and electronic device
JP3645585B2 (en) Charge coupled device type solid-state imaging device having overflow drain structure
US6710370B2 (en) Image sensor with performance enhancing structures
JPH0566746B2 (en)
CN101271911A (en) Image sensor, single-plate color image sensor, and electronic device
JPH0745808A (en) Solid-state image pickup device
US4148051A (en) Solid-state imaging device
JPS6033340B2 (en) solid-state imaging device
JPH05121711A (en) Infrared ray ccd
JP2866328B2 (en) Solid-state imaging device
JPH06181302A (en) Ccd imaging device
JP4419264B2 (en) Solid-state imaging device
JPH0416948B2 (en)
JPH05235317A (en) Solid-state image pickup element
JPH04259256A (en) Solid state image sensor
JPS58190167A (en) Solid-state image pickup element
JPH1074926A (en) Solid-state image pickup element
JP2509592B2 (en) Stacked solid-state imaging device
JP4824241B2 (en) Semiconductor energy detector
JPH05226624A (en) Solid-state image pick-up device and its manufacture
JPS5870685A (en) Solid-state image pickup device
JPH05243546A (en) Solid-state image sensing device
JP2000106425A (en) Solid-state image pickup device and manufacture thereof
JP3590944B2 (en) Charge-coupled semiconductor device
JPH0590551A (en) Solid-state image pick-up device