JPS58189003A - Solid-liquid separation of tissue of living organism - Google Patents

Solid-liquid separation of tissue of living organism

Info

Publication number
JPS58189003A
JPS58189003A JP7129482A JP7129482A JPS58189003A JP S58189003 A JPS58189003 A JP S58189003A JP 7129482 A JP7129482 A JP 7129482A JP 7129482 A JP7129482 A JP 7129482A JP S58189003 A JPS58189003 A JP S58189003A
Authority
JP
Japan
Prior art keywords
separation method
tissue
membrane
exchange membrane
biological tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7129482A
Other languages
Japanese (ja)
Inventor
Tetsuo Tanaka
哲郎 田中
Tadashi Inoue
正 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7129482A priority Critical patent/JPS58189003A/en
Publication of JPS58189003A publication Critical patent/JPS58189003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain to enhance efficiency in solid-liquid separation, by separating an aqueous solution containing an org. component from the tissue of a living organism by an electroendosmosis method in such a state that said tissue is held between diaphragms. CONSTITUTION:As a membrane, there is a hidrophilic neutral membrane or an ion exchange membrane and, as the example of the representative hydrophilic neutral membrane, there are a cellophane, a polivinyl alcohol, a cellulose acetate and a polyamide membranes but it is especially suitable to usually select the same from the ion exchange membrane. As a cation exchange membrane, one obtained from a composition comprising 100-15wt% ethylenic copolymer and 0-85wt% thermoplastic resin inert to a sufonating agent as compared to said copolymer is especially preferred. An electrode chamber or an electrode diaphragm is made movable to be permitted to follow the reduction in the volume of a sample due to water pressure or oil pressure. In a continuous separating method, the electrode diaphragm or the electrode chamber itself is formed into the belt of a conveyor belt.

Description

【発明の詳細な説明】 ら有機物成分を含む水溶液を分離する方法に関する。[Detailed description of the invention] The present invention relates to a method for separating an aqueous solution containing organic components from

特に電気浸透により固体部分と、有機物成分な含んだ液
状部分とに分離する新規な分離方法に関する。
In particular, the present invention relates to a novel separation method for separating a solid part and a liquid part containing organic components by electroosmosis.

一般に生物体組織はその内に大量の水分を言合しており
、種々様々な有機物成分がこの水分中に溶解もしくは分
散して(・る。これらの分離操作は食品工業、医薬品工
業等で重要であるが、生物体組織の持つ特殊な性質のた
め比較的困難であるとされて(・る。分離方法としては
物理的分離方法、拡散分離方法等が存在する。物理的方
法と呼ばれるものは、固体もしくはゲルを粉砕した後、
遠心沈降法、遠心濾過法、圧搾p過失、減圧p適法等を
適用して固液分離を行うものである。しかし、1)、粉
砕の結果、固体が微細な親水性粒イとなり水との結合力
が太き(・。2)、また粉砕の程度によりては空気中の
酸素による酸化のため成分が変質を起こす。、3)、固
体粒子の形状が不定でぜ(・弱であるため、濾過及び圧
搾のさし・、目づまりや圧縮を生じ、θ・過速度が低下
する。4)、比重が水の比重に近似し−((・るため、
沈降速度が低下し、分離が困難となる。5)、温度に影
響を受けやすく、特に食品工業で比較的多く用し・られ
る圧搾法では、高圧力による発熱のため、成分が変質し
やすし・。
In general, biological tissue contains a large amount of water, and various organic components are dissolved or dispersed in this water.These separation operations are important in the food industry, pharmaceutical industry, etc. However, it is said to be relatively difficult due to the special properties of biological tissue.There are physical separation methods, diffusion separation methods, etc.As separation methods, there are physical separation methods. , after crushing the solid or gel,
Solid-liquid separation is performed by applying a centrifugal sedimentation method, a centrifugal filtration method, a squeeze p-negligence method, a reduced pressure p-appropriate method, etc. However, 1) as a result of pulverization, the solid becomes fine hydrophilic particles with a strong bond with water (2), and depending on the degree of pulverization, the components may change in quality due to oxidation by oxygen in the air. wake up , 3), The shape of the solid particles is irregular and weak (because it is weak, it causes clogging and compression during filtration and compression, resulting in a decrease in θ and overspeed. 4), the specific gravity is the specific gravity of water. Approximate to −((・ru,
Sedimentation rate decreases and separation becomes difficult. 5) It is easily affected by temperature, and especially in the compression method, which is relatively frequently used in the food industry, ingredients are likely to deteriorate due to the heat generated by high pressure.

等の問題がある。一方、拡散分離法では、温水等によっ
て生物体組織から有機物成分を抽出するのであるが、固
体中の拡散が律速となるため、分離速度は著しく遅(・
。工業的にはこれを速めるため、やはり粉砕したり、ス
ライスしてフレーク状となす等の前処理を行うが、処理
後の固体の大きさによっては固体と抽出液との分離が困
難となったり、また抽出W濃縮が必要になる等、そのT
程はかなり頃雑なものとなる欠点がある。
There are other problems. On the other hand, in the diffusion separation method, organic components are extracted from biological tissues using hot water, etc., but the rate of separation is extremely slow (・
. Industrially, in order to speed up this process, pretreatment such as crushing or slicing into flakes is performed, but depending on the size of the solid after treatment, it may be difficult to separate the solid from the extract. , and also requires extraction W concentration, etc.
The disadvantage is that the process is quite sloppy.

また電気浸透による固液分離法としては、すてに本出願
人はゲルもしくはペースト状の@率的な脱水方法として
、特開昭54−76488号,特開昭ペースト状物・か
らの高効率の脱水方法に関するものであり、その際電気
浸透力の犬なるイオン交換膜を用(・て、脱水された水
の大部分が電極室に取り込まれることにより脱水が行わ
れるのである。
In addition, as a solid-liquid separation method by electroosmosis, the present applicant has already reported a highly efficient method for dehydrating gel or paste-like materials in JP-A No. 54-76488, JP-A No. 76488, This method involves the use of an ion-exchange membrane with electro-osmotic force, in which most of the dehydrated water is taken into the electrode chamber, resulting in dehydration.

そのため膜に要求される特質としては、l)、電気浸透
力が犬であるこ′と、2)、電解液による汚染を防止で
きること、3)、膜自体が対象物を汚染しなし・こと、
等であり、対象物から分離されるものが水のみであるこ
とから、有機物の膜透過の防止等にリし・て考慮する必
要がなかった。
Therefore, the characteristics required of the membrane are: 1) The electroosmotic force is good; 2) The ability to prevent contamination by electrolyte; 3) The membrane itself does not contaminate the target object.
etc., and since only water is separated from the object, there is no need to consider prevention of membrane permeation of organic substances.

本発明者等は該脱水方法の適用範囲の拡大を計り、種々
の検討を実施する中でなんら特定の人工的化学的処理を
加えなし・果実等の生物体組織の固液分離に電気浸透が
適用できることを見出し、本発明に到達した。
The present inventors aimed to expand the scope of application of the dehydration method, and while conducting various studies, they discovered that electroosmosis can be used for solid-liquid separation of biological tissue such as fruit without adding any specific artificial chemical treatment. It was discovered that the present invention can be applied, and the present invention was achieved.

本発明の目的はなんら人工的化学的な処理を加えな(・
生物体組織から有機物成分を含有する水溶液を効率的に
、常温で分離するととであって、特に電極における電気
分解生成物や電解液による汚染を受けることなく分離す
る方法を提案することである。
The purpose of the present invention is to avoid adding any artificial chemical treatment.
The object of the present invention is to propose a method for efficiently separating an aqueous solution containing organic components from biological tissues at room temperature, and in particular, without being contaminated by electrolytic products or electrolytes at electrodes.

本発明につ(・で説明すると、本発明は生物体組織を隔
膜間にはさみ、電気浸透法で該生物体組織から有機物成
分な含む水溶液を分離することを特徴とする固液分離方
法である。
To explain the present invention, the present invention is a solid-liquid separation method characterized by sandwiching biological tissue between diaphragms and separating an aqueous solution containing organic components from the biological tissue by electroosmosis. .

この方法により従来比較的困難とされてきた固体状もし
くはゲル状の生物体組織からの有機物成分を含んだ水溶
液の分離が、1)、何ら人工的化学的な前処理を施すこ
となく、2)、高温もしくは酸化による対象物もしくは
有機物成分の変質を伴うことなく、39. 申−の1稈
で、4)、電気分解生成物等による汚染をほとんど受け
ず、5)、通常の方法では分離がはなはだ困難な対象物
(例えば、バナナ等)K対しても容易に分離が行え、6
)、最終的に好ましいものでは溶液部分の約90%を分
離できるものである。
With this method, it is possible to separate aqueous solutions containing organic components from solid or gel-like biological tissue, which has been considered relatively difficult in the past: 1) without any artificial chemical pretreatment; 2) 39. without deterioration of the target object or organic components due to high temperature or oxidation. 4) It is hardly contaminated by electrolysis products, etc., and 5) It is easy to separate objects (such as bananas) that are extremely difficult to separate using normal methods. Go, 6
), the final preferred one is one in which about 90% of the solution portion can be separated.

本発明につ(・てさらに詳細に説明する。本発ii.j
−iで言う固体状もしくはゲル状の生物体組織とは、動
物もしくは植物において、はぼ同形同大で働きも似かよ
った細胞の集合体のうち、動物では筋肉組織、神経組織
、結合組織を指し、特に魚介類。
The present invention will be explained in more detail below.This invention ii.j
The solid or gel-like biological tissues referred to in -i refer to muscle tissue, nerve tissue, and connective tissue in animals or plants, which are aggregates of cells that are the same shape, the same size, and have similar functions. Especially seafood.

獣鳥類の肉類、臓器類を指す。また植物では表皮組織、
柔組織を指し、特に、植物の根、幹、枝、花、葉、果実
、種子、つぼみ、果皮、樹皮を指す。
Refers to the meat and organs of animals and birds. In plants, the epidermal tissue
Refers to the soft tissues of plants, especially roots, trunks, branches, flowers, leaves, fruits, seeds, buds, pericarp, and bark.

一般に電気浸透では、固定電荷が陽電荷であるか、陰電
荷であるかによって、水分の移動方向が異なるが、生物
体組織は複雑な構造を持つため、水分の移動方向はそれ
ほど単純ではな(・。しかし有機物成分を含んだ水溶液
は、電気浸透による移動のために組織外に出ると、下部
へ滴下し、かくして分離が行われる。その際、生物体組
織自体の構造支持体によるp過作用のため、比較的高分
子量のデンプン、タンパク質等は、組織内部に留まるた
めに、比較的低分子量の、芳香成分、糖、ビタミン、酵
素、ホルモン、アミノ酸等が分離される。
In general, in electroosmosis, the direction of water movement differs depending on whether the fixed charge is a positive charge or a negative charge, but since biological tissue has a complex structure, the direction of water movement is not so simple (・However, when the aqueous solution containing organic components exits the tissue due to movement by electroosmosis, it drips to the lower part and is thus separated.At this time, the p-overeffect due to the structural support of the biological tissue itself Therefore, relatively high molecular weight starch, protein, etc. remain inside the tissue, and relatively low molecular weight aroma components, sugars, vitamins, enzymes, hormones, amino acids, etc. are separated.

この場合、電極隔膜を使用しないと、電極における電気
化学的反応によりχ・l染物に、化学変化なもたらすた
め、目的とする分離を達成できなし・。
In this case, if an electrode diaphragm is not used, the electrochemical reaction at the electrode will cause a chemical change in the χ·l dye, making it impossible to achieve the desired separation.

本発明におし・て使用される電極隔膜とは、1)。The electrode diaphragm used in the present invention is 1).

材料が縁布で拡散による水の移動が小さく、2)。2) The material is edge cloth, so water movement due to diffusion is small.

電気抵抗が・]さい、3)、電極液室の〆り染物質を透
過しがたく、4)、膜自体が対象物を汚染しない、5)
、特に有機物を透過し難し・こと、等の特性を有するも
のである。その除膜の電気浸透性が犬であると、膜に生
じる水流によって°手酌とする有機物が電極液室に流入
しゃすくなるため、膜自体の電気浸透性はむしろ小さい
ことが望ましく・。
3) The membrane itself does not contaminate the object, 3) It is difficult to penetrate the dyeing substance in the electrode liquid chamber, 4) The membrane itself does not contaminate the object, 5)
It has characteristics such as being difficult to penetrate, especially organic substances. If the electroosmotic property of the membrane removal is high, the water flow generated in the membrane will make it difficult for organic substances to flow into the electrode solution chamber, so it is preferable that the electroosmotic property of the membrane itself be low.

膜の電気浸透性でゲルもしくはペースト状物を脱水する
場合、少くとも、陽極に陰イオン交換膜、および/また
は陰極に陽イオン交換膜を配置することが必要であるが
、本発明では前記の特性を満たす膜であれば、たとえ極
性が逆であっても差しつかえな(・oしがしその場合、
膜の電気浸透性が人であると電極液が試料室に流れ込み
、試料が汚染される可能性があるため望ましくな(・。
When dehydrating a gel or paste-like material using membrane electroosmosis, it is necessary to arrange at least an anion exchange membrane at the anode and/or a cation exchange membrane at the cathode. As long as the film satisfies the characteristics, there is no problem even if the polarity is reversed (in that case,
If the electroosmotic properties of the membrane are human, the electrode solution may flow into the sample chamber and contaminate the sample, which is undesirable (・.

電極の電気化学的反応による試料の汚染の最だるものは
陽極におけ、る酸化反応であり、これを防止するために
は、陽極隔膜を省(ことは望ましくない。また対象物が
陽イオン交換性を有する(陰電荷を有する。)場合でも
、食品、医薬品等が対象であるときは、陰極隔膜を用い
ないと対象物の化学変化が避けられないので望ましくな
(・。これらを満たす膜としては、親水性の中性膜小イ
オン交換膜があり、代表的な親水性中性膜の例としては
The most common type of sample contamination caused by electrochemical reactions at the electrode is the oxidation reaction at the anode. Even if it has exchangeability (has a negative charge), if the target is food, medicine, etc., chemical changes in the target will be unavoidable unless a cathode diaphragm is used, so it is not desirable. Examples of typical hydrophilic neutral membranes include small ion exchange membranes.

セロハン、ホリビニルアルコール、Illセルロース、
ポリアミド等があるが、特に一般にイオン交換膜と呼ば
れる膜から選ぶことが好適となる。
Cellophane, hollyvinyl alcohol, Ill cellulose,
There are polyamides, etc., but it is particularly preferable to choose from membranes generally called ion exchange membranes.

例えば、イオン交換基がスルホン基、カルボン酸基、リ
ン酸基、亜リン酸基、フェノール性水酸基、スルホン酸
アミド基やパーフルオロ第3級フルコール等である陽イ
オン交換膜であり、また、イオン交換基が第4級アンモ
ニウム塩基、1,2゜3級アミン、第3級スルホニウム
塩基や第4級ホスホニウム塩基等である陰イオン交換膜
である。
For example, it is a cation exchange membrane in which the ion exchange group is a sulfone group, a carboxylic acid group, a phosphoric acid group, a phosphorous acid group, a phenolic hydroxyl group, a sulfonic acid amide group, a perfluoro tertiary flucol, etc. This is an anion exchange membrane in which the exchange group is a quaternary ammonium base, a 1,2° tertiary amine, a tertiary sulfonium base, a quaternary phosphonium base, or the like.

また、これらの陽イオン交換基や陰イオン交換基を膜内
に不均一に分布させた陽イオン交換膜や陰イオン交換膜
、均一に分布させた両性イオン交換膜、陽、陰イオン交
換基が層状に存在する複合イオン交換膜や陽、陰、イオ
ン交換基の領域が膜の厚さ方向と並列に存在するモザイ
クイオン交換膜である。また、上記のようなイオン交換
基の他に、他の官能基、例えば、エステル基、アミド基
、ハロゲン基、ニトリル基、アシル基、リン酸エステル
基や水酸基等が含まれて(・るイオン交換膜である。
In addition, there are cation exchange membranes and anion exchange membranes in which these cation exchange groups and anion exchange groups are unevenly distributed within the membrane, amphoteric ion exchange membranes in which cation and anion exchange groups are uniformly distributed, and cation exchange membranes and anion exchange membranes in which cation and anion exchange groups are distributed uniformly. It is a composite ion-exchange membrane that exists in layers, or a mosaic ion-exchange membrane in which positive, negative, and ion-exchange group regions exist in parallel to the thickness direction of the membrane. In addition to the above-mentioned ion exchange groups, other functional groups such as ester groups, amide groups, halogen groups, nitrile groups, acyl groups, phosphate ester groups, and hydroxyl groups may also be included. It is an exchange membrane.

また、それらの牟独、ある(・は2種類以上の組合わせ
た膜も、本発明の電極隔膜として使用することが可能で
ある。
In addition, a combination of two or more of these membranes can also be used as the electrode diaphragm of the present invention.

特に陽イオン交換膜としては特公昭51−4]035号
、特公昭52−29988号、USP−3925332
号等で提案した特定のエチレン系共重合体にスルホン基
を導入したカチオン交換膜が、前記の特性に優れるため
好ましく・。そしてさらに好ましい交換膜として、本出
願人がすでに特開昭57−36]26号で提案したカチ
オン交換膜が、前記の特性に0口え耐酸化性に優れるた
め特に好適となる。簡単にその製造方法を述べると、9
7〜82モル%の工H1−CH3、R2=−〇〇OR8
、−COOR4(但しR8−C1〜C5の炭化水素基、
R4=H1輸〜C6の炭化水素基、アルカリ金属及びア
ルカIJ を類金属、希土類金属、NH4”等の第4級
アンモニウム塩、−」二記以外の金属イオン等のカルボ
ン酸基と塩を形成しうるイオン類)〕の構造を有する学
量体とのエチレン系共重合体又はそのケン化物を樹脂組
成物の全重量を基準として、15重量%以上例えば95
〜30重量%と85重量%以下例えば5〜70重量%の
スルホン化剤に比較的不活性な熱可塑性樹脂とからなる
樹脂組成物の100重量部に対し、上記樹脂組成物に対
し相7溶性であり、かつ、スルホン化前、スルホン化中
又はスルホン化後の少くとも(・ずれかにおいて抽出可
能な可塑剤を5〜200重量部含有する混合物を、5〜
200μm厚みのフィルムに溶融成形し冷却固化後、ス
ルホン化剤にて可塑剤を抽出しながらスルホン化反応を
させるか、又は、スルホン化する前に溶剤にて可塑剤と
少くとも一部抽出し、次(・でスルポン化反応させるな
どにより、スルホ/基の交換容量が02〜4ミリ当量/
グラムで、希硫酸中の電気抵抗が001〜2oΩ・6m
2、好ましくは0.05〜50cm”、さらに好まし′
(は01〜1Ωゴm2の力ヴオン交換膜としたものであ
る。
In particular, as a cation exchange membrane, Japanese Patent Publication No. 51-4]035, Japanese Patent Publication No. 52-29988, USP-3925332
A cation exchange membrane in which a sulfone group is introduced into a specific ethylene-based copolymer proposed in No. 1, etc. is preferable because it has the above-mentioned properties. As a more preferable exchange membrane, the cation exchange membrane already proposed by the present applicant in JP-A-57-36]26 is particularly suitable because it has the above-mentioned characteristics and excellent oxidation resistance. To briefly describe the manufacturing method, 9
7-82 mol% of engineering H1-CH3, R2=-〇〇OR8
, -COOR4 (however, R8-C1 to C5 hydrocarbon groups,
R4 = H1 - C6 hydrocarbon groups, alkali metals and alkali IJ form salts with similar metals, rare earth metals, quaternary ammonium salts such as NH4, carboxylic acid groups such as metal ions other than those listed in -2. 15% by weight or more of an ethylene copolymer or a saponified product thereof with a stoichiometric substance having the structure of
~30% by weight and 85% by weight or less, for example, 5 to 70% by weight of a thermoplastic resin relatively inert to the sulfonating agent. and at least 5 to 200 parts by weight of an extractable plasticizer before, during, or after sulfonation.
After melt-forming into a 200 μm thick film and cooling and solidifying, perform a sulfonation reaction while extracting the plasticizer with a sulfonating agent, or at least partially extract the plasticizer with a solvent before sulfonation, The exchange capacity of sulfo/group is increased by 02 to 4 milliquivalents/
In grams, the electrical resistance in dilute sulfuric acid is 001~2oΩ・6m
2, preferably 0.05 to 50 cm", more preferably '
(is a force of 01 to 1 Ω m2 for a Von exchange membrane.

かかるエチレン系共重合体にお(・て、エチレン含量が
97モル%を越えるとスルホン化剤に不活性となり1反
応時間が長くなり生産性が悪くなるばかりでなく、膜表
面が全体的にスルホン化処理され、耐劣化性に優れた膜
が得られない。逆にエチレン含量が82モル%未満では
、溶融成形法によるフィルムの成形が悪くなり、また、
エチレン系共重合体のスルホン化物の耐酸化性が著るし
く低下し、良好なカチオン交換膜が得られない。従っテ
、エチレン含i97〜82モル%のエチレン系共重合体
が適当である。
If the ethylene content of such an ethylene copolymer exceeds 97 mol%, it becomes inactive to the sulfonating agent, prolongs one reaction time, and reduces productivity. If the ethylene content is less than 82 mol%, the film cannot be formed easily by melt forming.
The oxidation resistance of the sulfonated ethylene copolymer is significantly reduced, making it impossible to obtain a good cation exchange membrane. Therefore, an ethylene copolymer having an ethylene content of 97 to 82 mol % is suitable.

また、スルホン化剤に比較的不活性な熱可塑性 ・樹脂
としては、上記のエチレン系共重合体に比較シテスルホ
ン化反応の著しく遅いもので、通Nのプラスブックの加
工法で容易に均一混合でき、均一な品質の膜を得やす(
・、例えば、低密度、高密度ポリ、エチレン、ポリプロ
ピレン、ポリブテン等のポリオレフ゛イン樹脂が好適で
ある。またその配合比は樹脂組成物の全重量を基準にし
て85重1%以下が適当である。85重量%を越えると
スルホン化反応が遅くなり、スルボン基の交換容量02
ミリ当量/グラム以上のカチオン交換膜の連続生産は困
難となる。
In addition, as a thermoplastic resin that is relatively inert to sulfonating agents, its sulfonation reaction is extremely slow compared to the above-mentioned ethylene copolymers, and it can be easily and uniformly mixed using the processing method of the general N Plus Book. , it is easy to obtain a film of uniform quality (
- For example, polyolefin resins such as low-density, high-density poly, ethylene, polypropylene, and polybutene are suitable. The appropriate blending ratio is 85% by weight or less, based on the total weight of the resin composition. If it exceeds 85% by weight, the sulfonation reaction will be slow and the exchange capacity of sulfone groups will be 0.2%.
Continuous production of cation exchange membranes of milliequivalents/gram or more becomes difficult.

上記樹脂組成物に対し相溶性があり、抽出可能な可塑剤
とは、上記樹脂の溶融状態で樹脂組成物100重量に対
して少くとも5重量部が均一に分赦し、溶融成形法にて
薄肉フィルムが成膜でき、しかも上記樹脂組成物をほと
んど溶解しな(・、溶剤、スルホン化剤によりフィルム
又は膜から抽出できるものであればよ(・0例えば、フ
タル酸ジエチル、フタル酸ジオクチル等ポリ塩化ビニル
樹脂に通常使用される可塑剤、流動パラフィンかあ・す
、その添加量は樹脂組成物loomi部に対し、5〜2
00重量部が適当である。
A plasticizer that is compatible with and extractable from the resin composition is a plasticizer that is uniformly distributed in an amount of at least 5 parts by weight per 100 weight of the resin composition in the molten state of the resin, and that is formed into a thin film by melt molding. As long as a film can be formed and the resin composition is hardly dissolved (・, and can be extracted from the film or membrane with a solvent or sulfonating agent (・0), for example, polyesters such as diethyl phthalate, dioctyl phthalate, etc. A plasticizer commonly used for vinyl chloride resin, liquid paraffin, is added in an amount of 5 to 2 ml per loomi part of the resin composition.
00 parts by weight is appropriate.

これらの混合、フィルム化は通常公知の方法で実施され
る。フィルムの厚みは5〜200μmが適当である。
These mixing and film formation are usually carried out by known methods. The appropriate thickness of the film is 5 to 200 μm.

また、ここで(・う、その他のカルボン酸基と塩を形成
しうるイオン類とは、例えばMg、Cazr12″等の
2価の金属イオン、At”+等の3価の金属イオンの他
にNH4等のカルボン酸基と塩を形成しうるカチオンを
意碌するものである。
In addition, here (・u) Ions that can form salts with other carboxylic acid groups include, for example, divalent metal ions such as Mg and Cazr12'', and trivalent metal ions such as At''+. Cations that can form salts with carboxylic acid groups such as NH4 are preferred.

また、本出願人が、特開昭57−40527号、特願昭
56−15798号、特願昭56−96500号で提案
したカチオン交換膜が、前記の特性に加えて、耐久性、
生産性、作業性等々に優れるため、本発明の電極隔膜と
して特に好適であることは言うまでもな(・。
In addition, the cation exchange membranes proposed by the present applicant in Japanese Patent Application Laid-open No. 57-40527, Japanese Patent Application No. 15798-1982, and Japanese Patent Application No. 96-96500-1980 have, in addition to the above-mentioned characteristics, durability,
Needless to say, it is particularly suitable as the electrode diaphragm of the present invention because of its excellent productivity, workability, etc.

本発明では電気浸透による分離により組織内の電気浸透
流の源である自由水がほぼ失われると分離1工能な有機
物成分もその大半が分離される。このときこれ以上電気
浸透による分離は行えな℃・が、外部より生物体組織に
何らかの方法で水分を与えることにより、自由水な増加
せしめねば、再び電気浸透流が生じ、残存している有機
物成分も分離できる特徴がある。また、本来含水率の低
い、もしくは半乾燥状態にある生物体組織にお(・ても
その含水率を増加せしめるべく、水に浸す等の前処理を
施すことによって同様の分離方法が適用できることは言
うまでもな(・。また、自由水、及び、水溶性有機物を
分離したのち、アルコール類、アセトンのようなケトン
類、ヘキサンのような脂肪族もしくは脂環式炭化水素類
、エーテル類等の有機溶剤で水不溶性成分を効率的に抽
出することも可能である。
In the present invention, when free water, which is the source of electroosmotic flow in tissue, is almost completely lost through electroosmotic separation, most of the organic components that can be separated are also separated. At this point, no further separation by electroosmosis can be performed at °C, but unless the free water is increased by somehow adding water to the biological tissue from the outside, electroosmotic flow will occur again and the remaining organic components It also has the characteristic that it can be separated. Furthermore, it is possible to apply a similar separation method to biological tissue that originally has a low water content or is in a semi-dry state by applying pretreatment such as soaking it in water to increase its water content. Needless to say (...Also, after separating free water and water-soluble organic substances, it is treated with organic solvents such as alcohols, ketones such as acetone, aliphatic or alicyclic hydrocarbons such as hexane, and ethers. It is also possible to efficiently extract water-insoluble components.

本発明は対象物が生物体組織であれば適用できるが、植
物におL・では、根、幹、枝、花、葉、果実、種子、つ
ぼみ、果皮、樹皮からの搾汁、非デンプン質の不要成分
の除去、酵素、ビタミン、ホルモン、芳香成分の採取等
、動物にお(・ては魚介類、獣鳥類の肉、臓器よりのエ
キス、ホルモン、酵素、ビタミン等の採取、臭みの除去
、非タンパク質不要成分の除去等に特に有効である。
The present invention can be applied if the target object is biological tissue, but in the case of plants, roots, trunks, branches, flowers, leaves, fruits, seeds, buds, pericarp, juice extracted from bark, non-starchy substances, etc. Removal of unnecessary components, collection of enzymes, vitamins, hormones, aromatic components, etc., collection of extracts, hormones, enzymes, vitamins, etc. from animals (e.g. seafood, meat of animals and birds, organs), removal of odors, etc. , is particularly effective in removing unnecessary non-protein components.

本発明を工業的に実施する場合、試料槽中に多量の試料
を投入するわけであるが、その際、試料間もしくは試料
と膜の間に空隙が生じたり、または接触面積が小さくな
ることにより、電気抵抗が増大する可能性がある。これ
を防止するには、試料の水中・\の浸漬、ある(・は試
料槽中へ試料を投入して後、水の補給により試料表面に
水分を付着させ、試料間に水分を存在せしめて通電可能
な状態としたあと、余分な水は分離液滴下孔より滴下せ
しめ、然る後に通電するとか、ある(・は試料槽の両側
から試料を加圧せしめて、試料間の接触面積を増大せし
めるための処置を行う、もしくはこれらを併用する等の
方法がある。
When the present invention is carried out industrially, a large amount of sample is put into the sample tank, but in this case, gaps may be created between the samples or between the sample and the membrane, or the contact area may become small. , electrical resistance may increase. To prevent this, it is necessary to immerse the sample in water or put the sample into the sample tank, and then add water to the surface of the sample so that moisture is present between the samples. After making it possible to apply electricity, excess water is allowed to drip from the separation liquid dripping hole, and then electricity is applied. There are methods such as taking measures to prevent this, or using a combination of these measures.

一般に電気浸透分離では、分離の進行と共に試料体積が
減少し、試料間、もしくは試料と膜間の接触面積が減少
する傾向があるため、試料体積減少と共に試料槽の体積
も減少させ、接触面積が小さくならない処置を構する必
要がある。例えば、第1図の電極室、もしくは電極隔膜
を可動式とし、水圧、油圧等で試料の体積減少に追随さ
せるとか、第1図の装置の両電極室が1−下になるよう
に、装置を横置きもしくは斜めに設置して、土部電極隔
膜が、試料の体積減少に伴って重力沈降する等の方法が
ある。
Generally, in electroosmotic separation, the sample volume decreases as separation progresses, and the contact area between the samples or between the sample and the membrane tends to decrease. It is necessary to take measures to prevent the problem from becoming smaller. For example, the electrode chamber or electrode diaphragm shown in Figure 1 may be made movable to follow the volume reduction of the sample using water pressure, oil pressure, etc., or the apparatus may be configured so that both electrode chambers of the apparatus shown in Figure 1 are at the bottom. There is a method in which the electrode diaphragm is placed horizontally or diagonally so that the soil electrode diaphragm sinks due to gravity as the volume of the sample decreases.

また連続的・分離方法としては、電極隔膜もしくはt極
液室自身をベルトコンベアのペルトドシタ、ベルトコン
ベア2台のベルト間に対象物をはさみ、その際対象物の
体積減少に伴って、コンベアのベルト間の間隔が減少す
るように、コンベアを設置する等の方法がある。
In addition, as a continuous/separation method, the electrode diaphragm or the electrolyte chamber itself is placed between the belts of a belt conveyor, and the object is sandwiched between the belts of two belt conveyors. There are methods, such as installing a conveyor, to reduce the distance between them.

本発明で使用される含水率、スルホン基の交換容量、希
硫酸中の電気抵抗とは、以下の方法で測定した値である
The water content, sulfonic group exchange capacity, and electrical resistance in dilute sulfuric acid used in the present invention are values measured by the following methods.

含水率(wt%)(乾燥により除去できな(・結晶水や
化合水分を含まなし・。) (1+60°Cに調節しである電気乾燥器内に、よく洗
浄した秤量管を入れ、−昼夜放置した後テアケータに移
し、30分経過後秤量し、Woとする。
Moisture content (wt%) (Contains no water of crystallization or compound water that cannot be removed by drying.) (Place a well-washed weighing tube in an electric dryer adjusted to 1 + 60°C, and dry it day and night. After it was left to stand, it was transferred to a tea rack, and after 30 minutes, it was weighed and marked as Wo.

(2)  約1 cm角の試料3〜4個を秤量管に入れ
、秤量し、Wlとする。
(2) Place 3 to 4 samples of approximately 1 cm square in a weighing tube, weigh them, and define them as Wl.

(3)  前記の電気乾燥器内に一昼夜放置した後、テ
アケータに移し、30分経過後秤量し、w2とする。
(3) After leaving it in the electric dryer for a day and night, it was transferred to a tear racker, and after 30 minutes, it was weighed and designated as w2.

(4)  (1)、 +21. +3’+から含水率は
次式で求まる。
(4) (1), +21. From +3'+, the moisture content can be determined by the following formula.

交換容量 (ミリ当量/グラム) 親水化処理したスルホン酸(−8O8H)型の膜を一定
量の塩化力ルノウム(IN)水溶液中に入れて平衡とし
、その溶液中に生じた塩化水素を01Nのカセイノーダ
ー水酊液(力価−r)で、指示薬としてフェノールフタ
レイ7を用(・て滴定し、その値X (cc )を、カ
リウム塩状態での乾燥時型蓋W(9)で割った値、 8硫酸(比重−12)を満たした測定装置(JISC2
3]3に準する)に試料をセットし、電極間に23°C
で電#L密度25 mA/cm2の直流定電流を通電し
たときの試料による電圧降下を測定し、1記の式より算
出した値を希硫酸中の電気抵抗とする。
Exchange capacity (milliequivalent/g) A hydrophilized sulfonic acid (-8O8H) type membrane is placed in a certain amount of aqueous solution of chloride (IN) to achieve equilibrium, and the hydrogen chloride generated in the solution is exchanged with 01N. It was titrated with Caseinoder water liquor (potency -r) using phenolphthalein 7 as an indicator (·), and the value X (cc) was divided by the dry type lid W (9) in the potassium salt state. Measuring device (JISC2
3) Set the sample at 23°C between the electrodes (according to 3).
Measure the voltage drop across the sample when a constant DC current with a density of 25 mA/cm2 is applied to the sample, and use the value calculated from the formula 1 as the electrical resistance in dilute sulfuric acid.

R−試料の希硫酸中の電気抵抗(Ω・cm” )vl−
試料をセットしないときの電圧降下(V)v*=試料を
セットしたときの電圧降下(V)実施例により、本発明
についてさらに詳細に説明する。
R-Electrical resistance of sample in dilute sulfuric acid (Ω・cm”)vl-
Voltage drop (V) when a sample is not set v* = Voltage drop (V) when a sample is set The present invention will be explained in more detail with reference to Examples.

実験例1 942モル%のエチレンと58モル%のメタクリル酸メ
チルの共重合体を、ケン化(ケン化度60モル%)及び
中和(中和度=30モル%)して得た一COOCH3、
−C00H及び−COONa基を有するエチレン系共重
合体(M、I = 1.0 ) 75重量%に対し、2
5重量%の高密度ポリエチレン(密度・0、9559/
cm”、 Ml = 7 )を、ニーダ−にて、190
°Cで30分混練し、次℃・で上記樹脂組成物100重
量部に対して、43重量部の流動パラフィン(国産化学
株式会社製)を添加し、190°Cで30分さらに混練
した。次(・で、上記樹脂混合物を+ 80 ”Cの温
度で押出機で熱ijJ塑し、ダーキュラーダイスより押
出して、周囲より20°Cの水で急冷する方法で原反厚
み30μmのフィルムを得た。
Experimental Example 1 -COOCH3 obtained by saponifying (degree of saponification 60 mol%) and neutralizing (degree of neutralization = 30 mol%) a copolymer of 942 mol% ethylene and 58 mol% methyl methacrylate. ,
-C00H and -COONa group-containing ethylene copolymer (M, I = 1.0) 75% by weight, 2
5% by weight high density polyethylene (density 0,9559/
cm”, Ml = 7) in a kneader, 190
The mixture was kneaded at 190° C. for 30 minutes, and then 43 parts by weight of liquid paraffin (manufactured by Kokusan Kagaku Co., Ltd.) was added to 100 parts by weight of the resin composition, and the mixture was further kneaded at 190° C. for 30 minutes. Next, the above resin mixture was heated in an extruder at a temperature of +80"C, extruded through a Durcular die, and rapidly cooled with water at a temperature of 20°C to form a film with a thickness of 30 μm. Obtained.

そしてF−記フイルムを常温の1.1.]−)]リクロ
ロエタに約10分間浸漬し、流動パラフィンを抽出した
Then, the film marked F- was heated to 1.1 at room temperature. ]-)] It was immersed in dichloroethane for about 10 minutes to extract liquid paraffin.

つ(・で遊離の三酸化イオウを12%含む発煙硫酸中に
入れ、35”Cで5分間処理し、@硫酸、希硫酸、水の
順に洗浄し、水酸化カリウム水溶液で中和処理後水洗乾
燥し、カチオン交換膜を得た。
() in fuming sulfuric acid containing 12% free sulfur trioxide, treated at 35"C for 5 minutes, washed in the order of sulfuric acid, diluted sulfuric acid, and water, neutralized with an aqueous potassium hydroxide solution, and then washed with water. It was dried to obtain a cation exchange membrane.

この膜の交換容量は、215 ミIJ当量/グラム、希
硫酸中での電気抵抗が、0.15Ω・0m2の低電気抵
抗の膜であった。
The exchange capacity of this membrane was 215 milliJ equivalent/g, and the membrane had a low electrical resistance of 0.15 Ω·0 m 2 in dilute sulfuric acid.

実験例2 923モル%のエチレンと77モル%のアクリル酸エチ
ルとの共重合体(Ml−8)40重量%に ゛対し高密
度ポリエチレン(密度−0,9559jcm3゜Ml−
7)60・虫1%を実験例Iと類似の方法でニーダ−に
て溶融混練し次いで上記樹脂組成物100重量部に対し
、流動パラフィン67重量部を加え、さらに溶融混練し
た。
Experimental Example 2 High-density polyethylene (density -0,9559jcm3゜Ml-
7) 1% of 60.60% by weight was melt-kneaded in a kneader in the same manner as in Experimental Example I, and then 67 parts by weight of liquid paraffin was added to 100 parts by weight of the resin composition and further melt-kneaded.

次いで上記樹脂混合物を、サーキュラ−ダイスを取り付
けた押出機(ダイス温度=150°C)より押出成形し
、原反厚み25μmのフィルムを得た。
Next, the resin mixture was extruded using an extruder equipped with a circular die (dice temperature = 150°C) to obtain a film having an original thickness of 25 μm.

以下、実験例1と類似の方法で流動パラフィンの抽出、
スルホン化処理を行(・、235ミリ当量/グラムの親
水性膜を得た。
Below, extraction of liquid paraffin using a method similar to Experimental Example 1,
A sulfonation treatment was performed to obtain a hydrophilic membrane of 235 meq/g.

この親水性膜の希硫酸中の電気抵抗は、03Ω・0m2
と極めて低(・ものであった。
The electrical resistance of this hydrophilic membrane in dilute sulfuric acid is 03Ω・0m2
It was extremely low.

実験例3 第1図の装置を用(・、隔膜3をはさんで液室9に、S
wt%硫酸ナトリウム水溶液、液室10に同量の純水を
入れ、室温(22°C)で静置した。液室10に、ガラ
ス電極及びNa電極を挿入して、液室10のす) IJ
ウムイオン濃度の経時変化を測定した。
Experimental Example 3 Using the apparatus shown in Fig. 1, the S
The same amount of pure water was placed in the wt% sodium sulfate aqueous solution and the liquid chamber 10, and the mixture was allowed to stand at room temperature (22°C). Insert a glass electrode and a Na electrode into the liquid chamber 10 to close the liquid chamber 10) IJ
Changes in ion concentration over time were measured.

膜面積は5 cm X 5 cmであった。その結果、
実験例1のカブオン交換膜の、硫酸す) IJウム換算
でのNa  に対する拡散係数は5 X l O−’ 
、Cm”/SeCoまた実験例2のカチオン交換膜では
I x I 0−8cm2/ULjCとなり、比較のた
めに測定したセロハン膜では2〜5 > I 0−7c
m2///3e(であった。これから実験例1もしくは
2のカチオン交換膜が電極液イオンの自然拡散からの対
象物のtη染防止に優れ、電極隔膜として好適であるこ
とが知られる。
The membrane area was 5 cm x 5 cm. the result,
The diffusion coefficient of the Kabuon exchange membrane of Experimental Example 1 for Na in terms of sulfuric acid (IJ) is 5
, Cm''/SeCo In the cation exchange membrane of Experimental Example 2, I x I 0-8 cm2/ULjC, and in the cellophane membrane measured for comparison, 2-5 > I 0-7c
m2///3e (It is known from this that the cation exchange membrane of Experimental Example 1 or 2 is excellent in preventing teta staining of the target object from natural diffusion of electrode solution ions and is suitable as an electrode diaphragm.

実施例1 第2図の装置を使用し、実験例1のカブオン交換膜を電
極隔膜として用いた。有効面積は5 cm X5 cm
である。電極は何れも炭素板を用(・、又、両極室液に
は、何れも1重量%硫酸ノーダ水溶液を用し・た。膜間
にセルに合わせて細断した厚みがIcmの大根<259
.含水率93重量%)をはさみ20 V/c+n (”
F均電流20 mA 7cm2)の一定電圧を印加し、
30分間、通電した。通電後、大根重量は49%分離液
中の水溶性固形分は5°Bzx  (Br+x屈折率計
)であり、また、大根は厚みが1龍程度のシート状とな
り取扱(・は容易であった。
Example 1 The apparatus shown in FIG. 2 was used, and the Kabuon exchange membrane of Experimental Example 1 was used as an electrode diaphragm. Effective area is 5 cm x 5 cm
It is. Carbon plates were used for both electrodes (and a 1 wt % sulfuric acid aqueous solution was used for both electrode chamber solutions. Between the membranes was a Japanese radish with a thickness of I cm <259
.. Moisture content: 93% by weight) with scissors and 20 V/c+n ("
Apply a constant voltage of F average current 20 mA 7 cm2),
Electricity was applied for 30 minutes. After energization, the weight of the radish was 49%, the water-soluble solid content in the separated liquid was 5°Bzx (Br+x refractometer), and the radish was in the form of a sheet with a thickness of about 1 dragon and was easy to handle. .

効率はl kwllの電力で4kgの分離液が得られ、
極めてエネルギー効率に優れるものであった。
Efficiency: 4 kg of separated liquid can be obtained with 1 kW of electricity,
It was extremely energy efficient.

比較例1 大根を粉砕した後、吸引濾過を行い、p液を得た。U液
中の水溶性固形分は6°Br+xであり、実施例1で得
た分離液と同様であった。
Comparative Example 1 After pulverizing radish, suction filtration was performed to obtain p liquid. The water-soluble solid content in the U liquid was 6°Br+x, which was the same as that of the separated liquid obtained in Example 1.

実施例2 大根を269のバナナ(含水率74重量%)に変更し、
実験例2のカチオン交換膜を電極隔膜とした以外は、実
施例Iと同様の方法で分離実験を行った。通電後バナナ
は9g(含水率28重量%)となり、分離液17gは透
明やや色がつき、強い芳香を放っていた。水溶性固形分
は18°Br+xであった。ガスクロマトグラフによれ
ば、分離液は比較例2のp液と同じピークを持ち、また
、エネルギー効率は3 kg/kwhと良好であった。
Example 2 The radish was changed to 269 banana (moisture content 74% by weight),
A separation experiment was conducted in the same manner as in Example I, except that the cation exchange membrane of Experimental Example 2 was used as an electrode diaphragm. After energization, the banana weighed 9 g (moisture content: 28% by weight), and 17 g of the separated liquid was transparent, slightly colored, and emitted a strong aroma. The water-soluble solid content was 18°Br+x. According to the gas chromatograph, the separated liquid had the same peak as the p liquid of Comparative Example 2, and the energy efficiency was good at 3 kg/kwh.

比較例2 バナナに比較例1と同様な処理を行った。水溶性固形分
は20°Br1xと、実施例2と同様の数値を示した。
Comparative Example 2 Bananas were subjected to the same treatment as in Comparative Example 1. The water-soluble solid content was 20°Br1x, which was the same value as in Example 2.

しかし濾過は極めて困難で、ごくわずかのF液が得られ
たにすぎず、太平はペースト状のままであった。
However, filtration was extremely difficult, and only a small amount of liquid F was obtained, and the taihei remained in a pasty state.

比較例3 50IX 5c+++に細断した厚み] cmのバナナ
を直接電極板ではさみ、通電した。バナナと電極板の接
触面で激しく気泡が生じたので、両者を分離してみると
、電極板表面にバナナの一部が褐変して付着[7、バナ
ナの表面も変質して褐色となった。
Comparative Example 3 A banana with a thickness of 50IX cm (thickness cut into pieces) was directly sandwiched between electrode plates and energized. Bubbles were generated violently at the contact surface between the banana and the electrode plate, so when we separated them, a part of the banana turned brown and adhered to the surface of the electrode plate [7. The surface of the banana also changed in quality and turned brown. .

実施例3 印加電圧を10V、/c、nに変更した以外は、実施例
2と同様の方法で分離実験を行った。通電後バナナは1
49となり、エネルギー効率は7kg/i<wbと効率
が大[tJに向トした。水溶性固形分は19゜B r 
j xと電圧が低下しても充分な分離が行われる。
Example 3 A separation experiment was conducted in the same manner as in Example 2, except that the applied voltage was changed to 10 V, /c, n. Banana after electricity is 1
49, and the energy efficiency was 7 kg/i<wb, which was a high efficiency [tJ]. Water-soluble solid content is 19゜Br
There is sufficient separation even when the voltage is reduced.

実施例4 大根を229のニンジン(含水率93重量%)に、通電
時間な15分に変更して、実施例1と同様の方法で、分
離実験を行った。通電後、ニンジンは139となり、分
離液は透明でやや赤味がかり、水溶性固形分は6°B 
r ] X、エネルギー効率は2kg/kwbであった
Example 4 A separation experiment was conducted in the same manner as in Example 1, except that the radish was replaced with 229 carrots (moisture content: 93% by weight) and the current application time was changed to 15 minutes. After electricity is applied, the carrot becomes 139, the separated liquid is clear and slightly reddish, and the water-soluble solid content is 6°B.
r]X, the energy efficiency was 2 kg/kwb.

比較例4 ニンジンに比較例1と同様な処理を行った。P液中には
、水溶性固形分は9°Br1xで、多量の橙色沈殿が浮
遊し、不透明で、通常の1紙では濾過できなかった。
Comparative Example 4 Carrots were treated in the same manner as in Comparative Example 1. The water-soluble solid content in the P solution was 9°Br1x, and a large amount of orange precipitate was suspended, making it opaque and unable to be filtered with ordinary paper.

実施例5 大根を219のジャガイモ(含水率73重量%)に変更
した以外は、実施例1と同様の方法で分離実験を行った
。通電後ジャガイモは9gとなった。
Example 5 A separation experiment was conducted in the same manner as in Example 1, except that radish was replaced with 219 potato (moisture content: 73% by weight). After energization, the potato weighed 9 g.

分離液中には非デンプン質の有機物成分のみが存在し、
デンプン質が、他成分から固体状のまま分離された。
Only non-starchy organic components are present in the separated liquid,
Starch was separated from other components in solid form.

実施例6 ニンジンを26g(含水率74重量%)のバナナに変更
した以外は、実施例4と同様の処理を行(・、含水率5
2重量%のバナナを得た。そしてさらに上記バナナにつ
し・て、実施例4と同様な分離実験を行った。59の分
離液を得、またエネルギー効率は15 X?Awhであ
り低い含水率からも、分離が可能であった。最終的に得
られたバナナの含水率は25重量%であり、バナナ中の
液状分の90%が分離された。
Example 6 The same process as in Example 4 was carried out except that 26 g (water content 74% by weight) of carrots was used (water content 5%).
2% by weight banana was obtained. Furthermore, a separation experiment similar to that in Example 4 was conducted using the banana. 59 separation liquid was obtained, and the energy efficiency was 15X? Separation was possible even from the Awh and low water content. The moisture content of the banana finally obtained was 25% by weight, and 90% of the liquid content in the banana was separated.

実施例7 バナナを259の牛もも肉(生)に変更した他は、実施
例2と同様の方法で実験を行った。通電後出は8gとな
った。分離液中には水溶性有機物成分が分離された。ま
た分離後の肉を真空乾燥すると美味な乾燥肉が得られた
。エネルギー効率は3 kli’/kwbであった。
Example 7 An experiment was conducted in the same manner as in Example 2, except that 259 beef thighs (raw) were used instead of bananas. After energization, the weight was 8 g. Water-soluble organic components were separated in the separated liquid. Furthermore, when the separated meat was vacuum dried, delicious dried meat was obtained. Energy efficiency was 3 kli'/kwb.

実施例8 バナナを219の薬用ニンジンに変更した後は、実施例
2と同様の方法で実験を行った。通電後ニンジンは9g
となった。薬用ニンジンの液状分の大部分が分離された
。エネルギー効率は2 kvkwhであった。
Example 8 An experiment was conducted in the same manner as in Example 2, except that banana was replaced with 219 medicinal carrot. Carrot weighs 9g after energizing
It became. Most of the liquid content of medicinal ginseng was separated. Energy efficiency was 2 kvkwh.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膜の拡散係数の測定(実験例3)に用(・られ
る装置を示す説明図、第2図は本発明の実施例に用(・
た装置を示す説明図である。 1・・陽極、2・・陰極、3・・・隔膜、3a・・陽極
隔膜、3b・・陰極隔膜、5・生物体組織、6 陽出願
人 旭ダウ株式会社
Figure 1 is an explanatory diagram showing an apparatus used for measuring the diffusion coefficient of a membrane (Experimental Example 3), and Figure 2 is an explanatory diagram showing an apparatus used for measuring the diffusion coefficient of a membrane (Experimental Example 3).
FIG. 1. Anode, 2. Cathode, 3. Diaphragm, 3a. Anode diaphragm, 3b. Cathode diaphragm, 5. Biological tissue, 6 Positive applicant Asahi Dow Co., Ltd.

Claims (1)

【特許請求の範囲】 m  生物体組織を隔膜間にはさみ、電気浸透法で該生
物体組織から有機物成分を含む水溶液を分離することを
特徴とする固液分離方法。 (2)  陽極側隔膜が少くとも陽イオン交換膜である
特許請求の範囲第1項記載の分離方法。 (3)該II (オン交換膜が97〜82モル%の工C
H8、R2= 0COR8、−cooR4(但し、R8
二01〜C6の炭化水素基、R4=H,C,〜C6の炭
化水素基、アルカリ金属、その他のカルボン酸基と塩を
形成し得るイオン類)〕の構造を有する単量体とのエチ
レン系共重合体、又はそのケン化物より得られる交換容
量が02〜4ミリ当量/グラムのスルホン基を有し、希
硫酸中の電気抵抗が0.01〜20Ω・cm2のイオン
交換膜である特許請求の範囲第2項記載の分離方法。 (4)  希硫酸中の電気抵抗が0.05〜5Ω・cm
2である特許請求の範囲第3項記載の分離方法。 f5+  エチレン系共重合体な100〜15wt%、
該エチレン共重合体に比較してスルホン化剤□に不活性
である熱可塑性樹脂を0〜85wt%含む樹脂組成物よ
り得られるイオン交換膜である特許請求の範囲第3項ま
たは第4項に記載の分離方法。 (6)  熱り塑性樹脂がポリエチレン、ポリプロピレ
ノ、ポリブテン−1からなる群より選ばれたものである
特許請求の範囲第5項記載の分離方法。 (7)  該生物体組織が植物体組織である特許請求の
範囲第1項〜第6項のし・ずれが1項に記載の分離法。 (8)該生物体組織が、植物の根、枝、花、葉、果実、
種子、つぼみ、果皮、樹皮である特許請求の範囲第7項
記載の分離方法。 (9)  該生物体組織が動物体組織である%訂請求の
範囲第1項〜第6項の何れが1項に記載の分離方法。 0■ 該動物体組織が魚介類、獣鳥肉類、獣鳥臓器類で
ある特許請求の範囲第9項記載の分離方法。
[Scope of Claims] m. A solid-liquid separation method characterized by sandwiching biological tissue between membranes and separating an aqueous solution containing organic components from the biological tissue by electroosmosis. (2) The separation method according to claim 1, wherein the anode side diaphragm is at least a cation exchange membrane. (3) Said II (On-exchange membrane is 97 to 82 mol%
H8, R2 = 0COR8, -cooR4 (However, R8
201-C6 hydrocarbon group, R4=H, C, -C6 hydrocarbon group, alkali metals, ions that can form salts with other carboxylic acid groups)] Ethylene with a monomer having the structure Patent for an ion exchange membrane having a sulfonic group with an exchange capacity of 0.2 to 4 milliequivalents/gram obtained from a copolymer or a saponified product thereof, and an electrical resistance of 0.01 to 20 Ωcm2 in dilute sulfuric acid. A separation method according to claim 2. (4) Electrical resistance in dilute sulfuric acid is 0.05-5Ω・cm
2. The separation method according to claim 3, which is f5+ ethylene copolymer 100-15 wt%,
According to claim 3 or 4, which is an ion exchange membrane obtained from a resin composition containing 0 to 85 wt% of a thermoplastic resin that is inactive to the sulfonating agent □ compared to the ethylene copolymer. Separation method as described. (6) The separation method according to claim 5, wherein the thermoplastic resin is selected from the group consisting of polyethylene, polypropylene, and polybutene-1. (7) The separation method according to claim 1, wherein the biological tissue is a plant tissue. (8) The biological tissue is a plant root, branch, flower, leaf, fruit,
The method for separating seeds, buds, pericarp, and bark according to claim 7. (9) The separation method according to any one of claims 1 to 6, wherein the biological tissue is an animal tissue. 0) The separation method according to claim 9, wherein the animal body tissue is seafood, animal or poultry meat, or animal or poultry organs.
JP7129482A 1982-04-30 1982-04-30 Solid-liquid separation of tissue of living organism Pending JPS58189003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7129482A JPS58189003A (en) 1982-04-30 1982-04-30 Solid-liquid separation of tissue of living organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7129482A JPS58189003A (en) 1982-04-30 1982-04-30 Solid-liquid separation of tissue of living organism

Publications (1)

Publication Number Publication Date
JPS58189003A true JPS58189003A (en) 1983-11-04

Family

ID=13456509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7129482A Pending JPS58189003A (en) 1982-04-30 1982-04-30 Solid-liquid separation of tissue of living organism

Country Status (1)

Country Link
JP (1) JPS58189003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681797A1 (en) * 1991-09-27 1993-04-02 Electricite De France CELL AND APPARATUS FOR DEHYDRATION BY ELECTROOSMOSIS.
EP1918017A1 (en) * 2006-09-26 2008-05-07 Samsung Electronics Co., Ltd. Electrodialysis Apparatus and Electrodialysis Method Using the Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153782A (en) * 1978-05-25 1979-12-04 Asahi Chem Ind Co Ltd Dehydration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153782A (en) * 1978-05-25 1979-12-04 Asahi Chem Ind Co Ltd Dehydration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681797A1 (en) * 1991-09-27 1993-04-02 Electricite De France CELL AND APPARATUS FOR DEHYDRATION BY ELECTROOSMOSIS.
EP1918017A1 (en) * 2006-09-26 2008-05-07 Samsung Electronics Co., Ltd. Electrodialysis Apparatus and Electrodialysis Method Using the Same
US8343325B2 (en) 2006-09-26 2013-01-01 Samsung Electronics Co., Ltd. Electrodialysis apparatus and electrodialysis method using the same

Similar Documents

Publication Publication Date Title
DE2735179C3 (en) Hemoperfusion adsorbent made from an absorbent material
US4549947A (en) Method and apparatus for dehydration of water-containing substance by electro-osmosis
DE3787445D1 (en) Process for the isolation of long-chain nucleic acid.
GB1466150A (en) Process for removing metal ion from aqueous solution
DE1806115A1 (en) Method for preventing blood coagulation on surfaces of artificial objects
EP1490434B1 (en) Polymer grafted support polymers
JPS58189003A (en) Solid-liquid separation of tissue of living organism
US4268662A (en) Process for improving semipermeable membranes by treating with protic acids or inorganic salts
Sbarbati Del Guerra et al. Biological characterization of hydrogels of poly (vinyl alcohol) and hyaluronic acid
DE2657105A1 (en) PROCESS FOR SEPARATION OF LIQUIDS FROM MIXTURES
DE3143804A1 (en) Microporous ion exchanger membrane and process for producing it
JP2007049951A (en) Marine alga extracted solution concentrating method
EP0446465B1 (en) Process for the decolourizing and desalting fruit juice and must
Xiong et al. Using the modified sugarcane bagasse cellulose cation membrane as a separator in the electrodialysis device for ammonia nitrogen removal
JP4101061B2 (en) Body fluid treatment adsorber
Mikhaylin Chapter 6. Eco-efficient electrotechnologies to convert food waste and by-products to high added value food components
DE102012019984A1 (en) Process for the preparation of porous gels with incorporated catalytically or biologically active materials and gels produced therewith and their use
JPS6028849B2 (en) Manufacturing method of composite ion exchange membrane
JPS6240260A (en) Decoloration of liquid food
JPS5929005A (en) Dehydrating method of gel or pasty matter
JPH0460690B2 (en)
CN105148737B (en) A kind of preparation method of the electrodialytic membranes based on ion liquid polymerization
DE1806986A1 (en) The process relates to the purification and concentration of the moderately proteolytic, milk-clotting enzyme which is formed by Endothia parasitica, or the pro
DE2420922A1 (en) METHOD OF CONCENTRATING LATICES
US4600487A (en) Electrodialysis apparatus and method of electrodialysis employing same