JPS58187728A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPS58187728A
JPS58187728A JP6740382A JP6740382A JPS58187728A JP S58187728 A JPS58187728 A JP S58187728A JP 6740382 A JP6740382 A JP 6740382A JP 6740382 A JP6740382 A JP 6740382A JP S58187728 A JPS58187728 A JP S58187728A
Authority
JP
Japan
Prior art keywords
combustion chamber
air
water
combustion
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6740382A
Other languages
Japanese (ja)
Inventor
Isao Sato
勲 佐藤
Takashi Omori
隆司 大森
Yoshimitsu Minagawa
義光 皆川
Yoji Ishibashi
石橋 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6740382A priority Critical patent/JPS58187728A/en
Publication of JPS58187728A publication Critical patent/JPS58187728A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases

Abstract

PURPOSE:To reduce NOX by injecting small amount of water by providing an inner cylinder formed of a premixture combustion chamber which has a combustion nozzle, a swirler and an air hole formed at the periphery and a water injection unit at the rear flow section and a rear combustion chamber in an outer cylinder. CONSTITUTION:An inner cylinder 29 formed of a premixture chamber 31 and a rear combustion chamber 32 of a diameter larger than that of the chamber 31 is provided in an outer cylinder 28. A fuel nozzle 36 is provided at the side inner end of the chamber 31, a swirler 33 and an air hole 34 are formed on the outer periphery, and a water injection nozzle 43 is provided at the rear flow section of the chamber 31. Fuel 24 introduced from the fuel nozzle 36 is mixed with air streams 25-27 from the swirler 33 and the air hole 34, and low temperature combustion is continued. Since NOX is produced due to main flame 42 in the step of burning, NOX reducing effect can be raised with less amount of water by performing the uniformly cooling of the flame with the water 44.

Description

【発明の詳細な説明】 本発明は天然ガスなどを燃料に用いる希薄低温燃焼器に
係り、窒素酸化物c以下N Oxと称す)の低減化を図
ったガスタービン燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lean low-temperature combustor that uses natural gas or the like as fuel, and more particularly to a gas turbine combustor that aims to reduce nitrogen oxides (hereinafter referred to as NOx).

ガスタービンにおいてはその排ギス中に含まれるN O
x 、−酸化炭素(以下COと称す)や炭化水素(以下
HCと称す)などの未燃焼成分は大気汚染物質でありこ
れらの排出を抑えることは性能、信頼性の向上を行うと
同等以上に重要なことであるっ特に蟻近ではN Oxの
排出規制が厳しく、現状燃焼器の排出濃度を1/10以
下にする必要がある。N Oxは燃焼器において発生す
るものであり、これを除去する脱硝装置などの後処理装
置を取付けることが考えられる。しかしながら、脱硝装
置の設置は脱硝触媒の大量使用や劣化などによる運転コ
ストの向上や排気ダクトにおける排気圧力上昇などKよ
ジタービン性能が低下する欠点を有する。そこでN O
x +COの発生源である燃焼器においてN Oxの低
減化を行うことが最良な方法である。N Ox生成を抑
えるには燃焼火炎の温度を効果的に下げることにあ)、
高温度の火炎を仏かに冷却するかがN Ox低減化の要
点になる。具体的な1例は高温火炎を冷却する手段とし
て高温燃焼部に水や蒸気などを添加して直接冷却するこ
とが一般的に行われている。しかしながら、水、蒸気添
加はタービン効率の低下や、多量の水、蒸気の供給源が
必要になる欠点や多量に水を添加しても高温火炎の均一
冷却が出来ないため大巾なNOx低減化は出来ない。そ
して最近の厳しい環境gLIIill値に対し満足すべ
きN Ox低減が出来ない欠点を有する。また高温火炎
を冷却する他の具体的な方法としてはガスタービン特有
の多量の希釈空気を燃焼部に供給し火炎温度を低く抑え
るいわゆる希薄低温度燃焼を行いN Oxを低減するこ
とである。
In gas turbines, NO contained in the exhaust gas
x , -Unburned components such as carbon oxide (hereinafter referred to as CO) and hydrocarbons (hereinafter referred to as HC) are air pollutants, and reducing these emissions is equivalent to or better than improving performance and reliability. This is important. Especially in areas near ants, NOx emission regulations are strict, and the current combustor emission concentration must be reduced to 1/10 or less. NOx is generated in the combustor, and it is conceivable to install an after-treatment device such as a denitrification device to remove it. However, the installation of a denitrification device has drawbacks such as an increase in operating costs due to the use of a large amount of denitrification catalyst and its deterioration, and an increase in exhaust pressure in the exhaust duct, which deteriorates the performance of the K-yield turbine. So N.O.
The best way is to reduce NOx in the combustor, which is the source of x+CO. To suppress the production of NOx, the temperature of the combustion flame must be effectively lowered).
The key to reducing NOx is how to effectively cool the high-temperature flame. As a specific example, it is common practice to directly cool a high-temperature flame by adding water, steam, etc. to the high-temperature combustion section. However, adding water and steam reduces turbine efficiency, requires a large amount of water and steam supply sources, and even if a large amount of water is added, it is not possible to uniformly cool a high-temperature flame, making it difficult to significantly reduce NOx. I can't. Moreover, it has the disadvantage that it cannot achieve a satisfactory NOx reduction in the recent severe environmental gLIIill values. Another specific method for cooling a high-temperature flame is to reduce NOx by supplying a large amount of dilution air, which is unique to gas turbines, to the combustion section to perform so-called lean low-temperature combustion to keep the flame temperature low.

しかしながら空気と燃料の均一混合化が出来ず高温火炎
が効果的に冷却されないため水、蒸気噴射に比べNO工
低減は小さく、また、水噴射を併用しても均一混合燃焼
とその均一な冷却が出来ない丸め要求される大巾なN 
Ox低減は出来ない。
However, because the air and fuel cannot be mixed uniformly and the high-temperature flame cannot be effectively cooled, the NO reduction is smaller than with water or steam injection, and even when water injection is used in combination, uniformly mixed combustion and its uniform cooling cannot be achieved. A wide N that requires rounding that cannot be done.
Ox reduction is not possible.

第1図に水噴射技術を併用し九従来技術を示す。FIG. 1 shows nine conventional technologies that are combined with water injection technology.

ガスタービンは圧m1a1、タービン2、燃焼器3およ
び図示していないが負荷部(発電機等)で構成されてい
る。燃焼器3は内筒4およびIj!、i15′を覆った
外筒6から成9、外筒6の側閉端にはカバー7が取付け
られ、このカバー7には燃料ノズル8および水噴射ノズ
ル9が取付けられている。燃料ノズル8の先端部10は
内筒4の側聞端部(ライナキャップ)11に装置されて
いる。また水噴射ノズル9の先端はライナキャップ11
とカバー7との空間に位置しライナキャップ外側の燃焼
用空気12に噴射され内筒4内に導入される。圧縮機1
で圧縮された空気13は尾筒5を覆うように流れ 外筒
6と内筒4との環状空間部14を通過し、内筒4に閉口
した空気孔15、希釈空気孔16および内筒4面冷却用
空気孔17、ライナキャップ11に取付けられたスワ9
18から内筒4内へ導かれる。燃焼ノズル8から供給さ
れた燃料19は燃焼用空気20m、20bと混合し高温
度の火炎21を形成する。N Oxはこの高温部で発生
するので、これを抑制するため水噴射ノズル9からスワ
ラ18に向けて水を噴射し空気流20aに混合し高温火
炎部21を冷却し低N Ox化を図っている。燃焼火炎
21dさらに空気20Cや冷却用空気20bおよび希釈
用空気23と混合した燃焼ガス22M、22bとなって
タービン2へ導かれる。
The gas turbine includes a pressure m1a1, a turbine 2, a combustor 3, and a load section (such as a generator), although not shown. The combustor 3 has an inner cylinder 4 and Ij! , i15', a cover 7 is attached to the side closed end of the outer tube 6, and a fuel nozzle 8 and a water injection nozzle 9 are attached to the cover 7. A tip 10 of the fuel nozzle 8 is attached to a side end (liner cap) 11 of the inner cylinder 4 . Also, the tip of the water injection nozzle 9 is a liner cap 11.
The combustion air 12 is located in the space between the liner cap and the cover 7, and is injected into the combustion air 12 outside the liner cap and introduced into the inner cylinder 4. Compressor 1
The compressed air 13 flows to cover the transition piece 5, passes through the annular space 14 between the outer cylinder 6 and the inner cylinder 4, and enters the air hole 15 closed to the inner cylinder 4, the dilution air hole 16, and the inner cylinder 4. Air hole 17 for surface cooling, swath 9 attached to liner cap 11
18 into the inner cylinder 4. The fuel 19 supplied from the combustion nozzle 8 mixes with the combustion air 20m, 20b to form a high temperature flame 21. Since NOx is generated in this high temperature section, in order to suppress this, water is injected from the water injection nozzle 9 toward the swirler 18 and mixed with the air flow 20a, thereby cooling the high temperature flame section 21 and reducing NOx. There is. Combustion flame 21d is further mixed with air 20C, cooling air 20b, and dilution air 23 to become combustion gases 22M and 22b, which are guided to the turbine 2.

しかしながら、燃料19は複数の旋回溝を持つスワラ1
8からの旋回空気201や複数個の空気孔から導入され
る燃焼用空気20bと拡散混合しながら燃焼を持続する
燃焼火炎21を形成するが、拡散温合の過程では燃料1
9と複数溝スワラや複数個の空気孔から流入する空気2
0m、20bとの均一混合ができないため燃焼火炎中2
1においては局部的に燃料過濃や空気過濃部が形成され
る。
However, the fuel 19 is in the swirler 1 having multiple swirl grooves.
The combustion flame 21 that sustains combustion is formed while diffusing and mixing with the swirling air 201 from 8 and the combustion air 20b introduced from a plurality of air holes, but in the process of diffusion heating, the fuel 1
9 and air flowing in from the multiple groove swirler and multiple air holes 2
0m, 20b in the combustion flame because uniform mixing with 20b is not possible.
In No. 1, fuel-rich and air-rich areas are locally formed.

このため高温燃焼部ができNO!生成の大きな原因とな
っている。そこで水、水蒸気50を燃焼火炎21中に噴
射しN Ox低減を行う従来の水噴射技術においては不
均一な燃焼火炎21を均一に冷却することになり、NO
xが生成する高温火炎のみを均一に冷却することは出来
ず効率よいN Ox低減が出来ない。かつ空気過濃部へ
の水51供給の作用は燃焼を阻害する九めCOやHCな
どの未燃焼成分が発生する欠点を有する。このため約5
0〜60−のN Ox低減全行うための水噴射流量は燃
焼器への全空気流量との重量比で約1優以上が必要であ
りこれ以上水噴射流量を増加しても、大巾なN Ox低
減は出来ず、またCo、HCなとの未燃燐分が急増する
ことや、タービン効率が低下する大きな欠点を有する。
Because of this, a high temperature combustion part is created and NO! It is a major cause of generation. Therefore, in the conventional water injection technology that injects water or steam 50 into the combustion flame 21 to reduce NOx, the non-uniform combustion flame 21 is uniformly cooled, and NO
It is not possible to uniformly cool only the high temperature flame generated by x, making it impossible to efficiently reduce NOx. Furthermore, the action of supplying water 51 to the air-rich region has the disadvantage that unburned components such as CO and HC are generated which inhibit combustion. For this reason, approximately 5
The water injection flow rate to achieve a total NOx reduction of 0 to 60 - requires a weight ratio of approximately 1 or more to the total air flow rate to the combustor, and even if the water injection flow rate is increased beyond this, it will not be possible to achieve a large reduction in NOx. It cannot reduce NOx, and has the major drawbacks of rapidly increasing unburned phosphorus such as Co and HC, and reducing turbine efficiency.

本発明の目的は少量の水あるいは水蒸気噴射で大巾な低
N Ox化を実現するガスタービン燃焼器を提供するこ
とにある。
An object of the present invention is to provide a gas turbine combustor that achieves a significant reduction in NOx with a small amount of water or steam injection.

本発明の目的を達成するガスタービン燃焼器の特徴は、
外筒の内部に内筒が設けられ、この内筒は予混合燃焼室
と予混合燃焼室よシも大径の後部燃焼室とで形成され、
かつ予混合燃焼室の側内端部には燃料ノズルが設けられ
ると共に、その外周に燃料と空気との均一混合を行う旋
回器及び空気孔が設けられ、上記予混合燃焼室壁流部近
傍に、その内部に水あるいは水蒸気噴射を行う装置が設
けられていることにある。
The features of the gas turbine combustor that achieve the objectives of the present invention are:
An inner cylinder is provided inside the outer cylinder, and the inner cylinder is formed of a premix combustion chamber and a rear combustion chamber having a larger diameter than the premix combustion chamber,
A fuel nozzle is provided at the inner end of the premix combustion chamber, and a swirler and an air hole for uniformly mixing fuel and air are provided on the outer periphery of the fuel nozzle, and a fuel nozzle is provided near the wall flow section of the premix combustion chamber. The reason is that a device for injecting water or steam is provided inside the device.

本発明の一実施例を第2図を用いて詳説する。An embodiment of the present invention will be explained in detail with reference to FIG.

まず、燃料24と空気25,26.27との均一混合化
を行い、均一な燃焼を行わせるため、燃焼器の外筒28
内に設けられ九内筒29は頭部に予混合燃焼室311!
−備え、その後流に後部燃焼室3zを備えており、予混
合燃焼室31は燃料24′と空気との均一混合を促進す
るための後部燃焼室32よシも一段直径が小さく形成さ
れ、燃料ノズル36の周囲には旋回空気を導入するスワ
ラ3Bとその外側には旋回器33、空気孔34、および
スクープ空気孔34m、34bが設けられている。
First, in order to uniformly mix the fuel 24 and the air 25, 26, 27 and achieve uniform combustion,
The inner cylinder 29 is provided with a premix combustion chamber 311 at the head!
- The premix combustion chamber 31 is formed to have a smaller diameter than the rear combustion chamber 32 for promoting uniform mixing of the fuel 24' and air. A swirler 3B for introducing swirling air is provided around the nozzle 36, and a swirler 33, an air hole 34, and scoop air holes 34m and 34b are provided outside of the swirler 3B.

予混合燃焼室31に導入される空気量は低N Oxを行
なわない従来形燃焼器に比べ1.5倍程度であり均一な
混合を行う希薄低温度燃焼を基本としており、火炎は予
混合燃焼室31から後部燃焼室32にかけて形成される
。燃料ノズル36から導入された燃料24はスワラ38
、旋回器33およびスクープ34a、34bs空気孔3
4からの空気流25.37,35,26.27と混合し
低温36近傍にスワラ38、旋回!33によって誘起さ
れる循、!j!流39とスクープ34a、34bからの
空気流によって燃焼器内の乱れが強くなるため予混合室
31における燃料と空気の混合が良くなる。そして予混
合燃焼室31軸心部に循環流39によって形成する安定
な火炎40と予混合燃焼室31の後流側41から後部燃
焼室32にかけて形成される主火炎42が存在する。前
記火炎40は燃焼器の安定性を左右する保炎機能を持ち
、主火炎42は予混合化された燃料の希薄低温度燃焼を
行うため均一な燃焼火炎となるが、燃焼の過程における
N Oxはこの主火炎42で発生するものが支配的とな
る。したがって、さらにN Oxを低減するためにはこ
の火炎を効果的に均一冷却することが最良の方法でちゃ
大巾なN Ox低減を実現できるポイントである。すな
わち、従来技術と異なり本発明では予混合燃焼室31に
おいて燃料24′と空気37,25,26.27との乱
流拡散混合を良くしているための局部的な高温度燃焼は
少なく、シたがってN Oxの生成を低く抑える燃焼を
行わせることが出来る。さらに、予混合燃焼室後流41
から後部燃焼室32・にかけた位置に水噴射ノズル43
を設置し主火炎42を水冷却することによシ、よυ均一
な火炎の冷却が実現できるものであり、従来技術ではみ
られない均一燃焼火炎の均一冷却が実現でき大巾なN 
Ox低減が可能となる。すなわち、予混合燃焼室31の
後側に開口した複数個の空気口34bから燃焼用空気流
27内に水を供給する水噴射ノズル43を取付け、燃焼
用空気流27に水を混合しなから予混合燃焼室31の後
側に供給する。噴霧された水44は予混合燃焼室31の
頭部に形成する安定な火炎40に影響を及ぼすことがな
く、かつN Ox発生を支配している主火炎42を効果
的に冷却することが出来るものであり、少ない水量で大
巾なN Ox低減効果が得られる。
The amount of air introduced into the premix combustion chamber 31 is about 1.5 times that of a conventional combustor that does not perform low NOx, and is based on lean low-temperature combustion that achieves uniform mixing, and the flame is premixed combustion. It is formed from the chamber 31 to the rear combustion chamber 32. The fuel 24 introduced from the fuel nozzle 36 passes through the swirler 38
, swirler 33 and scoop 34a, 34bs air hole 3
It mixes with the air flow 25.37, 35, 26.27 from 4 and swirls 38 near the low temperature 36! Circulation induced by 33! j! The airflow from the flow 39 and the scoops 34a, 34b increases turbulence within the combustor, resulting in better mixing of fuel and air in the premixing chamber 31. There are a stable flame 40 formed by the circulation flow 39 at the axial center of the premix combustion chamber 31 and a main flame 42 formed from the downstream side 41 of the premix combustion chamber 31 to the rear combustion chamber 32. The flame 40 has a flame-holding function that affects the stability of the combustor, and the main flame 42 performs lean, low-temperature combustion of premixed fuel, resulting in a uniform combustion flame. The flame generated by this main flame 42 is dominant. Therefore, in order to further reduce NOx, effectively and uniformly cooling this flame is the best way to achieve a very large reduction in NOx. That is, unlike the prior art, in the present invention, the turbulent diffusion mixing of the fuel 24' and the air 37, 25, 26, 27 is improved in the premix combustion chamber 31, so there is less localized high-temperature combustion, and the system is Therefore, combustion that suppresses the generation of NOx can be performed. Furthermore, the premix combustion chamber downstream 41
A water injection nozzle 43 is located between the rear combustion chamber 32 and the rear combustion chamber 32.
By installing a main flame 42 and cooling the main flame 42 with water, it is possible to achieve very uniform cooling of the flame, which has not been seen with conventional technology.
Ox can be reduced. That is, a water injection nozzle 43 is installed to supply water into the combustion air flow 27 from a plurality of air ports 34b opened at the rear side of the premix combustion chamber 31, and water is not mixed into the combustion air flow 27. It is supplied to the rear side of the premix combustion chamber 31. The sprayed water 44 does not affect the stable flame 40 formed at the head of the premix combustion chamber 31, and can effectively cool the main flame 42 that controls the generation of NOx. It is possible to obtain a large NOx reduction effect with a small amount of water.

第3図に70MWクラスのガスタービン燃焼器に本発明
の水噴射技術を適用した燃焼試験結果の1例を示す。こ
の図は横軸に燃空比(燃料流量と空気流量との重量比で
タービン負荷相当する)を、縦軸にはN Ox濃度をと
った実験値を示し、実寸式の燃焼器を用い、燃焼器圧力
が4気圧における試験結果である。タービン負荷100
慢相当においてみると第1図に示す従来形燃焼器のNo
xa度に対し予混合燃焼室を採用した燃焼器の水噴射技
術においては水噴射流量が全燃焼用空気fi量との重量
比でα51において約801のN Ox低減が可能とな
る−ので従来水噴射技術では達成できないN Ox低減
が出来、かつ水噴射量は従来技術による場合と比べ1/
4以下に低減できることを意味する。しかしながら、0
.5係の水噴射技術をガスタービン運転に適用するとタ
ービン負荷がson程度において水による火炎の過冷却
によシ燃焼が継続できない吹き消え現象が生ずる。この
ためタービン運転時に対する1制御例としては約60−
タービン負荷時までは水噴射を実施しないで運転を行な
い、60慢負荷時になった時に0.5係の水噴射を行な
うようにすることによ、9100係負荷時に約80−N
 Ox低減が可能となるものである。したがってN O
x濃度は人、→A1へ、そして60憾タービン負荷相当
においてA、→B0へ、そして100憾タービン負荷時
にB、に示すNOx濃度になることを意味する。
FIG. 3 shows an example of the results of a combustion test in which the water injection technology of the present invention was applied to a 70 MW class gas turbine combustor. In this figure, the horizontal axis shows the fuel-air ratio (the weight ratio between the fuel flow rate and the air flow rate, which corresponds to the turbine load), and the vertical axis shows the experimental values of the NOx concentration. These are the test results when the combustor pressure was 4 atmospheres. Turbine load 100
In terms of high-temperature equivalents, the conventional combustor No. 1 shown in Figure 1
In the water injection technology of a combustor that uses a premixed combustion chamber for xa degrees, the water injection flow rate can reduce NOx by approximately 801 at α51 in weight ratio to the total combustion air fi amount. It is possible to reduce NOx, which cannot be achieved with injection technology, and the amount of water injection is 1/1 compared to conventional technology.
This means that it can be reduced to 4 or less. However, 0
.. When the water injection technology of Section 5 is applied to gas turbine operation, when the turbine load is approximately 100 liters, a blowout phenomenon occurs in which combustion cannot continue due to overcooling of the flame by water. Therefore, as an example of one control during turbine operation, approximately 60-
By operating without water injection until the turbine is loaded, and then injecting water at a rate of 0.5 when the load reaches 60°, approximately 80-N is generated when the load is at 9100°.
This makes it possible to reduce Ox. Therefore, N O
The x concentration means that the NOx concentration changes from person to A1, then to A at a turbine load of 60 degrees, to B0, and then to B at a turbine load of 100 degrees.

第4図に水噴射部の他の一実施例を示す。FIG. 4 shows another embodiment of the water injection section.

スクープ孔34bは燃焼器内へ突出し、燃焼器内筒29
の内面を添うように流れる空気流45層を破り内部(軸
心部)までの空気貫通を良くする効果を持っているが、
内面に突き出走部分34b′は炎に触れ高温度に過熱さ
れる。この丸めスクープ孔34bの劣化が生ずるが第4
図に示すように水噴射ノズル43に先端に複数個の噴出
口を設け1部の水噴#146けスクープ孔34bの内面
47を添うように供給し、スクープ孔34bの冷却を行
い、かつその後低NOx化に寄与するためスクープ孔3
4bの信頼性向上も兼ね合せた水噴射構造である。
The scoop hole 34b protrudes into the combustor, and the combustor inner cylinder 29
It has the effect of breaking the 45 layers of air flowing along the inner surface of the shaft and improving air penetration to the inside (axis center).
The inner surface protruding portion 34b' comes into contact with the flame and is heated to a high temperature. Although deterioration of this rounded scoop hole 34b occurs, the fourth
As shown in the figure, the water injection nozzle 43 is provided with a plurality of injection ports at its tip, and one portion of the water injection #146 is supplied so as to be along the inner surface 47 of the scoop hole 34b, thereby cooling the scoop hole 34b. Scoop hole 3 to contribute to lower NOx
It is a water injection structure that also improves the reliability of 4b.

このように本発明によれば希薄低温燃焼器と最適な水噴
射技術とを組合せることによシ従来形燃焼器に比べ大巾
なNot低減を得ることができ、従来形燃焼器に水噴射
を行った場合と同程度のNO!低減率を達成するために
は本発明では水噴射量が約1/4以下に減少することが
出来る大きな効果が得られる。
As described above, according to the present invention, by combining a lean low-temperature combustor and an optimal water injection technology, it is possible to obtain a significant reduction in Not compared to a conventional combustor. The same level of NO! In order to achieve the reduction rate, the present invention has the great effect of reducing the water injection amount to about 1/4 or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスタービン燃焼器を示す縦断面図、第
2図は本発明の一実施例を示すガスタービン燃焼器の縦
断面図、第3図は本発明燃焼器と従来の燃焼器とのN 
Ox量を比較したグラフ 第4図は本発明水噴射部分の
他の実施例を示す縦断面図である。 24・・・燃料、25〜27・・・空気、28・・・外
筒、29・・・内筒、31・・・予混合燃焼室、32・
・・後部燃焼室、33・・・旋回器、34・・・φ気孔
、34a。 34b・・・x り−7’空気孔、36・・・燃料ノズ
ル、千2霞 dハ 第3図 千4 125
FIG. 1 is a longitudinal sectional view showing a conventional gas turbine combustor, FIG. 2 is a longitudinal sectional view of a gas turbine combustor showing an embodiment of the present invention, and FIG. 3 is a longitudinal sectional view showing a combustor of the present invention and a conventional combustor. N with
Graph Comparing Ox Amounts FIG. 4 is a longitudinal sectional view showing another embodiment of the water injection part of the present invention. 24... Fuel, 25-27... Air, 28... Outer cylinder, 29... Inner cylinder, 31... Premix combustion chamber, 32...
...Rear combustion chamber, 33...Swirl device, 34...φ hole, 34a. 34 b...

Claims (1)

【特許請求の範囲】 1、外筒の内部に内筒が設けられ、この内筒は予混合燃
焼室と予混合燃焼室よりも大径の後部燃焼室とで形成さ
れ、かつ予混合燃焼室の側聞端部には燃料ノズルが設け
られると共に1その外周に#!1料と空気との均一混合
を行う旋回器及び空気孔が設けられ、上記予混合燃焼室
後流部近傍に、その内部に水あるいは水蒸気噴射を行う
装置が設けられていることを特徴とするガスタービン燃
i11ags02、特許請求の範囲第1項記載において
上記空気孔のうちその一部は内部で突出したスクープ孔
として形成され、このスクープ孔に水あるいは水蒸気噴
射を行うノズルが設けられていることを特徴とするガス
タービン燃焼器。 3、%許請求の範囲第2項記載において、ノズルから噴
射される水あるいは水蒸気の一部がスクープ孔内壁面に
衝突するようノズルに孔が設けられていることを特徴と
するガスタービン燃焼器。
[Claims] 1. An inner cylinder is provided inside the outer cylinder, and the inner cylinder is formed of a premix combustion chamber and a rear combustion chamber having a larger diameter than the premix combustion chamber, and A fuel nozzle is provided at the side end of the #! A swirler and an air hole are provided for uniformly mixing the first fuel and air, and a device for injecting water or steam into the premix combustion chamber is provided near the downstream part of the premix combustion chamber. Gas turbine fuel i11ags02, in claim 1, a part of the air holes is formed as a scoop hole that projects inside, and a nozzle for injecting water or steam is provided in the scoop hole. A gas turbine combustor featuring: 3. The gas turbine combustor according to claim 2, characterized in that the nozzle is provided with a hole so that a portion of the water or steam injected from the nozzle collides with the inner wall surface of the scoop hole. .
JP6740382A 1982-04-23 1982-04-23 Gas turbine combustor Pending JPS58187728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6740382A JPS58187728A (en) 1982-04-23 1982-04-23 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6740382A JPS58187728A (en) 1982-04-23 1982-04-23 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JPS58187728A true JPS58187728A (en) 1983-11-02

Family

ID=13343938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6740382A Pending JPS58187728A (en) 1982-04-23 1982-04-23 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS58187728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199255A (en) * 1991-04-03 1993-04-06 Nalco Fuel Tech Selective gas-phase nox reduction in gas turbines
EP1309786A1 (en) * 2000-08-11 2003-05-14 Cheng Power Systems Inc. Steam injection nozzle design of gas turbine combustion liners for enhancing power output and efficiency
CN102788367A (en) * 2011-05-18 2012-11-21 中国科学院工程热物理研究所 Mild combustor of gas turbine and implement method
CN106091011B (en) * 2016-08-10 2018-06-08 四川大学 The projected area adjustable nozzle of pressure adaptive
JP2021092224A (en) * 2019-12-03 2021-06-17 寛治 泉 Engine burning hydrogen and oxygen and also producing hydrogen and oxygen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5199255A (en) * 1991-04-03 1993-04-06 Nalco Fuel Tech Selective gas-phase nox reduction in gas turbines
EP1309786A1 (en) * 2000-08-11 2003-05-14 Cheng Power Systems Inc. Steam injection nozzle design of gas turbine combustion liners for enhancing power output and efficiency
EP1309786A4 (en) * 2000-08-11 2004-05-19 Cheng Power Systems Inc Steam injection nozzle design of gas turbine combustion liners for enhancing power output and efficiency
CN102788367A (en) * 2011-05-18 2012-11-21 中国科学院工程热物理研究所 Mild combustor of gas turbine and implement method
CN106091011B (en) * 2016-08-10 2018-06-08 四川大学 The projected area adjustable nozzle of pressure adaptive
JP2021092224A (en) * 2019-12-03 2021-06-17 寛治 泉 Engine burning hydrogen and oxygen and also producing hydrogen and oxygen

Similar Documents

Publication Publication Date Title
US6983605B1 (en) Methods and apparatus for reducing gas turbine engine emissions
US6540162B1 (en) Methods and apparatus for decreasing combustor emissions with spray bar assembly
US6151899A (en) Gas-turbine engine combustor
JPH0370128B2 (en)
JPH0587340A (en) Air-fuel mixer for gas turbine combustor
US20070006587A1 (en) Combustor
JPS58187728A (en) Gas turbine combustor
JPS6122127A (en) Gas turbine combustor
JPS59202324A (en) Low nox combustor of gas turbine
JPS5847610B2 (en) gas turbine combustor
JP3958158B2 (en) Combustor
JPH06213452A (en) Burner and operating method therefor
JPH0583814B2 (en)
JP3841285B2 (en) Swivel type low NOx combustor
KR101041466B1 (en) The low NOx gas turbine combustor having the multi-fuel mixing device
JPS5913829A (en) Combustor of gas turbine
JPS6213932A (en) Combustor for gas turbine
JPS59173633A (en) Gas turbine combustor
KR102537897B1 (en) Nozzle Structure for Improved Mixing ratio of Combustor
GB2039359A (en) Gas turbine combustion chamber
JP2004003730A (en) Fuel injection nozzle for gas turbine combustor
JP3921509B2 (en) Burned gas self-circulation low emission burner
JPS61116221A (en) Gas turbine combustor
JPH0580573B2 (en)
JPH0893501A (en) Gas turbine combustor for low calorie gas