JPS58187298A - Steel wire for arc welding - Google Patents

Steel wire for arc welding

Info

Publication number
JPS58187298A
JPS58187298A JP6891382A JP6891382A JPS58187298A JP S58187298 A JPS58187298 A JP S58187298A JP 6891382 A JP6891382 A JP 6891382A JP 6891382 A JP6891382 A JP 6891382A JP S58187298 A JPS58187298 A JP S58187298A
Authority
JP
Japan
Prior art keywords
wire
arc
spatter
welding
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6891382A
Other languages
Japanese (ja)
Other versions
JPS646873B2 (en
Inventor
Tomoyuki Suzuki
友幸 鈴木
Osamu Hattori
修 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP6891382A priority Critical patent/JPS58187298A/en
Publication of JPS58187298A publication Critical patent/JPS58187298A/en
Publication of JPS646873B2 publication Critical patent/JPS646873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To reduce generation of spatter, by specifying the total oxygen quantity of a wire consisting of steel containing C, Si, Mn and Ti of each specified rate, and using it for carbonic acid gas shielded arc welding in a globular transfer area. CONSTITUTION:The total oxygen quantity of a wire 1 consisting of steel which contains 0.06-0.15% C, 0.50-1.20% Si, 0.90-1.90% Mn and 0.10-0.35% Ti in wt%, and balance Fe and inevitable impurities as the remainder is prescribed to 100-500ppm. As for a transferring form of a molten metal 2 under a large current in case of carbonic acid gas arc welding, the molten metal 2 is formed at the tip of the wire 1, and it is detached and transferred to a base metal 3 and a molten pool 4. In this case, a shape of the molten metal 2 of the tip of the wire 1 is globular, and an arc generating face 6 is dispersed to its lower face and an arc is generated. Therefore, the molten metal 2 scarcely causes such a phenomenon as pushed back by pressure of the arc, a smooth globular transfer phenomenon is generated, and spatter is reduced to half.

Description

【発明の詳細な説明】 に優れた炭酸ガスアーク溶接用鋼ワイヤに関する。[Detailed description of the invention] This invention relates to steel wire for carbon dioxide arc welding that is excellent in carbon dioxide gas arc welding.

一般に炭酸ガスアーク浴接に供する鋼ワイヤは、ワイヤ
径が08〜2. 4 m鉾であって、通常鋼メッキ処理
を行い、スプールやボビンに巻装されたもの、ペイルパ
ックと呼ばれる円筒容器に装填されたものとして提供さ
れろ。これらはいずれも溶接機の付属装置であるワイヤ
送給機にセットし、自動または半自動浴接に供されるも
のである。
Generally, the steel wire used for carbon dioxide arc bath welding has a wire diameter of 0.8 to 2.0 mm. It is a 4 m long hoko, usually plated with steel, and is supplied wound around a spool or bobbin, or loaded into a cylindrical container called a pail pack. All of these are set in a wire feeder, which is an accessory to a welding machine, and are used for automatic or semi-automatic bath welding.

〜炭酸ガスアーク溶接は、他の溶接法に比較し制能率、
筒品質かつ低コストである特長かあり、最近ではこれら
の特長を生かし、溶接の自動1ヒ、複雑化、高度化を進
め、炭酸ガスア−り離接の適用範囲を広げる傾向が強ま
っている。
~ Carbon dioxide arc welding has lower efficiency and control efficiency compared to other welding methods.
It has the characteristics of high tube quality and low cost, and recently there has been a growing trend to take advantage of these characteristics to make welding automatic, more complex, and more advanced, and to expand the scope of application of carbon dioxide gas arc welding and welding.

しかしこの炭酸ガスアーク溶接は、前述の特長を有する
反面、大きな欠点として浴接時にスパッタと称するワイ
ヤ浴融粒滴が多発飛散し−、浴接の作業性に劣る問題点
か・ある。このスパッタ発生は、通常230A程度以上
の大電流範囲で、ワイヤが粒滴状となって移行する溶接
条件下で著しい。
However, although this carbon dioxide gas arc welding has the above-mentioned features, a major drawback is that wire bath molten droplets called spatter are frequently scattered during bath welding, and the workability of bath welding is poor. This occurrence of spatter is noticeable under welding conditions in which the wire transfers in the form of droplets, usually in a large current range of about 230 A or more.

スパッタの発生は、ワイヤの溶着効率を下げ能率を劣下
させる。又浴接時にスパッタに対する防護を行わねばな
らず浴接作業を困難にするものである。発生したスパッ
タは、ノズルに耐着し炭酸ガスシールドを阻害し、溶接
結果を損う。また溶接部の近傍に付着し、溶接物の外観
を損ね、そして付着したスパッタの除去に労力を要する
等、大電流範囲における炭酸ガス浴接法の大きな問題点
となっていた。
The generation of spatter reduces wire welding efficiency and reduces efficiency. Furthermore, protection against spatter must be provided during bath contact, which makes bath contact work difficult. The generated spatter adheres to the nozzle and obstructs the carbon dioxide shield, impairing the welding result. In addition, the spatter adheres to the vicinity of the weld, spoiling the appearance of the welded product, and requires labor to remove the adhering spatter, which has been a major problem with the carbon dioxide bath welding method in a large current range.

炭酸ガスアーク浴接法の大電流粒滴移行領域における浴
接条件下で、スパッタ減少対策として、従来技術では以
下の諸対応が行われていたが、後述するように未だ不満
足なものであった。
The following measures have been taken in the prior art as measures to reduce spatter under the bath welding conditions in the high current droplet transfer region of the carbon dioxide arc bath welding method, but these measures are still unsatisfactory as will be described later.

■)電源特性の改善 2)溶接条件の調整 3)シールド9ガスにArガスの混合 4)ワイヤに合金元素の添加 1)は炭酸ガスアーク溶接機の整流方法、電源出力特性
およびワイヤ供給制御方式を改善し、スパッタの発生を
減少させようとするものである。しかしスパッタの発生
は、炭酸ガスアーク浴接現象に係るものである。従って
浴接機器数置の側面からのみのスパッタ減少には限界が
あ2)は浴接姿勢、被溶接物の形態゛によって、スパッ
タ発生の少い溶接条件(ワイヤ径、溶接電流、アーク電
圧、ワイヤの突出し長さ、溶接トーチの角度および移動
速度等)を調整するものである。これも溶接条件の決定
は、スパッタ発生防止を主眼としたものでなく、浴込み
、ビード形状、溶接部の健全性などで行われるものであ
るから限界があった。
■) Improving power supply characteristics 2) Adjusting welding conditions 3) Mixing Ar gas with shield 9 gas 4) Adding alloying elements to wire 1) Improved rectification method, power output characteristics, and wire supply control method of carbon dioxide arc welding machine The aim is to improve this and reduce the occurrence of spatter. However, the occurrence of spatter is related to the carbon dioxide arc bath contact phenomenon. Therefore, there is a limit to reducing spatter only from the sides of a few bath equipment.2) Depending on the bath contact position and the form of the workpiece, welding conditions (wire diameter, welding current, arc voltage, wire diameter, welding current, arc voltage, This is to adjust the protruding length of the wire, the angle and moving speed of the welding torch, etc. This also had limitations because the welding conditions were determined based on factors such as bathing, bead shape, and the soundness of the welded part, rather than with the primary focus on preventing spatter.

3)はシールド9ガスを炭酸ガスから不活性ガスである
Arを主体にしたガス(例えばArガス8゜チ、CO2
ガス20%)に転換させ、ス・ξツタ発生の減少を行う
ものである。この方法はArを主体にしたガス中のアー
ク現象にし、アークを安定化し、スパッタの発生を減少
するもので、有効な方法である。しかしこの方法は、非
常に安価な炭酸ガスを用いるというコストメリットが失
われる。
3) The shield 9 gas is changed from carbon dioxide to a gas mainly composed of Ar, which is an inert gas (for example, Ar gas 8°, CO2
20% gas) to reduce the generation of ivy. This method creates an arc phenomenon in a gas mainly composed of Ar, stabilizes the arc, and reduces the occurrence of spatter, and is an effective method. However, this method loses the cost advantage of using very cheap carbon dioxide gas.

4)はワイヤの合金元素の姫加でスパッタの発生を防止
するもので、特公昭50年第3256号公報などのよう
に、チタニウムの添加効果か知られている。またJIS
Z3312では、Ycw−1として規格化され広(用い
られている。しかし従来技術のワイヤがスパッタ発生の
問題点を持つことは前述の通りである。
4) is to prevent the occurrence of spatter by adding an alloying element to the wire, and the effect of adding titanium is known, as disclosed in Japanese Patent Publication No. 3256 of 1970. Also JIS
Z3312 is standardized as Ycw-1 and is widely used. However, as mentioned above, the conventional wire has the problem of spatter generation.

以上詳述したように、炭酸ガスアーク溶接の大電流粒滴
移行領域下の溶接条件におけるスパッタ発生減少には、
従来技術では問題があり、新規な技術が必要となってい
た。
As detailed above, in order to reduce spatter generation under welding conditions under the high current droplet transfer region of carbon dioxide arc welding,
There were problems with the conventional technology, and a new technology was needed.

本発明者らは、従来技術ではスパッタ発生減少が困難で
ある現状に鑑み、鋼ワイヤの総酸素量を調整し、炭酸ガ
スアーク溶接現象を変化させるという新規な方法で解決
した。
In view of the current situation where it is difficult to reduce the occurrence of spatter using conventional techniques, the inventors of the present invention have solved the problem using a novel method of adjusting the total amount of oxygen in the steel wire and changing the carbon dioxide arc welding phenomenon.

すなわち本発明の要旨は、大電流粒滴移行領域下で用い
られる炭酸ガス溶接用銅ワイヤにおいて、ワイヤの総酸
素量を100〜500ppmK調整すると共に、C;0
.06〜0.15%(重量%)、Si0.5〜1.2%
、Mn 0.90〜1.90%およびTi 0.10〜
0.35%を含有し、残部が実質的にFeである粒滴移
行領域で使用して、スパッタ発生を減少させたことにあ
る。
That is, the gist of the present invention is to adjust the total oxygen content of the wire to 100 to 500 ppm K in a copper wire for carbon dioxide gas welding used in a high current droplet transfer region, and to
.. 06-0.15% (wt%), Si0.5-1.2%
, Mn 0.90~1.90% and Ti 0.10~
0.35% with the remainder being substantially Fe in the droplet transfer region to reduce spatter generation.

本発明ワイヤの最大の特徴は、ワイヤの有する酸素およ
び酸化物を積極的有効に利用して、アーク現象を変化さ
せたことにある。
The greatest feature of the wire of the present invention is that the oxygen and oxides contained in the wire are positively and effectively utilized to change the arc phenomenon.

従来のワイヤは、製鋼においても十分な脱酸処理を行い
、鋼中の酸素を低減させる方法がとられるのが通例であ
った。また鋼ワイヤの製造においても、メッキ前処理を
十分に行い、銅メッキと鋼素地との密着性を向上させる
ように製造されるのが通例であった。また鋼メッキ後に
熱処理を行い、銅を酸化させる工程をとる場合でも酸洗
処理などを行い、制用酸化物を除去するものであった。
Conventional wires were usually subjected to sufficient deoxidation treatment during steel manufacturing to reduce oxygen in the steel. Furthermore, in the production of steel wire, it has been customary to perform sufficient pre-plating treatment to improve the adhesion between the copper plating and the steel base. In addition, even when heat treatment is performed after steel plating to oxidize the copper, pickling treatment or the like is performed to remove the grade oxide.

この結果、鋼ワイヤの総酸累菫は100 ppm未満で
あり、意図的に総酸素量を100〜500ppmに調整
、規制するという技術思想はなかった。
As a result, the total acid content of the steel wire was less than 100 ppm, and there was no technical idea to intentionally adjust or regulate the total oxygen amount to 100 to 500 ppm.

ここで言う総酸素量とは、鋼ワイヤの鋼中、銅メッキと
鋼素地の間、銅メッキ層および表面の酸素および酸化物
を、酸素として抽出分析したものである。
The total amount of oxygen referred to here is the result of extracting and analyzing oxygen and oxides in the steel of the steel wire, between the copper plating and the steel base, in the copper plating layer, and on the surface.

総酸素量100〜5001)pmの調整によって、驚く
べきアーク発生の変化が生じた現象について次にのべる
The following describes the phenomenon in which the adjustment of the total oxygen content (100 to 5001) pm caused a surprising change in arc generation.

従来ワイヤを用いた場合の炭酸ガス浴接アーク現象とス
パッタ発生関係について観察結果をのべる。
This article describes the observation results regarding the relationship between carbon dioxide bath arc phenomenon and spatter generation when conventional wires are used.

炭酸ガスアーク溶接における大電流下での浴融金属の移
行形式は、アーク熱によりワイヤの先端に浴融金属が形
成され、それが離脱し、母材、溶融池に移行することで
行われる。この時ワイヤと母材間に発生しているアーク
は、二原子分子である炭酸ガスアークの特性として、ワ
イヤ溶融金属のml下で陽極領域(以下アークの足と称
する)が強く集束する。このアーク発生面の反力(アー
ク力)で、ワイヤ溶融金属は押し上げられ、また同時に
アークは常に母材・溶融池との最短場所に移動する。
The transfer of bath molten metal under large current in carbon dioxide arc welding is performed by forming bath molten metal at the tip of the wire due to arc heat, separating it, and transferring it to the base metal and molten pool. At this time, the arc generated between the wire and the base material is strongly focused in the anode region (hereinafter referred to as the arc leg) under ml of the wire molten metal, as a characteristic of the carbon dioxide arc, which is a diatomic molecule. The wire molten metal is pushed up by this reaction force (arc force) on the arc generation surface, and at the same time, the arc always moves to the closest location to the base metal and molten pool.

この結果ワイヤ先端に生じた溶融金属の形状は、不規則
な形状を呈すると共に、激しい運動を行っている。つい
にはワイヤ端より離脱し、液滴となり、母材・溶融池に
移行、すなわち粒滴移行している。またワイヤ端溶融金
属は、激しいアーク力の結果、時には母材および溶融池
と瞬間的な短絡を生じ、(この時アークは消滅する)爆
発的な再アークを発生させている。
As a result, the shape of the molten metal produced at the tip of the wire is irregular and moves violently. Eventually, it separates from the wire end, becomes a droplet, and transfers to the base material/molten pool, that is, it transfers to a droplet. Furthermore, as a result of the intense arc force, the molten metal at the wire end sometimes causes an instantaneous short circuit with the base metal and the molten pool, causing an explosive re-arc (at which point the arc is extinguished).

スパッタの発生プロセスは、陽極領域即ちアークの足の
集束と移動およびとくに瞬間的な短絡(0,01秒以下
)からの爆発的な再アーク現象が原因である事が判った
It has been found that the spatter generation process is due to the focusing and movement of the anode region or arc legs and explosive re-arcing phenomena, especially from momentary short circuits (less than 0.01 seconds).

本発明者は、大電流粒子間移行浴接条件下におけるスパ
ッタの発生が、主として0.01秒以下の瞬間的短絡が
破れろ時の爆発的な書アークのアーク力によるのを知る
と同時に、ワイヤの成分とスパッタ発生について多くの
実験を行った。
The inventor of the present invention discovered that the occurrence of spatter under conditions of high current interparticle transfer bath contact is mainly due to the arc force of an explosive short-circuit when an instantaneous short circuit of 0.01 seconds or less is broken. Many experiments were conducted regarding wire composition and spatter generation.

この結果、鋼ワイヤの総酸素量100〜500ppmに
調整し、合金元素を前述の含有量範囲で含ませた時、ア
ーク現象および溶滴移行現象において従来ワイヤと異り
、ス・ξツタ発生の少い浴接作業性に優れた鋼ワイヤが
得られた。鋼ワイヤの総酸素量を100〜500 pp
mに規制した理由については後述するが、まず本発明ワ
イヤの浴接アーク現象について従来ワイヤとの差異をの
べる。
As a result, when the total oxygen content of the steel wire is adjusted to 100 to 500 ppm and the alloying elements are included in the above content range, unlike conventional wires, the generation of s. A steel wire with excellent workability was obtained with little bath welding. The total amount of oxygen in the steel wire is 100-500 pp.
The reason for restricting it to m will be described later, but first we will discuss the differences between the wire of the present invention and the conventional wire regarding the bath welding arc phenomenon.

第1図(a)、(b)は従来ワイヤと本発明ワイヤのア
ーク現象および溶滴の移行について、モデル化して対比
したものである。
FIGS. 1(a) and 1(b) are modeled comparisons of arc phenomena and droplet transfer between a conventional wire and a wire according to the present invention.

lはアーク浴接用ワイヤであり、2はアーク5の熱によ
って溶融した金属、2は被M接材である母材である。浴
融金属2からは、母材3又は溶融池4との最も近い表面
をアーク発生面6として、母材1とのアークが持続され
る。
1 is a wire for arc bath welding, 2 is metal melted by the heat of the arc 5, and 2 is a base material to be welded. From the bath molten metal 2, an arc with the base metal 1 is maintained with the surface closest to the base metal 3 or molten pool 4 serving as the arc generation surface 6.

従来ワイヤは第1図(a)に示す通りで極めて不安定状
態のものであるが、本発明ワイヤの例(ま第1図(b)
に示すように、ワイヤ1の先端の溶融金属2の形状か球
状で、かつアーク発生面6はその下面に分散し発生して
いる。ワイヤ1の先端の解融金属2は、順次成長するも
のであるカー、アークの圧力で押しもどされる現象が極
めて少く、順調な粒滴移行現象となった。瞬間的短籟現
象は従来ワイヤの約1/2以下に減少した。そしてスパ
ッタの発生は半減した。
The conventional wire is in an extremely unstable state as shown in FIG. 1(a), but the example of the wire of the present invention (as shown in FIG. 1(b)
As shown in FIG. 1, the shape of the molten metal 2 at the tip of the wire 1 is spherical, and the arc generating surface 6 is distributed and generated on the lower surface thereof. The molten metal 2 at the tip of the wire 1 was hardly pushed back by the pressure of the car and arc, which grow sequentially, and a smooth droplet transfer phenomenon occurred. The instantaneous shortening phenomenon was reduced to about 1/2 or less compared to conventional wire. And the occurrence of spatter was halved.

ワイヤの総酸素量が、このようなアーク現象の変化を生
ずる理由について詳かではないが、総酸素量とは抽出酸
素で示すが、鋼中、銅メッキと素地の間、銅メッキ層お
よび銅メツキ表面の酸素、酸化物であるから、それらは
アークの発生するワイヤ端まで持ちこまれ、溶滴の表面
を被包し、溶滴の表面張力を低下させると同時に、酸化
物による陽、陰極の放電現象を変化させたものと推察さ
れる。
It is not clear why the total amount of oxygen in the wire causes such a change in the arc phenomenon, but the total amount of oxygen is expressed as extracted oxygen, but there are Oxygen and oxides on the plating surface are carried to the end of the wire where the arc occurs, enveloping the surface of the droplet and lowering the surface tension of the droplet. It is presumed that the discharge phenomenon has been changed.

これら酸素、酸化物が、ワイヤ端、溶融金属の全面を被
包した状態を形成しうろのが、総酸素量で100 pp
m以上の時であると考えられる。
These oxygen and oxides form a state in which the end of the wire and the entire surface of the molten metal are covered, and the total amount of oxygen is 100 pp.
It is considered that the time is more than m.

第2図は、ワイヤの総酸素量と瞬間的な短絡回数との関
係を示す。瞬間的な短絡回数は、溶接時の浴接電流、ア
ーク電圧を記録し解析したもので、使用ワイヤおよび溶
接条件は第1表に示すもので、後述の第3図と同じであ
る。瞬間的な短絡現象は、ワイヤの総酸素量100 p
pmを超えると急激に低下し、500ppmを超えると
むしろばらつく結果となった。この結果は過剰な総酸素
量がスパッタの減少に有害であることを示すものであろ
う。
FIG. 2 shows the relationship between the total amount of oxygen in the wire and the number of instantaneous short circuits. The number of instantaneous short circuits was obtained by recording and analyzing the bath contact current and arc voltage during welding, and the wires and welding conditions used are shown in Table 1 and are the same as in FIG. 3, which will be described later. The momentary short circuit phenomenon occurs when the total amount of oxygen in the wire is 100 p.
When it exceeded pm, it suddenly decreased, and when it exceeded 500 ppm, the results were rather variable. This result would indicate that excessive total oxygen content is detrimental to reducing spatter.

つぎに各合金元素C1Si、M11およびTiの各限定
範囲を設けた理由についてのべる。
Next, the reason for setting the limited ranges for each of the alloying elements C1Si, M11, and Ti will be described.

Cは0.06%未満の時スパッタ発生の総量としては変
らないが、大粒のスパッタが発生する。
When C is less than 0.06%, the total amount of spatter does not change, but large spatter particles occur.

大粒ス・ξツタは、ノズルや溶接部近傍に強固に付着し
、スパッタ除去の問題発生の頻度か高い。
Large grains of spatter and ξ ivy adhere firmly to the nozzle and the vicinity of welding parts, causing spatter removal problems frequently.

従ってCの含有量は0.06%以上とした。006%C
以上の時、粒滴移行における粒滴移行が李めらかになリ
スバッタは微減した。これは炭酸ガスアーク中において
、溶滴、溶融池におけるCO反応が活発になる結果であ
るとみられる。
Therefore, the C content was set to 0.06% or more. 006%C
Under the above conditions, the droplet transfer was smooth and the number of squirrel locusts decreased slightly. This appears to be the result of active CO reactions in the droplets and molten pool in the carbon dioxide arc.

しかしワイヤのCが0.15%を超えると、溶接金属の
C含有量が増加し、引張強さが高く、伸びが減少し、衝
撃じん性の低下をもたらすので、Cは0.15%に限定
した。
However, if the C content of the wire exceeds 0.15%, the C content of the weld metal will increase, resulting in high tensile strength, decreased elongation, and a decrease in impact toughness. Limited.

炭酸ガスアーク溶接ワイヤは、溶接中にSiおよびMn
の消耗を考慮した添加が必要である。
Carbon dioxide arc welding wire contains Si and Mn during welding.
It is necessary to add it in consideration of its consumption.

しかも粒滴移行溶接条件は、大電流、筒アーク電圧で行
われるものであるからSl r IVfnの消耗の傾向
が著しい。St 7!l″−0,50%未満、胤が0.
90%未満の時、Cと同じく大粒のスパッタが発生する
とともに、溶接金属のSi 、 Mnが低下し、溶接ビ
ード、気孔、ピットが発生した。
Moreover, since droplet transfer welding is performed under high current and tube arc voltage, there is a significant tendency for Sl r IVfn to be consumed. St 7! l″-0, less than 50%, seed 0.
When it was less than 90%, as with C, large spatters were generated, Si and Mn in the weld metal decreased, and weld beads, pores, and pits were generated.

Siが0.50%以上、胤が0.90%以上ノ時、大粒
のスパッタの発生がな(なる。しがしSiが1.20%
を超え、地が1.90%を超えると、溶接金属のSis
Mnが高くなり、硬化し、伸びが低下し、また衝撃じん
性が劣下した。従って適正な範囲としてSi 0.50
〜1.20%、]Vfn0.90〜1.90%に限定し
た。
When Si is 0.50% or more and Seed is 0.90% or more, large spatter does not occur.
If the Sis of the weld metal exceeds 1.90% and the ground content exceeds 1.90%,
The Mn content increased, hardening occurred, elongation decreased, and impact toughness decreased. Therefore, the appropriate range is Si 0.50
-1.20%,] Vfn was limited to 0.90-1.90%.

つぎにTiの効果についてのべる。ワイヤにTiの添加
はス・ξツタ低減に効果があることは前述した。しかし
Tiのスパッタ低減は、ワイヤの総酸素量を調整すると
き著しい効果のある事が判った。これはワイヤのTiが
スパッタを低減するのではなく、Tiは溶滴の表面にお
いてTiO2の酸化物として存在し、表面張力およびア
ーク放電現象を変化させるものと推定されろ。
Next, we will talk about the effects of Ti. As mentioned above, adding Ti to the wire is effective in reducing ivy. However, Ti spatter reduction was found to have a significant effect when adjusting the total oxygen content of the wire. It is assumed that this is not because the Ti in the wire reduces spatter, but because Ti exists as an oxide of TiO2 on the surface of the droplet and changes the surface tension and arc discharge phenomenon.

第4図はワイヤのTi添加量、総酸素量およびスパッタ
の発生との関係を図示するもので、総酸素量300 p
pmの本発明ワイヤは、総酸素量80 ppmの従来ワ
イヤに比べ、Ti0.10%以上で著しいスパッタの減
少が得られているのが判る。なお第4図の溶接条件は後
述の第1表と同じである。また総酸素量の調整によって
、浴接中の反応でTiO2として、スラグ除去されるの
で、従来のワイヤよりワイ・ヤTiの浴接金属への歩留
は低い。
Figure 4 shows the relationship between the amount of Ti added to the wire, the total amount of oxygen, and the occurrence of sputtering.
It can be seen that the wire of the present invention having a Ti content of 0.10% or more significantly reduces spatter compared to the conventional wire having a total oxygen content of 80 ppm. Note that the welding conditions in FIG. 4 are the same as in Table 1, which will be described later. Furthermore, by adjusting the total amount of oxygen, the slag is removed as TiO2 by reaction during bath welding, so the yield of wire wire Ti to bath weld metal is lower than that of conventional wire.

しかしワイヤのTiが、03′5%を超えると浴接金属
へのTiの歩留りが高くなり、またTiの強膜酸の結果
、同時にSi、Mnの歩留も高くなる。この結果溶接金
属の硬化、伸びの減少、衝撃値の低下など、機械的性質
が著しく劣化した。
However, if the Ti content of the wire exceeds 03'5%, the yield of Ti in the bath metal will increase, and as a result of the strong acidity of Ti, the yields of Si and Mn will also increase at the same time. As a result, the mechanical properties of the weld metal were significantly deteriorated, such as hardening, decreased elongation, and decreased impact value.

従って適正なTiの範囲を0.10〜035チにした。Therefore, the appropriate Ti range was set to 0.10 to 0.35 Ti.

第3図は、ワイヤの総酸素量とスパッタ発生との関係を
示す実施例である。ワイヤの総酸素量100〜500 
ppmでスパッタが減少しているのが判る。この時の溶
接用鋼ワイヤおよび溶接条件を、第1表のもので下向き
ビード置き溶接をスパッタ採取箱内で行った結果である
FIG. 3 is an example showing the relationship between the total amount of oxygen in the wire and the occurrence of spatter. Total oxygen content of wire 100-500
It can be seen that spatter is reduced by ppm. The welding steel wire and welding conditions at this time were those shown in Table 1, and downward bead welding was performed in a spatter collection box.

第1表 また溶接用鋼ワイヤの総酸素量の調整は、銅メッキした
ワイヤを、酸素ガス分圧を規制した雰囲気ガス下で熱処
理し、行った。
Table 1 The total oxygen content of the welding steel wire was adjusted by heat-treating the copper-plated wire in an atmospheric gas with a regulated oxygen gas partial pressure.

第3図に示すように、ワイヤの総酸素量100〜500
 ppmの調整で、100 ppm未満の従来ワイヤに
比較し、スパッタ発生量は約半減している。
As shown in Figure 3, the total oxygen content of the wire is 100-500.
By adjusting the ppm, the amount of spatter generated is reduced by about half compared to conventional wires with less than 100 ppm.

総酸素酸の調整は、銅メッキの酸化処理の外に、鋼中の
酸素および酸化物によって、あるいは銅メツキ下の酸素
および飯化物によっても、全く同じスパッタ減少効果を
得た。
In addition to the oxidation treatment of copper plating, adjustment of the total oxygen acid also achieved the same spatter reduction effect by using oxygen and oxides in the steel, or by oxygen and hydrides under copper plating.

炭酸ガスアーク溶接用鋼ワイヤ1とは、JISZ 33
12に規格化されている軟鋼、50キロ級高張力鋼用以
外の高張力鋼用、耐熱鋼用、低温用鋼用および耐候性鋼
用等ワイヤがあり、それらは大電流の粒滴移行溶接条件
で使用されている。これらのワイヤには、上記各用途に
適合するために、合金元素としてCu % NiN C
r N Mo、隅および■の1種又は2種以上の任意の
組合せで、かつ所定酸が添加されている。これら各種用
途の鋼ワイヤについても、総酸素量を100〜500p
pmに調整するとともにC,Si、Mn、Tiの含有量
を本発明範囲内にすることによってスパッタの発生は低
減され、本発明が適用され効果を発揮しうるものである
Steel wire 1 for carbon dioxide arc welding is JISZ 33
There are wires for mild steel, high-strength steel other than 50 kg class high-tensile steel, heat-resistant steel, low-temperature steel, and weather-resistant steel that are standardized to 12, and these wires are used for high-current droplet transfer welding. used in conditions. These wires contain Cu % NiN C as an alloying element to suit each of the above applications.
r N Mo, corner, and ■, or any combination of two or more thereof, and a specified acid is added. Regarding steel wires for these various uses, the total oxygen content is 100 to 500 p.
By adjusting the content of C, Si, Mn, and Ti to within the range of the present invention, the occurrence of spatter can be reduced, and the present invention can be applied and exert its effects.

本発明の効果を要約すると次の通りである。The effects of the present invention are summarized as follows.

1)炭酸ガスアーク浴接における粒滴移行浴接条件下で
多発するスパッタを1/2以下に減少させた。この結果
、ワイヤの溶着効率を高め、浴接能率を向上できた。
1) Spatter occurring frequently under droplet transfer bath conditions in carbon dioxide arc bath welding was reduced to less than 1/2. As a result, we were able to increase wire welding efficiency and bath welding efficiency.

2)ス、11ツタ発生減少は、スパッタがノズルに耐着
し、ガスシールドを劣化し、浴接結果を損いやすいのを
改善した。
2) Reducing the generation of ivy improves the tendency for spatter to adhere to the nozzle, deteriorate the gas shield, and impair the bath welding results.

3)スパッタの発生で被溶接物の外観を損なうのを少な
くし、またその除去に要する労力を軽減した。
3) Reduced damage to the appearance of the welded object due to spatter generation, and reduced the labor required to remove it.

4)溶接アーク現象が、スパッタ発生の少い好ましいア
ーク現象に変化し、浴接作業性が改善された。
4) The welding arc phenomenon changed to a favorable arc phenomenon with less spatter generation, and bath welding workability was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来ワイヤと本発明ワイヤのアーク現象および
溶滴移行の比較の模式図、第2図はワイヤの総酸素量と
瞬間的短絡回数との関係の図表、第3図はワイヤの総酸
素量とスパッタ発生量との関係の図表、第4図はワイヤ
のTi量とスパッタ発生量との関係の図表である。 7さ)5 ノ t?■ (α) (b)
Fig. 1 is a schematic diagram comparing the arc phenomenon and droplet transfer between conventional wire and wire of the present invention, Fig. 2 is a diagram showing the relationship between the total oxygen content of the wire and the number of instantaneous short circuits, and Fig. 3 is the total FIG. 4 is a chart showing the relationship between the amount of oxygen and the amount of spatter generated. FIG. 4 is a chart showing the relationship between the amount of Ti in the wire and the amount of spatter generated. 7sa) 5 no t? ■ (α) (b)

Claims (1)

【特許請求の範囲】[Claims] ワイヤの総酸素量が100〜500 ppmであり、C
:006〜0.15係(重量係以下同じ)、SiO,5
0〜120%、胤;090〜1.90%、Ti:O,1
0〜035%を夫々含有するとともに、残部はt+’e
および不可避的不純物からなり、粒滴移行頭載の炭酸ガ
スシールドアーク浴接で使用して、スパッタ発生が少な
いことを特徴とするアーク浴接用鋼ワイヤ。
The total oxygen content of the wire is 100 to 500 ppm, and C
:006~0.15 section (same below weight section), SiO, 5
0-120%, Seed; 090-1.90%, Ti:O, 1
0 to 035%, and the remainder is t+'e
A steel wire for arc bath welding, which is characterized by low spatter generation when used in carbon dioxide shielded arc bath welding with droplet migration head.
JP6891382A 1982-04-24 1982-04-24 Steel wire for arc welding Granted JPS58187298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6891382A JPS58187298A (en) 1982-04-24 1982-04-24 Steel wire for arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6891382A JPS58187298A (en) 1982-04-24 1982-04-24 Steel wire for arc welding

Publications (2)

Publication Number Publication Date
JPS58187298A true JPS58187298A (en) 1983-11-01
JPS646873B2 JPS646873B2 (en) 1989-02-06

Family

ID=13387365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6891382A Granted JPS58187298A (en) 1982-04-24 1982-04-24 Steel wire for arc welding

Country Status (1)

Country Link
JP (1) JPS58187298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961592A (en) * 1982-09-29 1984-04-07 Nippon Steel Corp Steel wire for arc welding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818496A (en) * 1952-12-06 1957-12-31 Westinghouse Electric Corp Welding electrode
JPS503256A (en) * 1973-05-11 1975-01-14
JPS5021952A (en) * 1973-06-28 1975-03-08
JPS5127835A (en) * 1974-08-26 1976-03-09 Nippon Steel Corp GASUSHIIRUDOYOSETSUYOKOWAAIYA
JPS55114495A (en) * 1979-02-24 1980-09-03 Daido Steel Co Ltd Steel wire for welding
JPS56144892A (en) * 1980-04-10 1981-11-11 Nippon Steel Weld Prod & Eng Co Ltd Wire for welding
JPS5758994A (en) * 1980-09-25 1982-04-09 Kobe Steel Ltd Wire for low spatter carbon dioxide gas shielded arc welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818496A (en) * 1952-12-06 1957-12-31 Westinghouse Electric Corp Welding electrode
JPS503256A (en) * 1973-05-11 1975-01-14
JPS5021952A (en) * 1973-06-28 1975-03-08
JPS5127835A (en) * 1974-08-26 1976-03-09 Nippon Steel Corp GASUSHIIRUDOYOSETSUYOKOWAAIYA
JPS55114495A (en) * 1979-02-24 1980-09-03 Daido Steel Co Ltd Steel wire for welding
JPS56144892A (en) * 1980-04-10 1981-11-11 Nippon Steel Weld Prod & Eng Co Ltd Wire for welding
JPS5758994A (en) * 1980-09-25 1982-04-09 Kobe Steel Ltd Wire for low spatter carbon dioxide gas shielded arc welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961592A (en) * 1982-09-29 1984-04-07 Nippon Steel Corp Steel wire for arc welding
JPH0451274B2 (en) * 1982-09-29 1992-08-18 Nippon Steel Corp

Also Published As

Publication number Publication date
JPS646873B2 (en) 1989-02-06

Similar Documents

Publication Publication Date Title
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
US20040140303A1 (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
US6784402B2 (en) Steel wire for MAG welding and MAG welding method using the same
CN109128573B (en) Large-heat-input electro-gas welding gas-shielded flux-cored wire based on grain refinement mechanism
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JPS6327120B2 (en)
JP3945396B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JPS58187298A (en) Steel wire for arc welding
JP2007118069A (en) Gas-shielded arc welding method
JP4529482B2 (en) Fillet welding method
WO2022050014A1 (en) Arc welding method
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JP7541650B2 (en) Positive polarity MAG welding wire and positive polarity MAG welding method using the same
JP3969323B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP3203527B2 (en) Flux-cored wire for gas shielded arc welding
JP3546738B2 (en) Steel wire for gas shielded arc welding and method for producing the same
JPH0246994A (en) Solid wire for gas shielded arc welding
JP3969322B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2001353592A (en) Steel wire for co2 gas shielded arc welding
JP3906827B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP3941756B2 (en) Carbon steel wire for carbon dioxide shielded arc welding
JP5411796B2 (en) Solid wire for gas shielded arc welding
JPS61176492A (en) Flux-cored wire for welding stainless steel
JP4639598B2 (en) Electrogas arc welding method