JPS58187004A - Crystal oscillating circuit of low power consumption - Google Patents

Crystal oscillating circuit of low power consumption

Info

Publication number
JPS58187004A
JPS58187004A JP6995482A JP6995482A JPS58187004A JP S58187004 A JPS58187004 A JP S58187004A JP 6995482 A JP6995482 A JP 6995482A JP 6995482 A JP6995482 A JP 6995482A JP S58187004 A JPS58187004 A JP S58187004A
Authority
JP
Japan
Prior art keywords
inverter
channel
circuit
output
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6995482A
Other languages
Japanese (ja)
Inventor
Takahito Saito
斉藤 隆仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6995482A priority Critical patent/JPS58187004A/en
Publication of JPS58187004A publication Critical patent/JPS58187004A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/028Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only of generators comprising piezoelectric resonators

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To compensate temperature and to reduce power consumption, by exciting two crystal oscillators at the same time with one output of two C-MOS inverters connected in series. CONSTITUTION:A C-MOS inverter at the power supply side comprising a P- channel MOSFET Tp1 and an N-channel MOSFET TN1, and a C-MOS inverter at the ground side comprising a P-channel MOSFET Tp2 and an N-channel MOSFET TN2 are connected in series, and crystal oscillators Q1, Q2 having opposite temperature characteristics are connected in parallel with the output of the inverter at the ground side and excited at the same time. Thus, the electric charges flowing out of the power supply are those charged and discharged with the voltage corresponding to changed voltage of the output voltage V0 for an electrostatic capacity Cd1 at each wave of the oscillation, and the power consumption is reduced.

Description

【発明の詳細な説明】 本発明は低消費電力水晶発振回路に関し、特にQ −M
O8インバータを用いて2つの水晶振動子を同時に励振
することにより温度特性補償を計った低消費電力水晶発
振回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low power consumption crystal oscillator circuit, and particularly to a Q-M crystal oscillator circuit.
The present invention relates to a low power consumption crystal oscillator circuit that compensates for temperature characteristics by simultaneously exciting two crystal oscillators using an O8 inverter.

現在低消費電力用の発振回路には、交互にオン状態が続
いてもその期間ずつと電流が流れ続けない、インバータ
構成のO−MOEI工C回路が多く利用されている。水
晶時計用またはその他の水晶発掘回路にも、このO−M
OS −IC回路が多く使用されて層り、第1図はこう
したO −MOS −IC回路構成の水晶発振回路の基
本回路である。同図においてT はP−チャンネルMO
8FET 、 T、U N−チャンネルM08 FET
で、これらを直列に接続してC−MOθインバータを構
成している。GpFiP−チャンネル MOS 7ET
 Tpのゲート、G夏はN−チャンネルMO8FB’r
 T、のゲート、Rは抵抗である。前記C−MOSイン
バータには並列に水晶振動子Qが接続されており、 I
M 、 Cgは夫々所定の静電容量である。
Currently, O-MOEI C circuits having an inverter configuration are often used in oscillation circuits for low power consumption, in which current does not continue to flow even if the circuit is alternately turned on. This O-M is also suitable for crystal watches or other crystal excavation circuits.
Many OS-IC circuits are used and layered, and FIG. 1 shows a basic circuit of a crystal oscillation circuit having such an O-MOS-IC circuit configuration. In the figure, T is P-channel MO
8FET, T, U N-channel M08 FET
These are connected in series to form a C-MOθ inverter. GpFiP-channel MOS 7ET
Tp gate, G summer is N-channel MO8FB'r
The gate of T, R is a resistance. A crystal resonator Q is connected in parallel to the C-MOS inverter, and I
M and Cg are respectively predetermined capacitances.

この第1図に示される発振回路は、P−チャンネル及び
N−チャンネルMO8711iT Tpとτ夏のゲート
が共通に接続されたいわゆる共通ゲート構造であるため
、この発掘回路を動作させるためには、電源電圧+vD
はP−チャンネルMO8FH丁Tpのしきい値電圧vh
p、 N −チャ7ネkMOB FET Tl (7)
シきい値電圧vh)lの和より大きくしなければならず
、消費電力の低減を計ることが困難であった。
The oscillation circuit shown in FIG. 1 has a so-called common gate structure in which the P-channel and N-channel MO8711iT Tp and τ summer gates are connected in common, so in order to operate this excavation circuit, a power source is required. Voltage +vD
is the threshold voltage vh of P-channel MO8FH DingTp
p, N-channel 7k MOB FET Tl (7)
The threshold voltage must be made larger than the sum of the threshold voltages vh)l, making it difficult to measure the reduction in power consumption.

ごのため第2図に示される、いわゆる分離ゲート構造の
発振回路が提案されてい石。同図において第1図と同一
符号は同一物を示している。この杭2図の回路構成でd
P−チャンネルMO日FIT T。
For this reason, an oscillation circuit with a so-called separated gate structure, as shown in Figure 2, has been proposed. In this figure, the same reference numerals as in FIG. 1 indicate the same parts. With the circuit configuration of this pile 2 diagram, d
P-channel MO day FIT T.

のゲートGpと接地間に高インピーダンスの抵抗R3が
接続cthN−’t’r:yネルMO87BT Tel
のゲートGlと電源電圧+vD′との間圧同様に高イン
ピーダンスの抵抗R,が接続されている。またOl、O
sは直流分カット用のコンデンサである。この第2図に
示される発振回路を動作させるためには、電源電圧+v
D′は、前述したP−チャンネルM087FiT Tp
のしきい値V■、N−チャンネルMO日FIIT T翼
めしきいft1Vhyの各々より大きければよい。従っ
て、電源電圧+vD′は第1図に示される発振回路の電
源電圧+vpの約半分でよく電流も減少し、消費電力も
大幅に減少する。しかし、発振回路部分の電圧が約半分
になっても、この発振回路の後段に接続される分周回路
等の回路部分の電源電圧も半分とならなければ、発振回
路部分の電池だけを別にしなければならないので、実用
化に際して開−があった。
A high impedance resistor R3 is connected between the gate Gp and ground cthN-'t'r:ynel MO87BT Tel
A high impedance resistor R is connected in the same way as the voltage between the gate Gl and the power supply voltage +vD'. Also, Ol, O
s is a capacitor for cutting the DC component. In order to operate the oscillation circuit shown in FIG. 2, the power supply voltage +v
D′ is the P-channel M087FiT Tp described above.
It is sufficient that the threshold value V 1 is greater than the N-channel MO day FIIT T wing threshold ft1Vhy. Therefore, the power supply voltage +vD' is only about half of the power supply voltage +vp of the oscillation circuit shown in FIG. 1, and the current is also reduced, and the power consumption is also significantly reduced. However, even if the voltage of the oscillation circuit section is reduced to approximately half, if the power supply voltage of circuit sections such as the frequency divider circuit connected to the subsequent stage of this oscillation circuit is not also halved, then only the battery for the oscillation circuit section must be removed. Therefore, there was a gap in practical application.

更に他の提案として襖3図に示されるように、第2図の
発掘回路の温度特性の補償を計ったものもある。第2図
と同一符号は1IIj−物を示している。
Another proposal, as shown in Figure 3 of the sliding door, is to compensate for the temperature characteristics of the excavation circuit shown in Figure 2. The same reference numerals as in FIG. 2 indicate 1IIj-products.

この第3図の発振回路は、第2図の低電圧動作のC−M
OS回路の出力側に2個の水晶振動子Q+、Qtを接続
して同時に励振する。この励振罠よって発生する水晶振
動子Q1% コンデンサOg+を含む共振回路の出力に
より、0−MOSインバータのPチャンネルMO8FE
T Tp のゲートを制卸すると共に、水晶振−動子Q
2.コンデンサOgtを含む共振回路の出力によj)、
0−MOSインバータのNチャンネルMOS F’KT
 TM  のゲートを副針している。なおR1′。
The oscillation circuit shown in Fig. 3 is based on the low voltage operation C-M shown in Fig. 2.
Two crystal oscillators Q+ and Qt are connected to the output side of the OS circuit and excited simultaneously. The output of the resonant circuit including the crystal oscillator Q1% capacitor Og+ generated by this excitation trap causes the P channel MO8FE of the 0-MOS inverter to
While controlling the gate of T Tp, the crystal oscillator Q
2. j) by the output of the resonant circuit including the capacitor Ogt,
0-MOS inverter N-channel MOS F'KT
The TM gate is used as the secondary needle. Note that R1'.

R,I は抵抗である。この場合、水晶振動子Q、Q*
の周波数fI*’lが略同じ時、発振回路の発振周波数
は(fm”fm)/2となる。従って、水晶振動子Ql
e−の温度特性がお互いに反対で補償し合うように選ん
で組合せると、温度特性の極めて良好な発掘器を得るこ
とができる。
R and I are resistances. In this case, crystal oscillators Q, Q*
When the frequencies fI*'l of the oscillator circuit are approximately the same, the oscillation frequency of the oscillation circuit is (fm"fm)/2. Therefore, the oscillation frequency of the crystal oscillator Ql
If e- are selected and combined so that their temperature characteristics are opposite to each other and compensate for each other, an excavator with extremely good temperature characteristics can be obtained.

本発明は上記の点に鑑みてなされたもので、第雪図罠示
される発振回路の低電圧特性を一層改咎すふと共に、纂
3因に示される温度補償特性を備え、更に後段に接続さ
れる回路の制御に必要且つ充分な出力波形を有する低消
費電力水晶発振回路を提供することを目的とし、本発明
ではこの目的を達成するためにs CMOSインバータ
を2個直列に接続して、少くとも一方のC−MOSイン
バータの出力で温度特性が互いに反対の2個の水晶振動
子を同時に励振して、一方の水晶振動子を通した発振出
力により前記○−MO日インバータを構成するP−チャ
ンネルMOEI FETの各ゲートを制御すると共に、
他方の水晶振動子を通した発振出力によね前記C−MO
Sインバータを構成するN−チャンネルMO8FKTの
各ゲートを制御するようにしたことを特徴としている。
The present invention has been made in view of the above points, and further improves the low voltage characteristics of the oscillation circuit shown in the chart, and also provides temperature compensation characteristics shown in the three factors, and further improves the low voltage characteristics of the oscillation circuit shown in the diagram. An object of the present invention is to provide a low power consumption crystal oscillator circuit having an output waveform necessary and sufficient for controlling the circuit to be used.In order to achieve this object, in the present invention, two S CMOS inverters are connected in series. Two crystal oscillators having opposite temperature characteristics are simultaneously excited by the output of at least one C-MOS inverter, and the oscillation output through one crystal oscillator constitutes the ○-MO inverter. - Control each gate of the channel MOEI FET, and
Due to the oscillation output through the other crystal oscillator, the C-MO
It is characterized in that each gate of the N-channel MO8FKT constituting the S inverter is controlled.

以下本発明の一実施例を添附された図面と共に説明する
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第4図は杢発明に係る低消費電力水晶発振回路の一実施
例の回路図であり、第5図は第4図の各部の動作波形図
であり第4図において第3図と同一符号は同一物を示し
ている。
FIG. 4 is a circuit diagram of an embodiment of the low power consumption crystal oscillator circuit according to the invention, and FIG. 5 is an operation waveform diagram of each part in FIG. 4. In FIG. 4, the same symbols as in FIG. 3 are It shows the same thing.

第4図に示す発振回路では、P−チャンネルMO8FE
T TdlとN−チャンネルMO8FN!XT TNI
からなるwt電源側O−MOSインバータとP−チャン
ネルM○5FKT TplとN−チャンネA=MO日F
KT TN、からなる接地側のO−MOSインバータを
直列に接続し、この接地側のO−MOSインバータの出
力端に並列に水晶振動子Q+、Qtを接続して同時に励
振するように構成している。Ca、は電源側C−MOS
インノ(−タの静電容量、v璽はその出力端の電圧、C
dOは電源便と接地側のO−MOSインバータの接続点
(接合部)の静電容量、VoFiその出力電圧であり次
段の回路の制御出力となる。またCa、は接地側C−M
OSインバータの静電容量svtはその出力端の電圧で
ある。また、静電容量C(1,、水晶振動子Q++静電
容tcg+からなる共振回路の出力により前記C−MO
SインバータのP−チャンネルMO8FET ’1’p
1゜TpIの各ゲー) Gpl+ ”Q”を並列に制御
して発振回路を形成すると共に、静電容量Ca、 、水
晶振動子Qt+静電容量○g、からなる共振回路の出力
により#記C−MOEIインバータのN−チャンネルM
O8Flffl’rTN、、 TI、の各ゲートG、、
 、 Gll、を並列に制御して発振回路を形成してい
る。また、0−MOSインバータを織成する各MORI
 F]!!τのゲートには抵抗”1leR□;’n’、
R□′によね所定の直流バイアス雷、圧が印加されるよ
うになっている。更に、4個のMOS FF1Tの各ゲ
ートには直流分をカットするための結合コンデンサC,
%C4が夫々接続されているが、実ffi!y−は2個
で十分である。
In the oscillation circuit shown in Fig. 4, the P-channel MO8FE
T Tdl and N-channel MO8FN! XT TNI
wt power supply side O-MOS inverter consisting of P-channel M○5FKT Tpl and N-channel A=MO day F
A ground-side O-MOS inverter consisting of KT TN is connected in series, and crystal oscillators Q+ and Qt are connected in parallel to the output terminal of this ground-side O-MOS inverter and are excited simultaneously. There is. Ca is power supply side C-MOS
The capacitance of inno (-ta), v is the voltage at its output terminal, C
dO is the capacitance at the connection point (junction) between the power supply and the ground side O-MOS inverter, VoFi is its output voltage, and becomes the control output of the next stage circuit. Also, Ca is the ground side C-M
The capacitance svt of the OS inverter is the voltage at its output terminal. Furthermore, the C-MO is
P-channel MO8FET '1'p of S inverter
1゜TpI each game) Gpl + "Q" is controlled in parallel to form an oscillation circuit, and the output of the resonant circuit consisting of capacitance Ca, , crystal resonator Qt + capacitance ○g causes #C -N-channel M of MOEI inverter
Each gate G of O8Fffl'rTN,, TI,
, Gll, are controlled in parallel to form an oscillation circuit. In addition, each MORI that weaves a 0-MOS inverter
F]! ! The gate of τ has a resistor "1leR□;'n',
A predetermined DC bias voltage is applied to R□'. Furthermore, each gate of the four MOS FF1T is equipped with a coupling capacitor C for cutting the DC component.
%C4 are connected respectively, but real ffi! Two y-s are sufficient.

発振の機構は、前述したように静電容量Ca、 。As mentioned above, the oscillation mechanism is the capacitance Ca.

水晶振動子Q1.静電容量OR+で第1の共振回路を形
成し、静電容量Ca、 、水晶振動子喝、静電容量01
Ztで第2の共振回路を形成、シている。従って、静電
容量Ca、には、2つの振動子Q+、Qvの共振電流が
流ねる。第4図中に示される■、Oは発振電圧の位相関
係を示したものである。
Crystal oscillator Q1. A first resonant circuit is formed with capacitance OR+, capacitance Ca, , crystal resonator, capacitance 01
A second resonant circuit is formed by Zt. Therefore, the resonance currents of the two vibrators Q+ and Qv flow through the capacitance Ca. 4 and O shown in FIG. 4 indicate the phase relationship of the oscillation voltages.

今、第5図の時刻1 =1oから1=1.の期間におい
て、接地側のO−MOII?インバータの出力電圧V。
Now, from time 1=1o in FIG. 5, 1=1. During the period of , O-MOII on the ground side? Inverter output voltage V.

が■で高い状態にある時、第1.第2の共振回路の出力
N’g+ I vglは低い位相Oの電圧になっている
When is in a high state at ■, the first. The output N'g+I vgl of the second resonant circuit is a low phase O voltage.

従って、この1=16から1=1.の期間P−チャンネ
k MOS FET TpIはOIJ、N−チャンネル
MO87ITTNIはOFFになっているので、静電容
11ca、は電源電圧+vDで充電されV、幸vDとな
る。またこの時P−チャンネルMO8Fl!iT Tp
t FiON、 N−チャンネルMO8FIT T)1
1及びTit、がoyyであるため、V、中V、となっ
ている。水晶振動子Q+ 、 Qtを含む共振回路の作
用で、電圧vg+ * vgtの位相がOがら■に変る
時刻1=1.に、O−MOSインバータのON、OFF
状態が反転する。その結果、PチャンネルMO8FIC
TTpI FiOFF 、 N−チャンネルMO87I
T THlはON。
Therefore, from this 1=16, 1=1. During this period, the P-channel k MOS FET TpI is OIJ, and the N-channel MO87ITTNI is OFF, so the capacitance 11ca is charged with the power supply voltage +vD and becomes V, which becomes vD. At this time, P-channel MO8Fl! iT Tp
t FiON, N-channel MO8FIT T)1
1 and Tit are oyy, so it is V, medium V. Due to the action of the resonant circuit including the crystal oscillators Q+ and Qt, the phase of the voltage vg+ * vgt changes from O to ■ at time 1=1. , ON/OFF of O-MOS inverter
The state is reversed. As a result, P-channel MO8FIC
TTpI FiOFF, N-channel MO87I
TTHl is ON.

P −+ ヤyネk MOS FET TplはOFF
となるためvIJFV6とな沙、静電容量Ca、の電荷
が静電容量0(1゜に移る。また、P−チャンネルMO
87BT Tp、 Fi前述したようにl0FFとなり
、N−チャンネルMO8’F1cTTN、がONとなる
ので、静電容量Ca、の電荷は接地に逃げるのでV、+
 Oとなる。この状態が時刻t=t、から時刻1 =1
.まで続舎、時刻1=1.で再び時刻t =t(lの初
期状部、即ち第4図に示される位相状n圧展る。
P −+ Yaynek MOS FET Tpl is OFF
Therefore, the charge of vIJFV6, Nasa, and capacitance Ca shifts to capacitance 0 (1°. Also, P-channel MO
87BT Tp, FiAs mentioned above, it becomes l0FF, and N-channel MO8'F1cTTN, turns ON, so the charge of capacitance Ca, escapes to the ground, so V, +
It becomes O. This state is from time t = t, to time 1 = 1
.. Continued until, time 1=1. Then again at time t = t(l, the initial shape, ie, the phase shape n shown in FIG. 4, expands.

各C! −MOSインバータに負荷として接続される静
電容量をaa、 = ca、とすることによって、出方
電圧V・を 4を中心圧変化させることが出来る。
Each C! -By setting the capacitance connected to the MOS inverter as a load to be aa, = ca, the output voltage V can be changed by 4 to the center pressure.

また、この時の変化の巾の大きさは、静電容量Ca、。Also, the width of the change at this time is the capacitance Ca.

Ca、の大きさと、静電容量Caoの大きさに反比例す
ることKなる。なお、共振回路を形成する静電容量0(
1,、及び静電容量C’g++Ogtの大きさによって
、制御出力電圧V、は変化する。次段の回路の制卸を良
好に行うためにこの発振回路からの制御電圧V、を大き
くする必要があるため、静電容量Ca。
The magnitude of Ca is inversely proportional to the magnitude of capacitance Cao. Note that the capacitance forming the resonant circuit is 0 (
1, and the magnitude of the capacitance C'g++Ogt, the control output voltage V changes. In order to properly control the next stage circuit, it is necessary to increase the control voltage V from this oscillation circuit, so the capacitance Ca.

に比較して静電容量Cg++Cggを小さく選んだ方が
発振しやすい。
It is easier to oscillate if the capacitance Cg++Cgg is selected to be smaller than .

また、第5図の波形図において、各出力波形を矩形波で
説明しであるが、0−MO8回路には内部抵抗があるの
で実際にはなまった波形となる。また、出力制御電圧v
0の振巾の大きさは、次段を制御するのに必要にして充
分であるように各静電容量0(16,Onl、 、 O
(1,の大きさを決めてやればよい。また電源側のC−
MOSインバータの出力回路に更に2個の水晶振動子を
並列に接続すれば、4個の水晶振動子で温度補償を行う
ことが可能となる。
Furthermore, in the waveform diagram of FIG. 5, each output waveform is explained as a rectangular wave, but since the 0-MO8 circuit has an internal resistance, the waveform actually becomes a rounded waveform. Also, the output control voltage v
The amplitude of each capacitance 0 (16, Onl, , O
(You just need to decide the size of 1. Also, the power supply side C-
If two more crystal oscillators are connected in parallel to the output circuit of the MOS inverter, it becomes possible to perform temperature compensation using four crystal oscillators.

本発明の一実施例は上述したようであり、電源から流出
する電荷は、発振の1波毎に静電容量0111を出力電
FEvIの変化分の電圧で充放電する量となるので、少
なくて済む。静電容量ca、 、 cao、 ca、の
全てを等しくして第1図に示される静電容1caと同じ
人命さにすれば、消費電力は約騒となる。
One embodiment of the present invention is as described above, and the charge flowing out from the power supply is the amount that charges and discharges the capacitance 0111 with the voltage corresponding to the change in the output voltage FEvI for each wave of oscillation, so the charge flowing out from the power supply is small. It's over. If all of the capacitances ca, , cao, and ca are made equal and have the same human life as the capacitance 1ca shown in FIG. 1, the power consumption will be about 100 yen.

また本実施例の発振回路の発振周波数は、水晶撮動子Q
+、(bの周波数f、とf、とした時]「勿発振するの
で、水晶振動子Q+、Qtの温度特性を適当に選ぶこと
によシ、温度特性の補償もできる。
Also, the oscillation frequency of the oscillation circuit in this example is the crystal sensor Q
+, (when the frequency of b is f, and f): Since it oscillates, the temperature characteristics can be compensated by appropriately selecting the temperature characteristics of the crystal oscillators Q+ and Qt.

以上説明して舎たように本発明に係る低消費電力水晶発
振器t” s O−MOSインバータを2個直列に接続
して、少くとも一方のO−MOSインバータの出力で温
度特性が互いに反対の2個の水晶振動子を同時に励振し
て、一方の水晶撮動子を通した発振出力により前記0−
 MOSインバータを構成するP−チャンネルMO8F
ETの各ゲートを制卸すると共罠、他方の水晶撮動子を
通した発振出力により前記0− M O8インバータを
構成するN−チャンネルMO8FITの各ゲートを制御
するように構成したので、従来に比して大幅に消費電力
を低減でをると共罠、温度特性の補償も可能となり、更
に次段に接続される回路の制御に必要且つ充分な出力波
形が得られるという特長を有する。
As explained above, two O-MOS inverters of the low power consumption crystal oscillator according to the present invention are connected in series so that the output of at least one O-MOS inverter has opposite temperature characteristics. Two crystal oscillators are simultaneously excited and the oscillation output through one crystal sensor is used to generate the 0-
P-channel MO8F that constitutes a MOS inverter
When each gate of the ET is controlled, the oscillation output through the other crystal sensor is used to control each gate of the N-channel MO8FIT that constitutes the 0-MO8 inverter. In comparison, the power consumption can be significantly reduced, and it is also possible to compensate for trapping and temperature characteristics, and furthermore, it has the advantage that an output waveform necessary and sufficient for controlling the circuit connected to the next stage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のC−MO8回路を利用した発振回路を示
す回路図、第2図は従来のC! −MO8回路を利用し
た低電圧型発振回路を示す回路図、第3図は従来のO−
MO8回路を利用した温度補償機能を有する2水晶発振
回路を示す回路図、第4図は本発明に係る低消費電力水
晶発振回路の一実施例の回路図、第5図は第4図に示さ
れる発掘回路の各部の出力電圧を示す動作波形図である
。 Tp、、Tp、  ・P−チャンネルMO8FIT 、
 TMI 。 1、−N−チャンネルMO日FICT%GPz e G
p!  P−チャンネルMO8FET Tpl 、 T
p鵞のゲートs G M Ie ” w・・N−チャン
ネルMO8FFfT Tll、、TN、のゲート、O(
1,。 aaa 、○”t ; (’gl e Cgl ・・・
静電容量、Q + * Q*・・水晶振動子svl・・
・電源側C−MO8インバータの出力電圧、■、・接地
側0− MO8インバータの出力電圧、V・・・・制御
出力電圧。 第1図 19 第3図
Figure 1 is a circuit diagram showing an oscillation circuit using a conventional C-MO8 circuit, and Figure 2 is a circuit diagram of a conventional C! -A circuit diagram showing a low voltage type oscillation circuit using the MO8 circuit, Figure 3 is a conventional O-
A circuit diagram showing a two-crystal oscillation circuit having a temperature compensation function using an MO8 circuit, FIG. 4 is a circuit diagram of an embodiment of a low power consumption crystal oscillation circuit according to the present invention, and FIG. FIG. 3 is an operation waveform diagram showing output voltages of various parts of the excavation circuit. Tp,, Tp, ・P-channel MO8FIT,
TMI. 1, -N-channel MO day FICT% GPz e G
p! P-channel MO8FET Tpl, T
p Goose Gates G M Ie ” w... N-channel MO8FFfT Tll,, TN, Gate, O(
1,. aaa, ○"t;('gl e Cgl...
Capacitance, Q + * Q *...Crystal resonator svl...
・Output voltage of the power supply side C-MO8 inverter, ■, ・Output voltage of the ground side 0-MO8 inverter, V...Control output voltage. Figure 1 19 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (11餓t、第2のO−MOsインバータを211直列
に接続し、この第1.第2のO−MO8インバータの各
出力端及び第1.第2のO−MOBインバータの接続部
と接地間に負荷として静電容量を夫々接続し、第1.第
2のO−MO8インバータの少くとも一方の出力端に互
いに温度特性が補償し合う@1.IE2の水晶振動子を
互いに並列に接続し、M@t、第2の水晶振動子を同時
に励振して第1.第2の共振回路を形成し、該第1の共
振回路の出力圧より前記@1.颯2の・ O−Woeイ
ンバータを構成するP−チャンネルMO日FF1Tの各
ゲートを割引すると共に、前記第2の共振回路の出力に
よシ前記ml、第2のC−MOBインバータを構成する
N−チャンネルMOEIFFliTの各ゲートを制御す
るように構成したことを特徴とする低消費電力水晶発振
回路。
(11 times, the second O-MOs inverter is connected in series, and each output terminal of the first and second O-MO8 inverters and the connecting part of the first and second O-MOB inverter are connected to ground. A capacitance is connected between each as a load, and @1.IE2 crystal resonators whose temperature characteristics compensate for each other are connected in parallel to at least one output terminal of the 1st and 2nd O-MO8 inverters. Then, M@t and the second crystal oscillator are simultaneously excited to form a first and second resonant circuit, and from the output pressure of the first resonant circuit, the O-Woe of @1. Each gate of the P-channel MOEIFF1T constituting the inverter is discounted, and each gate of the N-channel MOEIFF1T constituting the second C-MOB inverter is discounted according to the output of the second resonant circuit. A low power consumption crystal oscillation circuit characterized in that it is configured to control.
JP6995482A 1982-04-26 1982-04-26 Crystal oscillating circuit of low power consumption Pending JPS58187004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6995482A JPS58187004A (en) 1982-04-26 1982-04-26 Crystal oscillating circuit of low power consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6995482A JPS58187004A (en) 1982-04-26 1982-04-26 Crystal oscillating circuit of low power consumption

Publications (1)

Publication Number Publication Date
JPS58187004A true JPS58187004A (en) 1983-11-01

Family

ID=13417550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6995482A Pending JPS58187004A (en) 1982-04-26 1982-04-26 Crystal oscillating circuit of low power consumption

Country Status (1)

Country Link
JP (1) JPS58187004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161115A (en) * 2009-02-27 2014-09-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Resonant device with improved characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161115A (en) * 2009-02-27 2014-09-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Resonant device with improved characteristics

Similar Documents

Publication Publication Date Title
US4891609A (en) Ring oscillator
US7525392B2 (en) XtalClkChip: trimming-free crystal-free precision reference clock oscillator IC chip
US6956443B2 (en) Differential oscillator circuit including an electro-mechanical resonator
JP3138669U (en) Oscillator circuit
US7692517B2 (en) Oscillator with acoustic surface wave resonators
JPS58187004A (en) Crystal oscillating circuit of low power consumption
KR100618059B1 (en) Integrated circuit comprising an oscillator
JP3308393B2 (en) Voltage controlled oscillator
Sakurai et al. Presentation of a new equivalent circuit of a piezoelectric transformer under high-power operation
JPS6355806B2 (en)
JPH03201801A (en) Semiconductor integrated circuit
US4142161A (en) Crystal oscillator
Wang et al. The piezoelectrically forced vibrations of AT-cut quartz strip resonators
JP2906558B2 (en) Semiconductor integrated circuit using piezoelectric vibrator
JPH0697732A (en) Oscillation circuit
JPH1056330A (en) Voltage controlled piezoelectric oscillator
JPS6034845B2 (en) Crystal oscillation circuit for electronic watches
JP7369540B2 (en) Piezoelectric vibrator drive device
JPH0368203A (en) Voltage controlled oscillating circuit using piezoelectric oscillator
JPS6286907A (en) Crystal oscillation circuit
JPS63306710A (en) Fet multivibrator circuit
JP3242441B2 (en) Charge pump circuit
JPH04192603A (en) Voltage controlled oscillation circuit
JPS6034847B2 (en) crystal oscillation circuit
JPS5824884A (en) Quartz time piece