JPS58186089A - Reactor water level detecting device - Google Patents

Reactor water level detecting device

Info

Publication number
JPS58186089A
JPS58186089A JP57069944A JP6994482A JPS58186089A JP S58186089 A JPS58186089 A JP S58186089A JP 57069944 A JP57069944 A JP 57069944A JP 6994482 A JP6994482 A JP 6994482A JP S58186089 A JPS58186089 A JP S58186089A
Authority
JP
Japan
Prior art keywords
water level
pressure
reactor
detection
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57069944A
Other languages
Japanese (ja)
Inventor
正孝 増田
川崎 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Engineering Corp
Priority to JP57069944A priority Critical patent/JPS58186089A/en
Publication of JPS58186089A publication Critical patent/JPS58186089A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子炉圧力容器内の炉水の水位を検出する原
子炉水位検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactor water level detection device for detecting the water level of reactor water in a nuclear reactor pressure vessel.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子炉プラントにあっては、原子炉の運転を安全に行な
わせるために原子炉圧力容器内の炉水の水位全常時検出
するようにしているが、その検出器は、炉水のプロセス
条件である流速、圧力及び原子炉格納容器内の雰囲気温
度等の変化により、実際の水位と異なってくることがあ
る。ま友原子炉圧力容器の液相内における高式の異なる
複数位置の圧力差から炉水水位を検出するようにしてい
るため、原子炉圧力容器と検出器との間の配管より漏洩
が生じた場合にも検出誤差が生じてくる。そしてこのよ
うな誤差が生ずると、検出器の出力に関連して動作する
原子炉制御装置が誤動作してしまうおそれもある。
In nuclear reactor plants, the water level of reactor water in the reactor pressure vessel is constantly detected in order to ensure safe operation of the reactor. The water level may differ from the actual water level due to certain changes in flow rate, pressure, atmospheric temperature inside the reactor containment vessel, etc. Because the reactor water level is detected from the pressure difference at multiple positions with different heights within the liquid phase of the Mayu reactor pressure vessel, a leak occurred from the piping between the reactor pressure vessel and the detector. Detection errors also occur in these cases. If such an error occurs, there is a risk that the reactor control device, which operates in relation to the output of the detector, may malfunction.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情にもとづいてなされたもので、
その目的は、炉水のプロセス条件の変化に伴なう検出誤
差をそのプロセス条件の変化に応じた補正によって除去
し、高精度な炉水水位の検出が行なえるとともに、同一
条件によって得られ友複数の検出@全比較することによ
り検出系統の監視を行なうこともできる原子炉水位検出
装置を提供することにある。
The present invention was made based on these circumstances,
The purpose of this is to eliminate detection errors caused by changes in reactor water process conditions by correcting them in accordance with changes in the process conditions, and to enable highly accurate detection of reactor water level. An object of the present invention is to provide a reactor water level detection device that can also monitor a detection system by comparing multiple detections @all.

〔発明の概要〕[Summary of the invention]

本発明に係る原子炉水位検出装置は、原子炉圧力容器内
の差圧にもとづいて炉水水位を検出する複数組の水位検
出器と、この各水位検出器ごとに対応して設けられ炉水
のプロセス条件の変化全検出する複数系統のプロセス条
件検出系と、前記各水位検出器より得られた検出結果を
前記各プロセス条件検出系の出力にもとづいて炉水のプ
ロセス条件に応じて補正する複数の補正回路と、これら
の補正回路の出力を比較してこれらの出力に差異がある
ときは異常検出信号を出力する比較器と、この比較器か
らの異常検出信号を入力して警報動作する警報器と’1
t−3備してなるものである。
The reactor water level detection device according to the present invention includes a plurality of sets of water level detectors that detect the reactor water level based on the differential pressure within the reactor pressure vessel, and a reactor water level detector provided correspondingly to each of the water level detectors. A plurality of process condition detection systems detect all changes in process conditions, and the detection results obtained from each of the water level detectors are corrected according to the process conditions of the reactor water based on the output of each of the process condition detection systems. A comparator that compares the outputs of multiple correction circuits and outputs an abnormality detection signal if there is a difference between the outputs, and an alarm that operates by inputting the abnormality detection signal from this comparator. Alarm and '1
It is equipped with t-3.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例全図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to all the drawings.

第1図において、図中1は沸騰水形原子炉プラントにお
ける原子炉圧力容器であり、図中2はこの原子炉圧力容
器1を格納する原子炉格納容器である。原子炉圧力容器
1の内部には炉心3が構成され、かつ炉水4が収容され
ている。
In FIG. 1, numeral 1 in the figure is a reactor pressure vessel in a boiling water nuclear reactor plant, and numeral 2 in the figure is a reactor containment vessel in which this reactor pressure vessel 1 is stored. A reactor core 3 is configured inside the reactor pressure vessel 1, and reactor water 4 is accommodated therein.

捷た炉心3の周りにはジェ、トポンデ5・・・カ装置さ
れ、原子炉圧力容器1の外部には再循環ポンプ61.6
Bが配置されている。そして各再循環ポンプ6に、6B
により、吸入配管6A−1゜6B−1及び吐出配管6A
−2,6B−2を介して原子炉圧力容器1の内外間を炉
水4が循環し、ジェット号?ンf5・・・全通して炉心
3の下部へ炉水4全流下させ、その部分の圧力が高めら
れている。そこで、炉心3の下方より上方へ炉水4が流
通し、核反応により加熱されて原子炉圧力容器1内の上
部に高温高圧蒸気を発生させる。そしてこの蒸気は主蒸
気配管(図示せず)を通して導出され、発電機駆動ター
ビン(図示せず)へ供給されるように構成されている。
Around the shattered reactor core 3, there are jets, top pumps 5, etc., and recirculation pumps 61, 6 are installed outside the reactor pressure vessel 1.
B is placed. and for each recirculation pump 6, 6B
Therefore, the suction pipe 6A-1゜6B-1 and the discharge pipe 6A
-2, 6B-2, reactor water 4 circulates between the inside and outside of the reactor pressure vessel 1, and the jet number? f5... The entire reactor water 4 is made to flow down to the lower part of the reactor core 3, and the pressure in that part is increased. Therefore, reactor water 4 flows upward from below the reactor core 3 and is heated by a nuclear reaction to generate high-temperature, high-pressure steam in the upper part of the reactor pressure vessel 1 . This steam is then led out through a main steam pipe (not shown) and is configured to be supplied to a generator-driven turbine (not shown).

また、原子炉格納容器2の内部には、炉水4の水位より
高位置に複数(図では2槽)の凝縮5一 槽7A、7Bが配置式れている。これらの凝縮槽は原子
炉圧力容器1内の気相IAに配管8A。
Further, inside the reactor containment vessel 2, a plurality (two tanks in the figure) of condensing tanks 5 and 7A and 7B are arranged at a position higher than the water level of the reactor water 4. These condensation tanks are connected to the gas phase IA in the reactor pressure vessel 1 through piping 8A.

8Bf介して連通し、原子炉圧力容器1内の圧力全一定
に保持する機能を有するものである。
8Bf, and has the function of keeping the pressure inside the reactor pressure vessel 1 constant.

一方、原子炉格納容器2の外部には複数組(図では2組
)の圧力検出器91.9Bが配置されている。各検出器
9に、9Bは前記凝縮槽7A、7Bに計装配管10に、
10Bを介して接続されているもので、各凝縮槽7A、
7B’i介して原子炉圧力容器1の気相IA内の圧力を
検出し、圧力信号Pa 、 Pb k出力するように構
成されている。
On the other hand, a plurality of sets (two sets in the figure) of pressure detectors 91.9B are arranged outside the reactor containment vessel 2. 9B is connected to each detector 9, and the instrumentation piping 10 is connected to the condensation tanks 7A and 7B.
10B, each condensing tank 7A,
7B'i, the pressure in the gas phase IA of the reactor pressure vessel 1 is detected, and pressure signals Pa and Pbk are output.

また原子炉格納容器2の外部には複数組(図では2組)
の水位検出器11に、11Bが配置されている。各水位
検出器11A、11Bはいずれも1対の差圧検出器IJ
A−,,IJA−,及び11B−1、JIB  、と演
算器11A−、及びIIB−。
In addition, there are multiple sets (two sets in the figure) outside the reactor containment vessel 2.
11B is arranged in the water level detector 11 of. Each of the water level detectors 11A and 11B is a pair of differential pressure detectors IJ.
A-,, IJA-, and 11B-1, JIB, and arithmetic units 11A- and IIB-.

と金備えて構成されている。そして、差圧検出器IJA
−,,IJA−,にはそれぞれ前記計装配管10により
分岐した分岐管12に’ff介して気相6− JA内の圧力が付加されるとともに、一方の差圧検出器
11に−sには側゛装配管13に−,に介して液相IB
の高位置における圧力が付加され、他方の差圧検出器1
1に−mには計装配管13八−2を介して液相IB内の
低位置における圧力が付加されている。そこで、演算器
11に一、では両差圧検出器JJA−,,11に−1に
て検出された差圧にもとづいて原子炉圧力容器1内の炉
水水位を演算し、水位信号L&ヲ出力するように構成さ
れている。同様に、上記差圧検出器JIB−1゜11B
2にはそれぞれ前記計装配管10Bより分岐した分岐管
12Bf介して気相IA内の圧力が付加されるとともに
、一方の差圧検出器JIB−1には計装配管13B−1
f介して液相IBの高位置における圧力が付加され、他
方の差圧検出器JIB−,には計装配管13B−2に介
して液相IB内の低位置における圧力が付加されている
。そこで、演算器11B−1では両差圧検出器11B−
,,IIB−,にて検出され定差圧にもとづいて原子炉
圧力容器1内の炉水水位を演算し、水位信号Lb全出力
するように構成されている。
It is made up of gold and gold. And differential pressure detector IJA
The pressure in the gas phase 6-JA is applied to the branch pipes 12 branched by the instrumentation pipe 10 through 'ff, and the pressure in the gas phase 6-JA is applied to one of the differential pressure detectors 11 at -s. The liquid phase IB is supplied to the side piping 13 through -,
The pressure at the high position of the other differential pressure detector 1 is applied.
The pressure at a low position within the liquid phase IB is applied to 1 and -m via an instrumentation pipe 138-2. Therefore, the computing unit 11 calculates the reactor water level in the reactor pressure vessel 1 based on the differential pressure detected by the differential pressure detectors JJA-, , 11-1, and outputs water level signals L&W. is configured to output. Similarly, the differential pressure detector JIB-1゜11B
The pressure in the gas phase IA is applied to the differential pressure detector JIB-1 through the branch pipe 12Bf branched from the instrumentation pipe 10B, respectively, and the pressure in the gas phase IA is applied to the instrumentation pipe 13B-1 to the differential pressure detector JIB-1.
The pressure at a high position in the liquid phase IB is applied through f, and the pressure at a low position in the liquid phase IB is applied to the other differential pressure detector JIB-, through the instrumentation pipe 13B-2. Therefore, in the computing unit 11B-1, both differential pressure detectors 11B-
, , IIB-, is configured to calculate the reactor water level in the reactor pressure vessel 1 based on the constant differential pressure detected by the reactor pressure vessel 1 and output the full water level signal Lb.

また原子炉格納容器2の外部には複数組(図でFi2組
)の温度検出器14A、14Bが配置されている。これ
らは格納容器2の内部各所に設けらfl、た検出部74
A−1、14k −2、141−2゜141−4及び1
4B−1+ 14B−2+ 14B −3+14B−4
からの検出信号全入力して温度信号Ta 、 Tb f
出力するように、構成されている。
Moreover, a plurality of sets (Fi 2 sets in the figure) of temperature detectors 14A and 14B are arranged outside the reactor containment vessel 2. These are provided at various locations inside the containment vessel 2, and the detection unit 74
A-1, 14k-2, 141-2゜141-4 and 1
4B-1+ 14B-2+ 14B-3+14B-4
Input all detection signals from and generate temperature signals Ta, Tb f
configured to output.

前記各再循環ポンプ6に、6Bの吸入管6iA1゜6B
−1内における流量は流量検出器15A。
Each recirculation pump 6 has a 6B suction pipe 6iA1゜6B.
The flow rate in -1 is detected by a flow rate detector 15A.

15Bによって検出され、各流量検出器15A。15B and each flow rate detector 15A.

15Bより流量信号Fa * Fbが出力されている。Flow rate signals Fa*Fb are output from 15B.

第2図は原子炉水位検出装置の回路構成を示すもので、
図中161.16Bは補正回路である。各補正回路16
に、16BIi圧力補正回路J7A、27Bと@度補正
回路18に、18Bと、動圧補正回路191.19Bと
から構成されている。
Figure 2 shows the circuit configuration of the reactor water level detection device.
In the figure, 161.16B is a correction circuit. Each correction circuit 16
It is composed of 16BIi pressure correction circuits J7A, 27B, @ degree correction circuit 18, 18B, and dynamic pressure correction circuit 191.19B.

圧力補正回路17に、17Bは前記水位検出器11に、
11Bからの水位信号La 、 Lb 5人力するとと
もに前記圧力検出器9に、9Bからの圧力信号Pa r
 Pbを入力し、第3図に示すような、水位の圧力変化
に対する補正を行なうものである。すなわち入力水位信
号La 、 Lbは原子炉圧力容器1内の圧力に応じて
変化するので、圧力検出器9A、9Bからの圧力検出信
号Pa。
17B is connected to the pressure correction circuit 17, and 17B is connected to the water level detector 11.
The water level signals La and Lb from 11B are input manually, and the pressure signal Par from 9B is sent to the pressure detector 9.
Pb is input, and correction for changes in water level pressure as shown in FIG. 3 is performed. That is, since the input water level signals La and Lb change according to the pressure inside the reactor pressure vessel 1, the pressure detection signals Pa from the pressure detectors 9A and 9B.

pbにもどづいて入力水位信号La 、 Lb f仮想
線の如く圧力補正することができる。
Based on pb, the input water level signals La, Lbf can be pressure corrected as shown in the virtual line.

また、前記密度補正回路181.18Bは各温度検出器
14に、14Bからの温度信号Ta。
The density correction circuit 181.18B also sends a temperature signal Ta from 14B to each temperature detector 14.

Tbi入力し、第4図に示すような、水位の密度変化に
対する補正を行なうものである。すなわち人力水位信号
La r Lbは密度に応じて変化するが、密度は原子
炉格納容器2内の温度条件に応じて変化するものである
から、温度検出器14に、14Bからの温度信号Ta 
、 Tbにもとづいて入力水位信号La 、 Lbf仮
想線の如く密度補正することができる。
Tbi is input to perform correction for changes in water level density as shown in FIG. In other words, the human water level signal La r Lb changes depending on the density, but since the density changes depending on the temperature conditions inside the reactor containment vessel 2, the temperature signal Ta from 14B is sent to the temperature detector 14.
, Tb, the input water level signals La, Lbf can be density-corrected as shown in the virtual line.

また動圧補正回路191.19Bは各流量検9− 吊器15に、15Bからの流量信号Fa 、 Fb f
入力し、第5図に示すような、水位の動圧変化に対する
補正を行なうものである。すなわち入力水位信号La 
、 Lbは液相IB内の動圧(炉心3における流速)に
応じて変化するが、動圧は再循環系の流速に応じて変化
するものであるから、再循環系の流速を検出する流量検
出器15A。
In addition, the dynamic pressure correction circuit 191.19B sends flow rate signals Fa, Fbf from 15B to each flow rate detector 9-hanger 15.
The data is input and corrections are made for changes in the dynamic pressure of the water level as shown in FIG. In other words, the input water level signal La
, Lb changes depending on the dynamic pressure in the liquid phase IB (flow rate in the core 3), but since the dynamic pressure changes depending on the flow rate in the recirculation system, the flow rate for detecting the flow rate in the recirculation system is Detector 15A.

15Bからの流量信号Fa + Fbにもとづいて人力
水位信号を仮想線の如く動圧補正することができる。
Based on the flow rate signal Fa + Fb from 15B, the manual water level signal can be corrected for dynamic pressure as shown in the virtual line.

そこで各補正回路16に、16Bは、水位検出器11に
、IIBより人力された水位信号La 、 Lb K対
し圧力補正回路171.17B。
Therefore, in each correction circuit 16, 16B is a pressure correction circuit 171.17B for water level signals La, Lb and K input manually from IIB to the water level detector 11.

密度補正回路18に、18B及び動圧補正回路19に、
19Bにより順次補正會加えて、その補正水位信号L 
A 、 L Bを原子炉制御装置の水位指示計、原子炉
緊急停止系等へ送出するとともに、工学的安全施設へ送
出するように構成されている。
In the density correction circuit 18, 18B and the dynamic pressure correction circuit 19,
19B, and the corrected water level signal L
It is configured to send A, LB to the water level indicator of the reactor control device, the reactor emergency shutdown system, etc., as well as to an engineering safety facility.

前記両補正回路16A、16Bの出力子なわ−10= 纂動圧補正回路JJ?A、29Bより出力された補正水
位信号LA 、LBは比較器20において相互に比較さ
れる。この比較器20は、両補正水位信号LA 、LB
に差異があるときは異常検出信号Elk警報器21に出
力するように構成されている。
Output cable of both correction circuits 16A and 16B -10 = dynamic pressure correction circuit JJ? The corrected water level signals LA and LB output from A and 29B are compared with each other in a comparator 20. This comparator 20 receives both corrected water level signals LA and LB.
If there is a difference between the two, an abnormality detection signal is output to the Elk alarm 21.

また前記各圧力検出器91.9Bからの圧力信号Pa 
* Pbは別の比較器22へ出力される。
Moreover, the pressure signal Pa from each pressure detector 91.9B
*Pb is output to another comparator 22.

そして測圧力検出器9A、9Bの検出直に差異があると
きは、その比較器22へ異常検出信号E3が前記警報器
21へ出力され、警報器21は異常検出信号E、、E1
の少なくとも一方を入力したとき警報動作(警報音発生
、警報ランプ点灯等)を行なうように構成されている。
When there is a difference between the detection values of the pressure measuring force detectors 9A and 9B, the comparator 22 outputs the abnormality detection signal E3 to the alarm 21, and the alarm 21 outputs the abnormality detection signal E, E1.
When at least one of these is input, an alarm operation (generating an alarm sound, lighting an alarm lamp, etc.) is performed.

次に、この実施例の作用及び効果を説明する。Next, the functions and effects of this embodiment will be explained.

まず、各水位検出器11に、IIBでは原子炉圧力容器
1内の差圧にもとづいて炉水4の水位が検出されるが、
その検出結果には炉水4のプロセス条件、例えば原子炉
圧力容器1内の圧力、炉水4の密度、炉心3を流通する
炉水流量等の変化に伴なう誤差が含まれている、と考え
られる。
First, each water level detector 11 detects the water level of the reactor water 4 in IIB based on the differential pressure inside the reactor pressure vessel 1.
The detection results include errors due to changes in the process conditions of the reactor water 4, such as the pressure inside the reactor pressure vessel 1, the density of the reactor water 4, and the flow rate of reactor water flowing through the reactor core 3. it is conceivable that.

そこで、2系統のプロセス条件検出系によりプロセス条
件の変化量を検出し、かつ前記水位検出器11に、II
Bの検出結果を補正する。
Therefore, the amount of change in process conditions is detected by two process condition detection systems, and the water level detector 11 is
Correct the detection result of B.

プロセス条件検出系の一つは、圧力検出器9A、温度検
出器14A及び流量検出器15Aより構成され、他の一
つは、圧力検出器9B、温度検出器14B及び流量検出
器15Bより構成される。
One of the process condition detection systems is composed of a pressure detector 9A, a temperature detector 14A, and a flow rate detector 15A, and the other one is composed of a pressure detector 9B, a temperature detector 14B, and a flow rate detector 15B. Ru.

そこで一方の水位検出器11kからの水位信号Laは、
第2図の如く一方の補正回路16kに入力式れ、まず圧
力補正回路11Aで圧力検出器9Aより入力された圧力
信号にもとづき圧力補正され、次に密度補正回路18に
で温度検出器14Aより人力された温度信号にもとづき
密度補正され、最後に動圧補正回路19Aで流量検出器
15Aより入力された流量信号Faにもとづき動圧補正
され、補正水位信号LAとして原子炉制御装置へ出力さ
れる。
Therefore, the water level signal La from one water level detector 11k is
As shown in FIG. 2, the pressure is corrected in the pressure correction circuit 11A based on the pressure signal input from the pressure detector 9A, and then the pressure is corrected in the density correction circuit 18 based on the pressure signal input from the temperature sensor 14A. The density is corrected based on the manually input temperature signal, and finally the dynamic pressure is corrected in the dynamic pressure correction circuit 19A based on the flow rate signal Fa input from the flow rate detector 15A, and then output as a corrected water level signal LA to the reactor control device. .

また他方の水位検出器11Bからの水位信号Lbも、第
2図の如く補正回路16Bに入力され、圧力補正回路1
7B1密度補正回路18B及び動圧補正回路19Bf通
して順次補正がなされ、補正水位信号LBとして原子炉
制御装置へ出力式れる。
Further, the water level signal Lb from the other water level detector 11B is also input to the correction circuit 16B as shown in FIG.
Correction is performed sequentially through the 7B1 density correction circuit 18B and dynamic pressure correction circuit 19Bf, and outputted to the reactor control device as a correction water level signal LB.

従って、炉水のプロセス条件の変化に伴なう炉水水位の
検出誤差は除去され、高精度な炉水水位の検出が行なわ
れることになる。
Therefore, errors in detecting the reactor water level due to changes in reactor water process conditions are eliminated, and highly accurate detection of the reactor water level is achieved.

また、2系統の補正回路16に、168に通して同一条
件により2つの補正水位信号LA。
Further, two correction water level signals LA are supplied to two systems of correction circuits 16 through 168 under the same conditions.

LBが得られるが、仮にいずれかの系統のプロセス条件
検出系に配管からの漏洩等が生じていると2つの補正水
位信号LA、LBには差異が生じると、2つの圧力信号
Pa * Pbにも差異が生ずることになる。
LB is obtained, but if there is a leak from the piping in the process condition detection system of either system, and a difference occurs between the two corrected water level signals LA and LB, the two pressure signals Pa * Pb There will also be a difference.

ところが、このような場合は少なくとも一方の比較器2
0又は22より警報器21へ異常検13− 出信号El又はE2が出力され、警報器21が警報動作
することにより、運転員は直ちに異常発生を知ることが
でき、然るべき処ffi’(i−とることができるので
、安全性及び信頼性の向上が図られる。
However, in such a case, at least one comparator 2
The abnormality detection signal El or E2 is output from 0 or 22 to the alarm 21, and the alarm 21 activates the alarm, so that the operator can immediately know that an abnormality has occurred, and take appropriate action ffi'(i- Therefore, safety and reliability can be improved.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明に係る原子炉水位検出装置
は、原子炉圧力容器内の差圧にもとづいて炉水水位を検
出する複数組の水位検出器と、この各水位検出器ごとに
対応して設けられ炉水のプロセス条件の変化を検出する
複数系統のプロセス条件検出系と、前記各水位検出器よ
り得られた検出結果を前記各プロセス条件検出系の出力
にもとづいて炉水のプロセス条件に応じて補正する複数
の補正回路と、これらの補正回路の出力を比較してこれ
らの出力に差異があるときは異常検出信号を出力する比
較器と、この比較器からの異常検出信号を人力して警報
動作する警報器とを具備してなるものである。
As detailed above, the reactor water level detection device according to the present invention includes a plurality of sets of water level detectors that detect the reactor water level based on the differential pressure within the reactor pressure vessel, and a water level detector for each set of water level detectors. A plurality of process condition detection systems are installed correspondingly to detect changes in the process conditions of the reactor water, and the detection results obtained from each of the water level detectors are used to detect changes in the reactor water based on the outputs of the process condition detection systems. Multiple correction circuits that correct according to process conditions, a comparator that compares the outputs of these correction circuits and outputs an abnormality detection signal if there is a difference in these outputs, and an abnormality detection signal from this comparator. It is equipped with an alarm device that is operated manually.

従って、この原子炉水位検出装置によれば炉=14− 水のゾロセス条件の変化に伴なう検出誤差をそのプロセ
ス条件の変化に応じ几補正によって除去し、高精度な炉
水水位の検出が行なえるとともに、複数の検出tEfi
 k比較することにより検出系統の監視全行なうことも
でき、原子炉運転における安全性と信頼性の向上を図る
こともできる。
Therefore, according to this reactor water level detection device, detection errors caused by changes in the reactor water level conditions can be removed by correction according to changes in process conditions, and the reactor water level can be detected with high precision. can be performed and multiple detection tEfi
By comparing the values, the detection system can be fully monitored, and the safety and reliability of nuclear reactor operation can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示すもので、第1図及び第2図
は原子炉水位検出装置の概略構成図、第3図ないし第5
図は補正回路の補正機能を示す線図である。 !・・・原子炉圧力容器、3・・・炉心、4・・・炉水
、9に、9B・・・圧力検出器、11に、11B・・・
水位検出器、14に、14B・・・温度検出器、15A
。 15B・・・流量検出器、16に、16B・・・補正回
路、20に、20f3・・・比較器、21・・・警報器
。 出願人代理人  弁理士 鈴 江 武 彦15−
The figures show one embodiment of the present invention, and FIGS. 1 and 2 are schematic configuration diagrams of a reactor water level detection device, and FIGS.
The figure is a diagram showing the correction function of the correction circuit. ! ...Reactor pressure vessel, 3...Reactor core, 4...Reactor water, 9, 9B...Pressure detector, 11, 11B...
Water level detector, 14, 14B...Temperature detector, 15A
. 15B...Flow rate detector, 16, 16B...Correction circuit, 20, 20f3...Comparator, 21...Alarm. Applicant's agent Patent attorney Takehiko Suzue 15-

Claims (4)

【特許請求の範囲】[Claims] (1)原子炉圧力容器内の差圧にもとづいて炉水水位を
検出する複数組の水位検出器と、この各水位検出器ごと
に対応して設けられ炉水のプロセス条件の変化を検出す
る複数系統のプロセス条件検出系と、前記各水位検出器
より得られた検出結果を前記各プロセス条件検出系の出
力にもとづき炉水のプロセス条件の変化に応じて補正す
る複数の補正回路と、これらの補正回路の出力を比較し
てこれらの出力に差異があるときは異常検出信号を出力
する比較器と、この比較器からの異常検出信号を入力し
て警報動作する警報器とを具備したこと′f、特徴とす
る原子炉水位検出装置。
(1) Multiple sets of water level detectors that detect the reactor water level based on the differential pressure in the reactor pressure vessel, and a corresponding one for each water level detector to detect changes in the process conditions of the reactor water. a plurality of process condition detection systems; a plurality of correction circuits that correct the detection results obtained from each of the water level detectors according to changes in the process conditions of the reactor water based on the output of each of the process condition detection systems; A comparator that compares the outputs of the correction circuits and outputs an abnormality detection signal if there is a difference between these outputs, and an alarm that operates an alarm by inputting the abnormality detection signal from this comparator. 'f, Characteristic nuclear reactor water level detection device.
(2)前記各プロセス条件検出系は、原子炉圧力容器の
気相内の圧力を検出する圧力検出器と、原子炉格納容器
内の温度を検出する温度検出器と、炉心における炉水流
量を検出する流量検出器とからなることを特徴とする特
許請求の範囲第(1)項記載の原子炉水位検出装置。
(2) Each process condition detection system includes a pressure detector that detects the pressure in the gas phase of the reactor pressure vessel, a temperature detector that detects the temperature in the reactor containment vessel, and a reactor water flow rate in the reactor core. A nuclear reactor water level detection device according to claim 1, comprising a flow rate detector for detecting a flow rate.
(3)  前記各補正回路は、前記圧力検出器の検出値
にもとづき水位検出器の検出結果を圧力補正する圧力補
正回路と、前記温度検出器の検出値にもとづき水位検出
器の検出結果を密度補正する密度補正回路と、前記流量
検出器の検出直にもとづき水位検出器の検出結果を動圧
補正する動圧補正回路とからなること’t%徴とする特
許請求の範囲第(2)項記載の原子炉水位検出装置。
(3) Each of the correction circuits includes a pressure correction circuit that corrects the pressure of the detection result of the water level detector based on the detection value of the pressure detector, and a pressure correction circuit that corrects the detection result of the water level detector based on the detection value of the temperature sensor. Claim (2) comprising a density correction circuit for correcting the density and a dynamic pressure correction circuit for correcting the dynamic pressure of the detection result of the water level detector based on the detection result of the flow rate sensor. The reactor water level detection device described.
(4)前記警報器は前記複数の圧力検出器の検出直に差
異がある場合にも警報動作することを特徴とする特許請
求の範囲第(1)項記載の原子炉水位検出装置。
(4) The reactor water level detection device according to claim (1), wherein the alarm operates an alarm even when there is a difference in the detection speed of the plurality of pressure detectors.
JP57069944A 1982-04-26 1982-04-26 Reactor water level detecting device Pending JPS58186089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57069944A JPS58186089A (en) 1982-04-26 1982-04-26 Reactor water level detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069944A JPS58186089A (en) 1982-04-26 1982-04-26 Reactor water level detecting device

Publications (1)

Publication Number Publication Date
JPS58186089A true JPS58186089A (en) 1983-10-29

Family

ID=13417265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069944A Pending JPS58186089A (en) 1982-04-26 1982-04-26 Reactor water level detecting device

Country Status (1)

Country Link
JP (1) JPS58186089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284873A (en) * 1987-05-19 1987-12-10 立山アルミニウム工業株式会社 Assembling of composite window sash

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657918A (en) * 1979-10-17 1981-05-20 Toshiba Corp Intra-container water-level measuring device
JPS5667795A (en) * 1979-11-07 1981-06-08 Tokyo Shibaura Electric Co Nuclear reactor water level meter
JPS56168599A (en) * 1980-05-30 1981-12-24 Hitachi Ltd Reactor water level monitoring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657918A (en) * 1979-10-17 1981-05-20 Toshiba Corp Intra-container water-level measuring device
JPS5667795A (en) * 1979-11-07 1981-06-08 Tokyo Shibaura Electric Co Nuclear reactor water level meter
JPS56168599A (en) * 1980-05-30 1981-12-24 Hitachi Ltd Reactor water level monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284873A (en) * 1987-05-19 1987-12-10 立山アルミニウム工業株式会社 Assembling of composite window sash

Similar Documents

Publication Publication Date Title
KR890000670B1 (en) Nuclear reactor power supply
JPS58186089A (en) Reactor water level detecting device
CN106872123A (en) A kind of pressure vessel leak detection system
JP4742548B2 (en) Method and apparatus for monitoring a liquefied gas tank
JPS6112236B2 (en)
JPS6235635B2 (en)
JPH0415438B2 (en)
KR102622458B1 (en) System for detecting error of substrate processing system and method for detecting error of substrate processing system
JPS5892835A (en) Leakage detector
JPH07294309A (en) Water level measuring system
US5313830A (en) Assessment of air ingress to steam systems
JP2557885B2 (en) Differential pressure reactor water level measuring device
JPS61205339A (en) Fuel supply device
KR101901626B1 (en) Apparatus for measuring of flow rate in the ballast water management system
JPS58134313A (en) Plant fault diagnosing device
JPS6122796B2 (en)
JP2003121577A (en) Control rod pull-out monitor
JPH0438294B2 (en)
JPS63106523A (en) System for measuring total flow rate of multiple piping
KR790001041B1 (en) Brerkage inspection apparatus for cooling plate on blast furnace
JPH05119848A (en) Self-inspecting device for pressure regulator
JPS5983813A (en) Fault diagnostic device of hydraulic apparatus
JPS63210504A (en) Feedwater flowmeter selector for water-level controller
JPH05302840A (en) Apparatus for measuring water level of nuclear reactor
JP2010243257A (en) Integrity monitoring apparatus of jet pump