JPS58185786A - Method for electrolyzing alkali chloride - Google Patents

Method for electrolyzing alkali chloride

Info

Publication number
JPS58185786A
JPS58185786A JP57066487A JP6648782A JPS58185786A JP S58185786 A JPS58185786 A JP S58185786A JP 57066487 A JP57066487 A JP 57066487A JP 6648782 A JP6648782 A JP 6648782A JP S58185786 A JPS58185786 A JP S58185786A
Authority
JP
Japan
Prior art keywords
metal
diaphragm
notches
thickness
frames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57066487A
Other languages
Japanese (ja)
Other versions
JPS61914B2 (en
Inventor
Shigeo Asada
茂雄 麻田
Yukinori Yamamoto
山本 循機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP57066487A priority Critical patent/JPS58185786A/en
Publication of JPS58185786A publication Critical patent/JPS58185786A/en
Publication of JPS61914B2 publication Critical patent/JPS61914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To reduce the rise of voltage due to the shielding effect of a generated gas, by using expanded metal obtd. by stretching a metallic plate after cutting many notches in the plate as each electrode body and by specifying the thickness of the frames of the metal, the width of the notches and the tilt angle between the frames and a diaphragm. CONSTITUTION:A metallic plate is stretched after cutting many notches in the plate to obtain expanded metal 1 having openings 2 corresponding to the notches and frames 3 twisted slightly in the stretching direction, and the metal 1 is used as each electrode body. The thickness T of the frames 3 of the metal 1 is specified to >=0.5mm., and the width W of the notches is made 1.5-3 times the thickness T. When the metal 1 is attached to an electrolytic cel, the tilt angle theta between the frames 3 and a diaphragm 4 is set to 20-60 deg.C.

Description

【発明の詳細な説明】 本発明は縦型隔膜式電解槽を使用する塩化アルカリ水溶
液の電解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electrolyzing an aqueous alkali chloride solution using a vertical diaphragm type electrolytic cell.

従来より縦型隔膜式電解槽においては電極体としてエキ
スバンドメタルを使用することは一般に行われており、
これに活性層を被覆して著しく摺電圧が低減されている
が、実際の電圧収支を測定すると陽極液ガスおよび膜抵
抗に起因する電圧弁が電流密度的20A / dm t
において約0.8〜1.2Vもあり、このうち液抵抗、
ガス分散による抵抗上昇、電流分布不良による抵抗上昇
、および隔膜による抵抗が約0.6〜0.IVであり、
残りの0.2〜0.5V程度が発生ガスの遮断効果によ
るものと考えられる。特に摺電圧を低減させるために極
間を縮めていくとこの遮断効果はさらに大きくなってい
くことが知られて、いる。
Conventionally, it has been common practice to use expanded metal as the electrode body in vertical diaphragm electrolytic cells.
The sliding voltage is significantly reduced by coating this with an active layer, but when measuring the actual voltage balance, the voltage valve due to the anolyte gas and membrane resistance is 20A/dm t in terms of current density.
The voltage is about 0.8 to 1.2V, among which liquid resistance,
The resistance increases due to gas dispersion, the resistance increases due to poor current distribution, and the resistance due to the diaphragm is about 0.6 to 0. IV.
The remaining 0.2 to 0.5 V is considered to be due to the effect of blocking the generated gas. In particular, it is known that as the distance between the electrodes is reduced in order to reduce the sliding voltage, this blocking effect becomes even greater.

本発明者らはこのような問題点を解決するために種々検
討を行なった結果、上記エキスバンドメタルの板厚とき
ざみ巾、およびこれを電極体として設置した場合、隔膜
となす開口部の角度を特定範囲に保つことにより、発生
ガスの遮断効果による電圧上昇を低減するのにきわめて
効果的であるという知見を得て本発明法を完成した。
The inventors of the present invention have conducted various studies to solve these problems, and as a result, we have determined the thickness and width of the expanded metal, and the angle of the opening formed by the diaphragm when it is installed as an electrode body. The method of the present invention was completed based on the knowledge that maintaining the voltage within a specific range is extremely effective in reducing the voltage rise due to the blocking effect of generated gas.

すなわち本発明は隔膜とその両側に電極体を配置した縦
型電解槽を使用する塩化アルカリ電解方法において、上
記電極体は金属板に多数のきざみを入れて引き伸したエ
キスバンドメタルであり、該エキスバンドメタルのフレ
ームは板厚を0.5m以上、きざみ巾を板厚の1.5〜
3.0倍とし、かつ該フレームの上記隔膜に対する傾斜
角度を上外側方に向け、20〜60°としたことを特徴
とする塩化アルカリ電解方法である。
That is, the present invention provides an alkali chloride electrolysis method using a vertical electrolytic cell having a diaphragm and electrode bodies disposed on both sides of the diaphragm, in which the electrode body is an expanded metal made by stretching a metal plate with many notches. For extended metal frames, the plate thickness should be 0.5 m or more, and the increments should be 1.5 to 1.5 m thick.
This is an alkali chloride electrolysis method characterized in that the angle of inclination of the frame with respect to the diaphragm is 20 to 60 degrees in the upper and outer direction.

本発明の構成を図面によって説明すると金属板に多数の
きざみを千鳥状に穿ち、きざみと直角方向に引き伸すと
、第1図のごとくきざみの数に相当する開口部(2)を
有し、引き−伸し方向に多少撚られた形状のフレーム(
3)を有するエキスバンドメタル(1)が得られる。第
2図なその一部拡大図であってフレーム(3)の板厚を
T、きざみ巾をW、開口部(2)の短目方向の長さをS
W、長目方向の長さをLWで表わす。第3図はエキスバ
ンドメタル(1)を電極体として電解槽(図示せず)内
に取りつけた場合の側断面図であり、これは隔膜(4)
の両側部に配置される。
The structure of the present invention will be explained with reference to the drawings. When a large number of notches are bored in a metal plate in a staggered manner and the plate is stretched in a direction perpendicular to the notches, as shown in Fig. 1, openings (2) corresponding to the number of notches are formed. , a frame with a shape slightly twisted in the pull-stretch direction (
Extended metal (1) having 3) is obtained. Figure 2 is a partially enlarged view of the same, where the thickness of the frame (3) is T, the increments width is W, and the length of the opening (2) in the short direction is S.
W, and the length in the long direction is expressed as LW. Figure 3 is a side sectional view when the expanded metal (1) is installed as an electrode body in an electrolytic cell (not shown).
placed on both sides of the

本発明においてはこのエキスバンドメタル(1)はフレ
ーム(3)の板厚Tを0.5.以上、きざみ巾Wを板厚
の1.5〜3倍とし、フレーム(3)の隔膜(4)に対
する傾斜角度θを20〜60°に設定する。一般に用い
られるエキスバンドメタルは板厚T、きざみ巾Wともに
1.0〜1.58であって、このような電極体を使用す
ると電解時に電極より発生するガスは隔11(4)とエ
キスバンドメタル(1)の1itu(5)より上方に逸
出する割合が多くなり、このガスによる遮断効果が大と
なる。
In the present invention, the expanded metal (1) has a plate thickness T of the frame (3) of 0.5. As described above, the increments width W is set to 1.5 to 3 times the plate thickness, and the inclination angle θ of the frame (3) with respect to the diaphragm (4) is set to 20 to 60°. The generally used expanded metal has a thickness T and a width W of 1.0 to 1.58, and when such an electrode body is used, the gas generated from the electrode during electrolysis is separated by the gap 11 (4) and the expanded band. The proportion of gas escaping above 1 itu (5) of metal (1) increases, and the blocking effect of this gas increases.

本発明において板厚(T)を0.5n未満にするのは加
工上困難であり、またW/T比が1.5未満であるとガ
スが開口部(2)よりエキスバンドメタル(1)の裏側
(隔膜との非対向面)に抜は難く、またW/T比が3を
こえると傾斜角度θ□が20°未満となるか、またはガ
スが間11(5)に拡がり本発明の目的を達成すること
はできない。
In the present invention, it is difficult to make the plate thickness (T) less than 0.5n in terms of processing, and if the W/T ratio is less than 1.5, gas will flow from the opening (2) to the expanded metal (1). It is difficult to remove the back side (the surface not facing the diaphragm), and if the W/T ratio exceeds 3, the inclination angle θ□ will be less than 20° or the gas will spread to the space 11 (5) of the present invention. cannot achieve the goal.

また傾斜角度θが20’未満、もしくは60”をこえる
と発生ガスの上昇流が板厚T、きざみ巾Wとの相互関係
で開口部(2)より逸出し難くなる。このように板厚T
に対するきざみ巾Wの比率と傾斜角度θを一定範囲に保
つように加工されたエキスバンドメタルを電極として使
用すると、電極より発生するガスは、上外側方に向けら
れた開口部(2)よりほとんど隔膜(4)との非対向面
に誘導されガスリフト作用が一段と良好になり、上記の
遮断効果が著しく減少する。それ故、塩化アルカリ水溶
液の電解に際してガスの遮断効果による電圧上昇を大巾
に削減し得られる。なお、第4図のごとくフレーム(3
)の隔膜(4)に対する縁辺を(6)のように切り欠く
と上記発生ガスの誘導に一層効果的である。また陽極側
のエキスバンドメタルの隔膜対向面に、白金族金属をコ
ーティングしたマイクロメツシュ状の金属板(1つの孔
面積が9Wt以下。
Furthermore, if the inclination angle θ is less than 20' or more than 60'', it becomes difficult for the upward flow of the generated gas to escape through the opening (2) due to the interaction with the plate thickness T and the increment width W. In this way, the plate thickness T
When an expanded metal processed to maintain the ratio of the increments width W and the inclination angle θ to a certain range is used as an electrode, most of the gas generated from the electrode will flow through the opening (2) directed upward and outward. The gas is guided to the surface not facing the diaphragm (4), and the gas lift effect becomes even better, and the above-mentioned blocking effect is significantly reduced. Therefore, when electrolyzing an aqueous alkali chloride solution, the voltage increase due to the gas blocking effect can be significantly reduced. In addition, as shown in Figure 4, the frame (3
) is more effective in guiding the generated gas if the edge of the diaphragm (4) is cut out as shown in (6). In addition, a micromesh-like metal plate coated with a platinum group metal is placed on the expanded metal surface facing the diaphragm on the anode side (one pore area is 9 Wt or less).

開孔率が約20〜85%)を積層せしめると本発明の効
果によるガスの分散をより良好にすることができる。
By stacking layers with a porosity of about 20 to 85%, the effect of the present invention can improve gas dispersion.

実施例1 板厚Im、きざみ巾211 、 L W 14n 。Example 1 Plate thickness Im, increments width 211, LW 14n.

swzw、θ==40°の縦横長さ70X 70mチタ
ン製エキスバンドメタルにFt : Irの重量比が7
:3となるように塩化白金酸および塩化イリジウムを含
有したラベンダー油を塗布し、乾燥後的450℃で加熱
焼結しこの操作を塗布厚み0.1μになるまで繰り返し
た陽極体を作製した。
swzw, θ==40° length and width 70X 70m titanium expanded band metal with Ft:Ir weight ratio of 7
Lavender oil containing chloroplatinic acid and iridium chloride was applied so as to have a coating thickness of :3, and after drying, it was heated and sintered at 450° C. This operation was repeated until the coating thickness became 0.1 μm to prepare an anode body.

一方陽極体と同寸法のステンレス製エキスバンドメタル
に常法によりニッケル黒メッキを施した陰極体を作製し
た。
On the other hand, a cathode body was fabricated by applying black nickel plating to stainless steel expanded metal having the same dimensions as the anode body using a conventional method.

上記の陽極体、陰極体を陽イオン交換膜(商品名ナフィ
オン214.デュポン社製)を介して小型の塩化アルカ
リ電解槽に取りつけ、陽極−交換膜間は約1n、li極
−交換膜間は3mとし、陽極室には飽和食塩水を陰極室
には20重量%Na011水溶液になるよう純水を供給
しながら槽温度80℃、電流密度20A/datにて1
0日間連続運転を行った。
The above anode body and cathode body were attached to a small alkaline chloride electrolytic cell via a cation exchange membrane (trade name Nafion 214, manufactured by DuPont), and the distance between the anode and the exchange membrane was approximately 1n, and the distance between the li electrode and the exchange membrane was approximately 1n. 3 m, and supplying saturated saline to the anode chamber and pure water to make a 20 wt% Na011 aqueous solution to the cathode chamber, at a bath temperature of 80°C and a current density of 20 A/dat.
Continuous operation was performed for 0 days.

この間の電流効率は平均で91%、摺電圧は平均3.0
5 Vであった。
During this period, the average current efficiency was 91%, and the sliding voltage was 3.0% on average.
It was 5V.

比較例1 陽極体として板厚1.5wI、きざみ巾1.5ws、L
W14w、SW 7n、θ=40°の縦横長さ70X 
70Mチタン製エキスバンドメタルにF’i −Irメ
ッキを施したものを使用し、陰極体として陽極体と同寸
法のステンレス製エキスバンドメタルにニッケル黒メッ
キを施したものを使用した以外は、実施例1と全く同条
件で飽和食塩水の電解を10日間行ったところ、電流効
率は平均91%、摺電圧は平均3.34 Vであった。
Comparative Example 1 Anode body: plate thickness 1.5wI, increments width 1.5ws, L
W14w, SW 7n, θ=40° length and width 70X
Except that a 70M titanium expanded metal plated with F'i-Ir was used, and a stainless steel expanded metal plated with nickel black plating of the same size as the anode body was used as the cathode body. When saturated saline solution was electrolyzed for 10 days under exactly the same conditions as in Example 1, the current efficiency was 91% on average and the sliding voltage was 3.34 V on average.

実施例2.比較例2 陽極体、陰極体の板厚をいづれも1nとし、きざみ巾を
1〜4nの間に変化させたチタン製エキスバンドメタル
、ステンレス製エキスバンドメタルをそれぞれ5種づつ
作製し、実施例1と同じメッキ処理を施し同じきざみ巾
を有する陽陰極を対向させて実施例1と同条件で飽和食
塩水の電解を行った。この場合のW/Tの比と平均摺電
圧の関係を第5図に示す。この図よりW/T=1.5〜
3.0の範囲において摺電圧の低下が認められる。
Example 2. Comparative Example 2 Five types each of titanium expanded band metal and stainless steel expanded band metal were manufactured in which the thickness of the anode body and the cathode body were 1n, and the increments width was varied between 1 and 4n. Electrolysis of saturated saline solution was carried out under the same conditions as in Example 1, with anodes and cathodes having the same plating treatment and the same increment width facing each other. The relationship between the W/T ratio and the average sliding voltage in this case is shown in FIG. From this figure, W/T=1.5~
A decrease in sliding voltage is observed in the range of 3.0.

実施例3.比較例3 陽極体、陰極体の板厚をいずれも1nとし、きざみ巾を
2.とじエキスバンドさせる際の引張り程度を調節する
ことによりフレームの傾斜角度θを10〜70°の間に
変化させたチタン製エキスバンドメタル、ステンレス製
エキスバンドメタルをそれぞれ5種づつ作製し、実施例
1と同じメッキ処理を施し、同じ傾斜角度を有する陽陰
極を対向させて実施例1と同じ条件で飽和食塩水の電解
を行なった。この場合のθと摺電圧        i
との関係を第6図に示す。
Example 3. Comparative Example 3 The thickness of both the anode body and the cathode body was 1n, and the increment width was 2. Five types each of titanium expanded band metal and stainless steel expanded band metal were manufactured in which the inclination angle θ of the frame was changed between 10 and 70 degrees by adjusting the tension level during binding and expanded banding. The same plating treatment as in Example 1 was applied, and saturated saline solution was electrolyzed under the same conditions as in Example 1, with anodes and cathodes having the same inclination angle facing each other. θ and sliding voltage i in this case
Figure 6 shows the relationship between

この図よりθが20〜60°の範囲において摺電圧の低
下が認められる。
From this figure, it is observed that the sliding voltage decreases in the range of θ from 20 to 60°.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用されるエキスバンドメタルの形状
を示す正面図、第2図はその一部拡大図、第3図はエキ
スバンドメタルを陽極体、および陰極体として隔膜の両
側に配置した場合の略断面図、第4図は変形されたエキ
スバンドメタルを示す略断面図、第5図は実施例2.比
較例2のW/Tと摺電圧との関係を示すグラフ、第6図
は実施例3.比較例3のθと摺電圧との関係を示すグラ
フである。 (1):エキスバンドメタル、(2):開口部、(3)
:フレーム、(4):隔膜、T:板厚、W:きざみ巾、
θ:傾斜角度 出願人 大阪曹達株式会社 代理人 弁理士 門多 透 乍1画       7!L@ γ31,4         賀41jl!
Fig. 1 is a front view showing the shape of the expanded metal used in the present invention, Fig. 2 is a partially enlarged view thereof, and Fig. 3 shows expanded metal arranged on both sides of the diaphragm as an anode body and a cathode body. FIG. 4 is a schematic cross-sectional view showing the deformed expanded metal, and FIG. 5 is a schematic cross-sectional view of the expanded metal of Example 2. A graph showing the relationship between W/T and sliding voltage of Comparative Example 2, and FIG. 6 is that of Example 3. 3 is a graph showing the relationship between θ and sliding voltage in Comparative Example 3. (1): Extended band metal, (2): Opening, (3)
: Frame, (4): Diaphragm, T: Plate thickness, W: Notch width,
θ: Inclination angle Applicant Osaka Soda Co., Ltd. Agent Patent attorney Touya Monta 1 stroke 7! L@γ31,4 ga41jl!

Claims (1)

【特許請求の範囲】[Claims] 隔膜とその両側に電極体を配置した縦1型電解槽を使用
する塩化アルカリ電解方法において、上記電極体は金属
板に多数のきざみを入れて引き伸したエキスバンドメタ
ルであり、該エキスバンドメタルのフレームは板厚を0
.5W以上、きざみ巾を板厚の1.5〜3.0倍とし、
かつ該フレームの上記隔膜に対する傾斜角度を上体側方
に向け20〜60°としたことを特徴とする塩化アルカ
リ電解方法。
In an alkali chloride electrolysis method using a vertical type 1 electrolytic cell in which a diaphragm and electrode bodies are arranged on both sides of the membrane, the electrode body is an expanded metal made by making a large number of notches in a metal plate and stretching it. The frame has a plate thickness of 0.
.. 5W or more, the increment width is 1.5 to 3.0 times the board thickness,
An alkali chloride electrolysis method characterized in that the angle of inclination of the frame with respect to the diaphragm is 20 to 60 degrees toward the side of the upper body.
JP57066487A 1982-04-20 1982-04-20 Method for electrolyzing alkali chloride Granted JPS58185786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066487A JPS58185786A (en) 1982-04-20 1982-04-20 Method for electrolyzing alkali chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066487A JPS58185786A (en) 1982-04-20 1982-04-20 Method for electrolyzing alkali chloride

Publications (2)

Publication Number Publication Date
JPS58185786A true JPS58185786A (en) 1983-10-29
JPS61914B2 JPS61914B2 (en) 1986-01-11

Family

ID=13317194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066487A Granted JPS58185786A (en) 1982-04-20 1982-04-20 Method for electrolyzing alkali chloride

Country Status (1)

Country Link
JP (1) JPS58185786A (en)

Also Published As

Publication number Publication date
JPS61914B2 (en) 1986-01-11

Similar Documents

Publication Publication Date Title
US6368473B1 (en) Soda electrolytic cell provided with gas diffusion electrode
US4331523A (en) Method for electrolyzing water or aqueous solutions
US4142950A (en) Apparatus and process for electrolysis using a cation-permselective membrane and turbulence inducing means
US5082543A (en) Filter press electrolysis cell
US4927509A (en) Bipolar electrolyzer
EP0612864B1 (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
FI73247B (en) FOERFARANDE FOER ELEKTROLYTISK FRAMSTAELLNING AV VAETE.
US5954928A (en) Activated cathode and method for manufacturing the same
US3222265A (en) Electrolysis method and apparatus employing a novel diaphragm
US4474612A (en) Vertically extending plate electrode for gas-forming electrolyzers
EP0139382B1 (en) Production of cathode for use in electrolytic cell
JPH1025587A (en) Liquid permeation type gas diffusion electrode
EP2639338A2 (en) Method for the electrolysis of alkali chlorides with oxygen consumption electrodes in a micro-gap arrangement
US4752369A (en) Electrochemical cell with improved energy efficiency
JPS58185786A (en) Method for electrolyzing alkali chloride
DE69838632T2 (en) Method of electrolysis of a saline solution
KR102651660B1 (en) Electrolysis electrodes and electrolyzers
US4329218A (en) Vertical cathode pocket assembly for membrane-type electrolytic cell
EP0241633A1 (en) Process for the electrolysis of alkali chloride solutions
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
JPH06173061A (en) Gas electrode structure and electrolytic method using said gas electrode structure
JPH11172480A (en) Electrolysis using gas diffusion cathode
JPH11200080A (en) Gas diffusion electrode structural body
JP3167054B2 (en) Electrolytic cell
JPS599186A (en) Electrolytic cell of vertical cell and electrolyzing method