JPS58185496A - Method of making silicon nitride jig for pulling up silicon single crystal - Google Patents

Method of making silicon nitride jig for pulling up silicon single crystal

Info

Publication number
JPS58185496A
JPS58185496A JP6577782A JP6577782A JPS58185496A JP S58185496 A JPS58185496 A JP S58185496A JP 6577782 A JP6577782 A JP 6577782A JP 6577782 A JP6577782 A JP 6577782A JP S58185496 A JPS58185496 A JP S58185496A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
base material
single crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6577782A
Other languages
Japanese (ja)
Other versions
JPS5950629B2 (en
Inventor
Hideyasu Matsuo
松尾 秀逸
Hideo Nagashima
長島 秀夫
Masaharu Watanabe
正晴 渡辺
Toshiro Usami
俊郎 宇佐美
Hisashi Muraoka
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP6577782A priority Critical patent/JPS5950629B2/en
Publication of JPS58185496A publication Critical patent/JPS58185496A/en
Publication of JPS5950629B2 publication Critical patent/JPS5950629B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:After a smooth base material of a desired shape is coated with a film of crystalline silicon nitride by the CVD method, the substrate is removed to give a crucible that can give good-quality single crystal of low oxygen content. CONSTITUTION:A substrate of a desired shape with smooth surfaces, e.g., a glass carbon with a surface roughness of less than 350mu Hmax, is placed in a CVD reaction furnace to effect coating with crystalline silicon nitride. Then, the carbon substrate is removed by oxidation. The resultant silicon nitride crucible has a small surface area and has a small amount of silicon nitride dissolved in the silicon melt, whereby the silicon crystal grows as a single crystal not as a polycrystal.

Description

【発明の詳細な説明】 本発明は円柱状もしくは板状の単結晶シリコンを引上げ
る際に用いられる窒化珪素製治具の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a silicon nitride jig used for pulling columnar or plate-shaped single crystal silicon.

半導体ウェハを切出すための円柱状単結晶ンリコンの製
造方法としてはチ、コラルスキー法(CZ法)が知られ
ている。この方法はシリコン原料をルツボ内で溶融し、
この溶融シリコ/に種結晶を浸し、この種結晶を引上げ
ることにより円柱状単結晶シリコンを製造するものであ
る。
The Choralski method (CZ method) is known as a method for manufacturing cylindrical single crystal silicon for cutting out semiconductor wafers. This method melts the silicon raw material in a crucible,
A seed crystal is immersed in this molten silicon and the seed crystal is pulled up to produce cylindrical single crystal silicon.

上述したC2法においては、従来、ルツボとして石英ガ
ラス製のものが用いられている。しかしながら、石英ガ
ラス展のルツボを用いた場合、石英ガラスと溶融シリコ
ンとが反応し、反応生成物が酸素不純物としてシリコン
結晶中に取シ込まれる。シリフン結晶中の酸素不純物は
結晶欠陥の原因とガるため、製造される集積回路の特性
を悪化させるという欠点がある。
In the C2 method described above, a crucible made of quartz glass has conventionally been used. However, when a quartz glass crucible is used, the quartz glass and molten silicon react, and the reaction product is incorporated into the silicon crystal as an oxygen impurity. Oxygen impurities in silicon crystals cause crystal defects, which has the disadvantage of deteriorating the characteristics of manufactured integrated circuits.

また、板状単結晶シリコンの製造方法としてはEFG法
(edg@d@fin@d film fe@d gr
owth法)が知られている。この方法はシリコン原料
金ルツl内で溶融し、この溶融シリコンに中空枠状のダ
イの一端側を浸し、グイの中受部を毛管現象によシ上昇
してきた溶融シリコンに板状種結晶を浸してこの種結晶
を引上げることによシ、板状単結晶シリコン結晶造する
ものである。
In addition, as a method for manufacturing plate-shaped single crystal silicon, the EFG method (edg@d@fin@d film fe@d gr
owth method) is known. In this method, silicon raw material is melted in a furnace, one end of a hollow frame-shaped die is immersed in the molten silicon, and a plate-shaped seed crystal is placed in the molten silicon that rises through capillary action through the middle receiving part of the guide. By soaking and pulling up this seed crystal, a plate-shaped single crystal silicon crystal is produced.

上述したEFG法においては、従来、ルツボとして石英
ガラヌ裏のものが、グイとしてカーゲン製のものが夫々
用いられている。しかしながら、石英ガラス袈のルツボ
はC2法の場合と同様な欠点を有するうえに、カーメン
製のダイ金柑いた場合にはカーゲンが溶融シリコンと反
応して炭化珪素を生じ易く、こうした炭化珪素がグイの
中空部周辺に形成されるとシリコン結晶の引上げが回部
となるだけでなく、シリコン結晶が多結晶化するという
欠点がある。
In the above-mentioned EFG method, conventionally, a crucible with a quartz backing and a Gui made by Kagen have been used. However, the quartz glass crucible has the same drawbacks as the C2 method, and in addition, when Kamen-made Dai Kumquat is used, Kagen easily reacts with molten silicon to form silicon carbide, and such silicon carbide is difficult to use. If formed around the hollow part, there is a disadvantage that not only the silicon crystal is pulled up into a circular part, but also the silicon crystal becomes polycrystalline.

そこで、本発明者らはルツボ、グイ等の治具として溶融
シリコンとほとんど反応しない窒化珪素製のものを用い
ることを考え、先に特願昭56−70477において、
所望形状の基材の111 内表面もしくは外表面の少なくと奄一方の面にCVD法
により結晶質窒化珪素膜を被着させた後、前記基材を除
去することKより窒化珪素製治具全製造する方法を開示
した。
Therefore, the present inventors considered using jigs such as crucibles and gouers made of silicon nitride, which hardly reacts with molten silicon.
After depositing a crystalline silicon nitride film on at least one of the inner or outer surfaces of a base material having a desired shape by the CVD method, the base material is removed. A method of manufacturing is disclosed.

上述した方法によシ展遺された窒化珪素製治具をシリコ
ン結晶の引上げに用いれば、多くの場合酸素濃度が低く
良質の単結晶シリコンを製造することができる。
If a silicon nitride jig developed by the method described above is used to pull silicon crystal, it is possible to produce high-quality single crystal silicon with a low oxygen concentration in most cases.

しかし、製造条件によっては上述した方法によシ製造さ
れた窒化珪素製治具を用いた場合でも、シリコン結晶が
多結晶化することがある。
However, depending on the manufacturing conditions, the silicon crystal may become polycrystalline even when using the silicon nitride jig manufactured by the method described above.

このことは、基材の内表面に結晶質窒化珪素膜を厚く被
着させた後、基材を除去して製造した窒化珪素製ルツl
を用い友場合に特に顕著である。
This is true for silicon nitride molds manufactured by depositing a thick crystalline silicon nitride film on the inner surface of the base material and then removing the base material.
This is especially noticeable when using friends.

本発明者らはシリコン結晶の多結晶化の原因について種
々検討した結果、以下に述べることに起因することを究
明した。基材1表面に窒化珪素膜2を被着させた場合、
窒化珪素は第1図に示す如く成長していく。すなわち、
窒化珪素は最初異質な基材1表面に被着するため、結晶
粒の成長が抑制され、その結晶粒は小さいものである。
As a result of various studies on the causes of polycrystallization of silicon crystals, the inventors of the present invention have found that the cause is as described below. When the silicon nitride film 2 is deposited on the surface of the base material 1,
Silicon nitride grows as shown in FIG. That is,
Since silicon nitride is initially deposited on the surface of the base material 1, which has a different nature, the growth of crystal grains is suppressed and the crystal grains are small.

このため、初期段階においては、窒化珪素は基材1の表
面形状に対応して成長する。
Therefore, in the initial stage, silicon nitride grows in accordance with the surface shape of the base material 1.

この後成長が進むKつれて結晶粒は大きくなり、窒化珪
素膜2の表面は凹凸が激しくなってくる。
Thereafter, as the growth progresses, the crystal grains become larger and the surface of the silicon nitride film 2 becomes more uneven.

このことは第2図に示す如く、基材1の内表面にCVD
法によ)結晶質窒化珪素膜2を被着させ念後、前記基材
1を除去することによシ製造された窒化珪素製のルツ〆
3は、その内面の凹凸が激しくなることを示している。
This means that the inner surface of the base material 1 is coated with CVD as shown in FIG.
A silicon nitride screw 3 manufactured by depositing a crystalline silicon nitride film 2 (by a method) and then removing the base material 1 shows that its inner surface becomes extremely uneven. ing.

特に、前記基材1の表面粗さが粗く、シかも被層させる
窒化珪素膜2の膜厚が厚くなるほど顕著となる。
In particular, the surface roughness of the base material 1 becomes rougher and becomes more noticeable as the thickness of the silicon nitride film 2 on which it is coated becomes thicker.

このように凹凸の激しい内面を有する窒化珪素製のルツ
ボ3をシリコン結晶の引上げに用いると、溶融シリコン
と接触するルツry3の表面積が大きくなる。このため
、ルツ?3の窒化珪素が溶融シリコンに溶解し易くなる
。溶融シリコンに溶解した窒化珪素はシリコン結晶を引
上げる際にβ相窒化珪素として溶融シリコン表面に析出
し、シリコン結晶インゴツトに取り込まれる。インゴッ
トに取り込まれた窒化珪素はシリコン結晶に転位を発生
させる原因となるため、シリコン結晶が多結晶化すると
考えられる。以上のことは窒化珪素膜2の膜厚を薄くす
れば、窒化珪素膜2の表面粗さが粗くならないため避け
ることができるが、この場合には機械的強度の点で若干
問題がある。
If the silicon nitride crucible 3 having such a highly uneven inner surface is used for pulling silicon crystal, the surface area of the crucible 3 in contact with molten silicon increases. Because of this, Ruth? Silicon nitride of No. 3 becomes easier to dissolve in molten silicon. The silicon nitride dissolved in the molten silicon is deposited on the surface of the molten silicon as β-phase silicon nitride when the silicon crystal is pulled up, and incorporated into the silicon crystal ingot. The silicon nitride incorporated into the ingot causes dislocations to occur in the silicon crystal, so it is thought that the silicon crystal becomes polycrystalline. The above problem can be avoided by reducing the thickness of the silicon nitride film 2 because the surface roughness of the silicon nitride film 2 will not become rough, but in this case there is a slight problem in terms of mechanical strength.

一方、第3図に示す如く、基材1の外表面にCVD法に
より結晶質窒化珪素!IX2’c被看させた後、前記基
材1を除去することによシ製造された窒化珪素製ルツボ
4は、前記基材1の表面が平滑であれば、その肉厚に関
係なく、その内面は平滑となる。このようKして製造さ
れた窒化珪素製ルツボ4t?シリコン結晶の引上げに用
いた場合は、溶融シリコンと接するルッ〆4の表面積が
それほど大きくないため、溶融シリコンに溶解する窒化
珪素の量も少なく、シリコン結晶の引上げの際に溶融シ
リコン表面に析出するβ相窒化珪素も少ないため、シリ
コン結晶は多結晶とならず単結晶になると考えられる。
On the other hand, as shown in FIG. 3, crystalline silicon nitride is deposited on the outer surface of the base material 1 by the CVD method! IX2'c The silicon nitride crucible 4 manufactured by removing the base material 1 after being subjected to observation can be manufactured by removing the base material 1 regardless of its wall thickness as long as the surface of the base material 1 is smooth. The inner surface will be smooth. 4 tons of silicon nitride crucible manufactured in this way? When used to pull silicon crystals, since the surface area of the lug 4 in contact with the molten silicon is not so large, the amount of silicon nitride dissolved in the molten silicon is small, and it precipitates on the molten silicon surface when the silicon crystal is pulled. Since there is also less β-phase silicon nitride, it is thought that the silicon crystal becomes single crystal rather than polycrystalline.

以上のように肉厚に関係なく平滑な内表面金有するルツ
&4t−↓造することができるので、肉厚を厚くして十
分な機械的強度を付与することができる。
As described above, since it is possible to manufacture the product with a smooth inner surface of metal regardless of the wall thickness, it is possible to increase the wall thickness and provide sufficient mechanical strength.

また、板状の基材の外表面にCVD法によシ結晶質窒化
珪素gt−被着させた後、前記基材を除去するととKよ
シ窒化珪素製のダイ金製造する場合にも、前記基材が平
滑ならば、上述したと同様なことがいえる。
In addition, when manufacturing a silicon nitride die metal by depositing crystalline silicon nitride on the outer surface of a plate-shaped base material by CVD and then removing the base material, If the base material is smooth, the same thing as described above can be said.

上記究明結果に基づき、本発明者らは所望形状の平滑な
基材の外表面にCVD法によシ結晶質窒化珪素膜を被着
させた後、前記基材を除去することによシ常に良質な単
結晶シリコンを引上げ得る単結晶シリコン引上げ用窒化
珪素製治具會製造する方法を見出した。
Based on the above investigation results, the present inventors deposited a crystalline silicon nitride film on the outer surface of a smooth base material of a desired shape by CVD method, and then removed the base material. We have discovered a method for manufacturing a silicon nitride jig for pulling single-crystal silicon that can pull high-quality single-crystal silicon.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 まず、表面粗さがJIS B 0601によるHmax
で15μmであるルツl形状のガラス状カーメン基材’
i CVD反応炉内に設置し、CVD反応炉外周に配設
されたヒータによ、り CVD反応炉内の温度を約13
60℃まで上昇させた。次に、CV′D反応炉内KSi
CA4ガス及び正5.fスt−H,ガスをキャリアガス
として供給した。これらのガスはCVD反応炉内で反応
し、前記、fクス状カーがン基材の外表面に結晶質窒化
珪素膜が被着した(基材内表面はコーティングしている
ので窒化珪素は被着しない)、所定時間後、ガスの供給
を停止した。
Example 1 First, the surface roughness was Hmax according to JIS B 0601.
Glassy carmen base material with a shape of 15 μm
i A heater installed in the CVD reactor and arranged around the outer circumference of the CVD reactor keeps the temperature inside the CVD reactor at about 13
The temperature was raised to 60°C. Next, KSi in the CV'D reactor
CA4 gas and positive 5. fst-H, gas was supplied as a carrier gas. These gases reacted in the CVD reactor, and a crystalline silicon nitride film was deposited on the outer surface of the f-box-like carton base material (the inner surface of the base material was coated, so silicon nitride was not coated). After a predetermined period of time, the gas supply was stopped.

つづいて600℃で前記ガラス状カーメン基材を酸化除
去して、肉厚2000μmの窒化珪素製ルツl金製造し
た。
Subsequently, the glassy carmen base material was oxidized and removed at 600° C. to produce silicon nitride rutz with a thickness of 2000 μm.

得られた窒化珪素製ルツがの内表面のJIS BO60
1による表面粗さ及びこのルツカヲ用いて引上げられ九
シリ;ン結晶の結晶状態を下記表に示す。
JIS BO60 of the inner surface of the obtained silicon nitride nut
The surface roughness according to No. 1 and the crystalline state of the silicon crystal pulled using this method are shown in the table below.

実施例2.3 ルツl形状の臘押カー&yK旋盤加工を施して基材とし
た(実施例2)、この基材の表面粗さは―axで35μ
mでありた。また、この基材表面を20φのサンドペー
パーで粗くしたものt基材とした(実施例3)。この基
材の表面粗さはHmaxで350μmであうた。以下、
実施例1と同様な条件でこれらの基材の外表面に結晶質
窒化珪素膜を被着させた後、これら基材を600℃で酸
化除去して肉厚2000μmの窒化珪素製ルツ〆を製造
した。
Example 2.3 A base material was processed using a l-shaped lug car and YK lathe (Example 2), and the surface roughness of this base material was -ax 35μ
It was m. Further, the surface of this base material was roughened with 20φ sandpaper to obtain a T base material (Example 3). The surface roughness of this base material was 350 μm in terms of Hmax. below,
After depositing a crystalline silicon nitride film on the outer surface of these base materials under the same conditions as in Example 1, these base materials were oxidized and removed at 600°C to produce a 2000 μm thick silicon nitride film. did.

得られた窒化珪素製ルツ〆の内表面の表面粗さ及びこれ
らのルツ&t−用いて引上げられたシリコン結晶の結晶
状!I″Ik下記表に示す。
The surface roughness of the inner surface of the obtained silicon nitride nuts and the crystalline state of the silicon crystals pulled using these nuts! I″Ik is shown in the table below.

実施例4 シリコンを鋳込み底型して肉厚3謹のルツl形状とし、
基材として用いた。この基材の表面粗さはHma xで
56μmであった。以下、実施例1と同様な条件でシリ
コン基材の外表面に結晶質窒化珪素裏金被着させた後、
HCt雰囲気に曝して前記シリコン基材を除去して肉厚
2000μmの窒化珪素製ルツゲを製造した。
Example 4 Silicone was cast into a bottom mold with a wall thickness of 3.
It was used as a base material. The surface roughness of this base material was 56 μm in terms of Hmax. After depositing a crystalline silicon nitride backing on the outer surface of the silicon substrate under the same conditions as in Example 1,
The silicon base material was removed by exposing it to an HCt atmosphere to produce a 2000 μm thick silicon nitride root box.

得られた窒化珪素製ルツ〆の内表面の表面粗さ及びこの
ルツIt用いて引上げられたシリコン結晶の結晶状11
?下記表に示す。
The surface roughness of the inner surface of the obtained silicon nitride rutz and the crystalline state of the silicon crystal pulled using this nitride.
? Shown in the table below.

なお、下記表中比較例1〜4は夫々上記実施例1〜4で
用いられた基材の内表面にCVD法により結晶質窒化珪
素膜を被着させた後、各基材を除去することによシ製造
された窒化珪素製ルツIについての結果である。
In addition, Comparative Examples 1 to 4 in the table below were obtained by depositing a crystalline silicon nitride film on the inner surface of the base material used in Examples 1 to 4 above by CVD method, and then removing each base material. These are the results for silicon nitride Ruth I produced by the method.

表 実施f13  mNカーntンi   350   ’
   400    *Wlz%比較例am押カーゲン
・ 350 1 450   多結晶 1冥万例4 :
シリコンl   56  、’   65   単貼晶
比収例4 シリコン   56   520   多結
晶上記表から明らかなように平滑な基材の外表面に結晶
質窒化珪素膜を被着させて製造しlヒ実施例1〜4の窒
化珪素製ルツlはいずれもその内表面の表面粗さ、すな
わちHm a xO値が小さく、これらのルツ♂を用い
て引上げられたシリコン結晶はいずれも単結晶であった
。これに対して、実施例1〜4と同一の基材の内表面に
結晶質窒化珪素lIを被着させて製造した比較例1〜4
の窒化珪素製ルツメはいずれもそのHmaxO値が大き
く、これらのルツボを用いてシリコン結晶を引上げる際
には溶融シリコン表面に析出するβ相窒化珪素が多く、
引上げられたシリコン結晶はいずれも多結晶であった。
Table implementation f13 mN carnton i 350'
400 *Wlz% Comparative Example Am Oshikagen 350 1 450 Polycrystal 1 Meiman Example 4:
Silicon l 56, '65 Single crystal yield example 4 Silicon 56 520 Polycrystalline As is clear from the above table, a crystalline silicon nitride film was deposited on the outer surface of a smooth base material to produce it.Example 1 All of the silicon nitride nuts No. 4 to 4 had a small surface roughness on the inner surface, that is, the HmaxO value, and the silicon crystals pulled using these nuts were all single crystals. In contrast, Comparative Examples 1 to 4 were manufactured by depositing crystalline silicon nitride lI on the inner surface of the same base material as in Examples 1 to 4.
All of the silicon nitride crucibles have large HmaxO values, and when pulling silicon crystals using these crucibles, there is a large amount of β-phase silicon nitride precipitated on the molten silicon surface.
All of the pulled silicon crystals were polycrystalline.

なお、基材の平滑度合はHm a xで350μm以下
であることが望ましい。
Note that the degree of smoothness of the base material is preferably 350 μm or less in Hmax.

以上詳述した如く本発明によれば、常に良質な単結晶シ
リコンを引上げ得る単結晶シリコン引上げ用窒化珪素製
治具を製造する方法を提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a method for manufacturing a silicon nitride jig for pulling single crystal silicon that can consistently pull high quality single crystal silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は窒化珪素の成長状態金示す説明図、第2図及び
第3図は窒化珪索裂ルツーの製造方法を示す説明図であ
る。 木製ルツI。 出願人代理人 弁理士 鈴 江 武 門弟1図 第2図 第3図 第1頁の続き q>発 明 者 村岡久志 川崎市幸区小向東芝町1番地東 京芝浦電気株式会社総合研究所 内 0出 願 人 東京芝浦電気株式会社 川崎市幸区堀川町72番地
FIG. 1 is an explanatory view showing the growth state of silicon nitride, and FIGS. 2 and 3 are explanatory views showing a method for manufacturing silicon nitride fissures. Wooden Ruth I. Applicant's representative Patent attorney Takeshi Suzue Disciple Figure 1 Figure 2 Figure 3 Continued from page 1 > Inventor Hisashi Muraoka Tokyo Shibaura Electric Co., Ltd. Research Center, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki City 0 Request Person Tokyo Shibaura Electric Co., Ltd. 72 Horikawa-cho, Saiwai-ku, Kawasaki City

Claims (2)

【特許請求の範囲】[Claims] (1)  溶融シリコンから円柱状もしくは板状の単結
晶シリコンを引上げる際に用いられる治具の製造におい
て、所望形状の平滑な基材の外表面K CVD法により
結晶質窒化珪素膜を被着させた後、前記基材を除去する
ことを特徴とする単結晶シリコン引上げ用窒化珪素製治
具の製造方法。
(1) In manufacturing a jig used to pull columnar or plate-shaped single crystal silicon from molten silicon, a crystalline silicon nitride film is deposited on the outer surface of a smooth base material of the desired shape by the CVD method. A method for manufacturing a silicon nitride jig for pulling single crystal silicon, the method comprising: removing the base material.
(2)前記基材の平滑度合がHmthxで350μm以
下であることt%徴とする特許請求の範囲第1項記載の
単結晶シリコン引上げ用窒化珪素製治具の製造方法。
(2) The method for manufacturing a silicon nitride jig for pulling single crystal silicon according to claim 1, wherein the degree of smoothness of the base material is 350 μm or less in Hmthx as a t% sign.
JP6577782A 1982-04-20 1982-04-20 Manufacturing method of silicon nitride jig for pulling single crystal silicon Expired JPS5950629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6577782A JPS5950629B2 (en) 1982-04-20 1982-04-20 Manufacturing method of silicon nitride jig for pulling single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6577782A JPS5950629B2 (en) 1982-04-20 1982-04-20 Manufacturing method of silicon nitride jig for pulling single crystal silicon

Publications (2)

Publication Number Publication Date
JPS58185496A true JPS58185496A (en) 1983-10-29
JPS5950629B2 JPS5950629B2 (en) 1984-12-10

Family

ID=13296799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6577782A Expired JPS5950629B2 (en) 1982-04-20 1982-04-20 Manufacturing method of silicon nitride jig for pulling single crystal silicon

Country Status (1)

Country Link
JP (1) JPS5950629B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187147A (en) * 1991-05-31 1993-02-16 Florida State University Method for producing freestanding high Tc superconducting thin films
WO2008114822A1 (en) * 2007-03-19 2008-09-25 Mnk-Sog Silicon, Inc. Method and apparatus for manufacturing silicon ingot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031716U (en) * 1989-05-29 1991-01-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187147A (en) * 1991-05-31 1993-02-16 Florida State University Method for producing freestanding high Tc superconducting thin films
WO2008114822A1 (en) * 2007-03-19 2008-09-25 Mnk-Sog Silicon, Inc. Method and apparatus for manufacturing silicon ingot

Also Published As

Publication number Publication date
JPS5950629B2 (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US6136092A (en) Quart crucible with large diameter for pulling single crystal and method of producing the same
JP4166241B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
JPH0729871B2 (en) Quartz crucible for pulling single crystals
JP4233059B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4830073B2 (en) Method for growing silicon carbide single crystal
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPH02180789A (en) Production of si single crystal
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JPS58185496A (en) Method of making silicon nitride jig for pulling up silicon single crystal
WO2016017055A1 (en) Quartz glass crucible for single crystal silicon pulling and method for producing same
US3261722A (en) Process for preparing semiconductor ingots within a depression
JPH0692779A (en) Quartz crucible for pulling up single crystal
US3092462A (en) Method for the manufacture of rods of meltable material
WO2013132629A1 (en) Method for manufacturing highly pure silicon, highly pure silicon obtained by this method, and silicon raw material for manufacturing highly pure silicon
TW202037769A (en) Single-crystal growing crucible, single-crystal production method and single crystal
JPS6018638B2 (en) Silicon single crystal pulling equipment
JPS5950628B2 (en) Silicon nitride jig for pulling single crystal silicon
TW202424285A (en) Systems and methods for forming single crystal silicon ingots with crucibles having a synthetic liner
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JPH1095688A (en) Production of single crystal
JPS5932428B2 (en) Silicon nitride jig for pulling single crystal silicon
CN117488267A (en) Method for depositing silicon carbide coating on surface of quartz glass
JPH02188488A (en) Quartz crucible for pulling up high-quality silicon single crystal
JP2011246296A (en) Method of manufacturing cylindrical silicon crystal, and cylindrical silicon crystal manufactured by the manufacturing method