JPS58184544A - Ultrasonic flaw inspector - Google Patents

Ultrasonic flaw inspector

Info

Publication number
JPS58184544A
JPS58184544A JP57067395A JP6739582A JPS58184544A JP S58184544 A JPS58184544 A JP S58184544A JP 57067395 A JP57067395 A JP 57067395A JP 6739582 A JP6739582 A JP 6739582A JP S58184544 A JPS58184544 A JP S58184544A
Authority
JP
Japan
Prior art keywords
signal
circuit
pulse
time
decision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57067395A
Other languages
Japanese (ja)
Other versions
JPH0339264B2 (en
Inventor
Fuminobu Takahashi
高橋 文信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57067395A priority Critical patent/JPS58184544A/en
Publication of JPS58184544A publication Critical patent/JPS58184544A/en
Publication of JPH0339264B2 publication Critical patent/JPH0339264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable fully automatic removal of reflected waves from the surface and bottom of a sample while allowing the extraction of waves reflected from defects with a gate circuit adapted to operate depending on the decisions of a decision circuit. CONSTITUTION:A decision circuit receives a clock pulse G and a detection signal L as input from a reflected wave detection circuit 23. At the rising of the clock pulse G, a lead signal with a width DELTAtr<DELTAT/2 is outputted to a memory circuit 25 to read out the frequency PN of the detection stored in the N address. At this point, according to an output level of the detection signal L, an updating frequency P'N is prepared and a light signal with a value P'N and a width DELTAtw (<DELTAT/2) is outputted to the memory circuit 25 to memorize P'N into a memory of the N address. Simultaneously, a decision signal O is outputted. The relationship between the output level VO of the decision signal 'O' and P'N is determined by the requirement of the Formula (where, VL represents the output level of the detection signal and Q a specified value). A gate circuit 26 outputs a signal pulse of a received signal I only when the output level VO of the decision signal O outputted from a decision circuit 24 is ''1''. This pulse serves as a defective pulse 11 of the signal I.

Description

【発明の詳細な説明】 本発明は、超音波を送受し欠陥情報を得る自動探傷装置
に係り、特に超音波発信後一定時間後に受信される試料
表面、底面等の反射波を自動的に消去し、欠陥反射波の
みを抽出する超音波発信後−に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic flaw detection device that transmits and receives ultrasonic waves to obtain defect information, and in particular automatically erases reflected waves from the surface, bottom, etc. of a sample that are received after a certain period of time after transmitting ultrasonic waves. However, it relates to the process after ultrasonic transmission to extract only defective reflected waves.

従来の欠陥反射波のみを抽出する方法は、2種類ある。There are two conventional methods for extracting only defect reflected waves.

まず第1の方法は、固定時間ゲートで抽出す為方法であ
る。超音波発信時から一定時間経過し、さらKそれから
所定の時間が経過する間に受信し九反射波を抽出する方
法である。簡単な方法であり広く普及しているが、試料
の厚さが変化するつど時間ゲートの位置を手動で調整す
る必要があるのが欠点である。
The first method is a method for extraction using a fixed time gate. This is a method in which ultrasonic waves are received after a certain period of time has elapsed since the ultrasonic wave was transmitted, and then a predetermined period of time has passed since then, and nine reflected waves are extracted. Although this method is simple and widely used, the drawback is that the time gate position must be manually adjusted each time the sample thickness changes.

第2の方法は、移一時間ゲートで抽出する方法である。The second method is a method of extraction using a shifting time gate.

例えば試料の厚さが変化する場合、試料の形状変化を数
値て記憶させておき、その値にしたがって時間ゲート位
置を移動させ、試料の底面反射波を時間ゲートで抽出し
ない様にする。この方法は自励で時間ゲート制御できる
点では便利であるが、形状あろ匹は厚さの異なる試料を
探傷するたび時間ゲートの制御用数値データを作成しな
ければならない不便さがある。
For example, when the thickness of the sample changes, the shape change of the sample is stored as a numerical value, and the time gate position is moved according to the value so that the bottom reflected wave of the sample is not extracted by the time gate. This method is convenient in that it can control the time gate by self-excitation, but it is inconvenient that numerical data for controlling the time gate must be created every time a sample with a different thickness is detected.

本発明の目的は、従来の時間ゲー)Kよる欠陥反射波の
抽出方法による欠点を解消し、全て自動的に試料表面や
底面からの反射波を除去し、かつ欠陥反射波のみを抽出
することのできる探傷装置を提供することKある。
The purpose of the present invention is to eliminate the drawbacks of the conventional method of extracting defect reflected waves using time game (K), automatically remove reflected waves from the surface and bottom of a sample, and extract only defect reflected waves. It is an object of the present invention to provide a flaw detection device that can perform the following steps.

超音波探傷の例を第1図を用いて説明する。探触1をX
軸方向く移動させながら超音波ビーム2を送信し、試料
3からの反射波を受信する。試料3の内部には欠陥4が
存在するものとし、試料底面6.7で示す如く厚さが変
化すると仮定する。
An example of ultrasonic flaw detection will be explained using FIG. 1. Probe 1
The ultrasonic beam 2 is transmitted while moving in the axial direction, and the reflected wave from the sample 3 is received. It is assumed that a defect 4 exists inside the sample 3, and that the thickness changes as shown by the bottom surface 6.7 of the sample.

ここで番号5は試料表面を表わす。@1図に示す探傷で
、探触子lの位置X、 、 X、およびX、で受信する
信号をそれぞれ第2図のA、B、Cで表わす。図中、縦
軸は信号電圧、横軸は超音波発信時からの経過時間を表
わす。探触子位置X1では、超音波発信パルス8、試料
表面5からの反射波パルス9(以下表面パルスと呼ぶ。
Here, number 5 represents the sample surface. In the flaw detection shown in Figure 1, the signals received at positions X, , X, and X of the probe l are represented by A, B, and C in Figure 2, respectively. In the figure, the vertical axis represents the signal voltage, and the horizontal axis represents the elapsed time from the time of ultrasound transmission. At the probe position X1, an ultrasonic transmission pulse 8 and a reflected wave pulse 9 from the sample surface 5 (hereinafter referred to as surface pulse) are generated.

)および試料底rfi6からの反射波パルス10(以下
底面パルスと呼ぶ。)t−受信する。探触子位置X、で
は、信号Bで示す如く、信号人における発信パルス8、
表面パルス9底面パルス10の他に欠陥4からの反射波
パルス11(以下欠陥パルスと呼ぶ)を受信する。探触
子位1i1tX、では、信号Cで示す如く、発信パルス
8、表面パルス9を受信する。底面7からの反射波パル
ス12は、試料厚さが薄くなったため信号人における底
面パルスlOより時間的に早く受信される。信号人と信
号Bとを比較した場合、発信パルス8、表面パルス9、
底面パルス10の受信時刻は変化しないことがわかる。
) and the reflected wave pulse 10 from the sample bottom rfi6 (hereinafter referred to as bottom pulse) t-received. At the probe position X, as shown by signal B, the transmitted pulse 8 at the signal person,
In addition to the surface pulse 9 and the bottom pulse 10, a reflected wave pulse 11 from the defect 4 (hereinafter referred to as defect pulse) is received. At the probe position 1i1tX, as shown by signal C, a transmitted pulse 8 and a surface pulse 9 are received. The reflected wave pulse 12 from the bottom surface 7 is received earlier in time than the bottom surface pulse 10 at the signal source because the sample thickness has become thinner. When comparing the signal person and signal B, the transmission pulse 8, the surface pulse 9,
It can be seen that the reception time of the bottom pulse 10 does not change.

欠陥パルス11は、探触子からの超音波ビームが欠陥に
入射する時、受信され、探触子が移動するにつれ受信さ
れなくなる。信号人と信号Cとを比較するとriL面パ
ルスの時間位置が変化することがわかる。しかし、底i
i17Km音波ビームが照射されるかぎり探触子を位置
X、から右方に移−しても底面パルス12の時間位置は
変化しなくなる。
The defect pulse 11 is received when the ultrasound beam from the probe impinges on the defect, and is no longer received as the probe moves. Comparing the signal person and signal C, it can be seen that the time position of the riL plane pulse changes. However, the bottom i
As long as the i17Km sound beam is irradiated, the time position of the bottom pulse 12 will not change even if the probe is moved from position X to the right.

以上の如く、発信パルス8、表面パルス9、底面パルス
10および12に′i、探触子音ある程度移動させて探
傷しても受信時刻が変化せず、欠陥バ:″・。
As described above, even if the transmission pulse 8, the surface pulse 9, and the bottom pulse 10 and 12 are tested by moving the probe consonant to some extent, the reception time does not change, and the defect bar: ``.''.

ルス11は探触子を移動させると突然受信されたり受信
されなくなつ九すする。そこで、1回前までの超音波発
信で受信し九パルスの時間位置に対し、違った位置で受
信したパルスは欠陥パルスか底面位置が変化した時の底
面パルスのいずれかになる。底面パルスかどうかは、突
然表われた時間位置が次回以降の超音波発信でも変わら
ないことから認足する。
When the probe is moved, the signal 11 suddenly receives or ceases to be received. Therefore, compared to the time position of the nine pulses received in the previous ultrasonic transmission, the pulse received at a different position becomes either a defective pulse or a bottom pulse when the bottom position changes. Whether it is a bottom pulse or not is confirmed because the time position at which it suddenly appeared does not change even after the next ultrasound transmission.

以上が本発明の原理である。本発明によって、欠陥パル
スのみを自動的に抽出することにより、欠陥パルスの受
信時刻、強度、位相、その時の探触子位置など欠陥情報
を効率的に記録、分析が可能となる。特に探傷データの
記録の面では、探触子の移動走査範囲で必ず受信される
表面パルス、底面パルスに関するデータを取り込まない
ため探傷データを記憶するのに必要な容量を大幅に削減
することになる。
The above is the principle of the present invention. According to the present invention, by automatically extracting only defective pulses, it becomes possible to efficiently record and analyze defect information such as reception time, intensity, phase, and probe position of defective pulses at that time. In particular, in terms of recording flaw detection data, the capacity required to store flaw detection data is significantly reduced because data related to surface pulses and bottom pulses that are always received within the scanning range of the probe are not captured. .

本発明をタービンロータの探傷装置として実施し&しU
を述べる。
The present invention was implemented as a turbine rotor flaw detection device.
state.

第3図にタービンロータと探触子の走査方法を示す。図
中、探触子lけタービンロータ13の内孔15の内面に
接触させて、走査方向14に沿ってらせん状に移動する
。探触子1からの超音波ビーム2は、常にタービンロー
タ中心軸から半径方向に発信される。
Figure 3 shows the scanning method for the turbine rotor and probe. In the figure, the probe 1 is brought into contact with the inner surface of the inner hole 15 of the turbine rotor 13 and moves spirally along the scanning direction 14. The ultrasonic beam 2 from the probe 1 is always emitted in the radial direction from the central axis of the turbine rotor.

探傷lI&蓋の構成を第4図に示す。第4図において、
走査装置20、走査制御装721、探触子11超音波送
受信器22、解析装置127Fi一般に使用されている
装置であり、点線で囲む反射波検出回路23、判定回路
24、検出回数記憶回路25、ゲート回路26で構成し
た部分が本発明によるものである。以下各装置の機能に
ついて説明する。
The configuration of the flaw detection unit and lid is shown in Figure 4. In Figure 4,
Scanning device 20, scanning control device 721, probe 11 ultrasonic transceiver 22, analysis device 127Fi are commonly used devices, and are surrounded by dotted lines: reflected wave detection circuit 23, determination circuit 24, detection number storage circuit 25, The portion constituted by the gate circuit 26 is according to the present invention. The functions of each device will be explained below.

走査!111120は、走査制御装置21より出力され
る制御信号により探触子1を第3図のらせん状走査軌跡
14に沿って走査する。走査制御装置21は、上記の如
く走査装置20を制御する他に、探触子1を一定距鴫だ
け走査するつど駆−パルスを出力し、かつ、その時点の
探触子位置座標(X。
scanning! 111120 scans the probe 1 along the spiral scanning locus 14 in FIG. 3 in response to a control signal output from the scanning control device 21. In addition to controlling the scanning device 20 as described above, the scanning control device 21 outputs a drive pulse every time the probe 1 is scanned by a certain distance, and also outputs a drive pulse at the probe position coordinate (X) at that time.

Q)を出力する。Q) is output.

超音波送受信器22は、走査制御装置21からの駆動パ
ルスに同期した発信パルスを探触子1に印加して超音波
を発生させる。また探触子1で受信した超音波信号を増
幅して出力する機能を有する。
The ultrasonic transceiver 22 applies a transmission pulse synchronized with the drive pulse from the scanning control device 21 to the probe 1 to generate ultrasonic waves. It also has a function of amplifying and outputting the ultrasonic signal received by the probe 1.

解析装置jt27は、点線わくで凹んだ装置で抽出した
欠陥パルスを入力し、走査制御!t+ff21からの駆
動パルス入力時点(すなわち超音波発信時刻)から欠陥
パルス受信までの経過時間、欠陥パルスの強度および位
相、またその時の探触子位置を検出し、それらのデータ
を記憶する。記憶したデータを用い、欠陥の位置、大き
さを解析する。本実施例の場合、データをフロッピィデ
ィスクに記憶する。
The analysis device jt27 inputs the defective pulses extracted by the device marked by the dotted line and performs scanning control! The elapsed time from the time when the drive pulse is input from t+ff21 (that is, the ultrasonic wave transmission time) until the defective pulse is received, the intensity and phase of the defective pulse, and the probe position at that time are detected, and these data are stored. Using the stored data, analyze the location and size of the defect. In this embodiment, data is stored on a floppy disk.

以下、点線で囲んだ各回路の機能について詳細に説明す
る。
Hereinafter, the functions of each circuit surrounded by dotted lines will be explained in detail.

反射波検出回路230回路構成を第5図に示す。The circuit configuration of the reflected wave detection circuit 230 is shown in FIG.

同期パルス発生器121、クロックパルス発生6120
論理積ゲー)32、Mビット2進カウンタ70、電圧発
生器100.:ryパv−1130゜エツジトリガフリ
ップフロップ740信号処理機能については第6図に示
すタイ士チャートで説明する。
Synchronous pulse generator 121, clock pulse generator 6120
(AND game) 32, M-bit binary counter 70, voltage generator 100. The signal processing function of the edge trigger flip-flop 740 will be explained with reference to the tie chart shown in FIG.

信号りは駆動パルスである。同期パルス発生器121は
信号りの立上りに同期して幅TのパルスEを出力する。
The signal is a drive pulse. The synchronous pulse generator 121 outputs a pulse E having a width T in synchronization with the rising edge of the signal.

ここでTは、クロックパルス発生m512Gで出力する
クロックパルスFの周期ΔTに対し、次式で示す範囲で
ある。
Here, T is a range expressed by the following equation with respect to the period ΔT of the clock pulse F output by the clock pulse generation m512G.

M×ノT<T< (M+1 )ΔT  ・・・・・・(
1)論理積ゲート32では信号Eと信号Fの論理積パル
ス信号Gを出力する0Mビット2進カウンタ70は信号
りの立上り時リセットされ、その後信号Gの立下り時カ
ウントし、その値を時間信号Hとして出力する。信号■
は受信信号を表わす。電圧発生器100は所定電圧VJ
を出力する。コンパレータ130は信号Iのうち電圧V
Jをこえる部分をTTLレベル”1′″にした信号Kを
出力する。エツジトリガフリッププロップ74は、クロ
ックパルスGの立下り時の信号にの出力レベルを保持し
た信号りを検出信号として出力する。以上の如く、反射
波検出回路23は信号り、Iを入力とし信号G、H,L
を出、1Eする。
M×ノT<T< (M+1)ΔT ・・・・・・(
1) In the AND gate 32, the 0M-bit binary counter 70 that outputs the AND pulse signal G of the signal E and the signal F is reset at the rising edge of the signal, and then counted at the falling edge of the signal G, and the value is stored as a time signal. Output as signal H. Signal■
represents the received signal. The voltage generator 100 generates a predetermined voltage VJ
Output. The comparator 130 outputs a voltage V of the signal I.
A signal K with the portion exceeding J set to TTL level "1'" is output. The edge trigger flip-prop 74 outputs a signal that maintains the output level of the signal at the falling edge of the clock pulse G as a detection signal. As described above, the reflected wave detection circuit 23 receives the signals G, H, and L as input signals.
Exit and play 1E.

次に検出回数記憶回路′2′50機能について述べる。Next, the function of the detection number storage circuit '2'50 will be described.

検出回数記憶回路25は、Mバイトランダムアクセスメ
モリである。回路23よね出力される時間信号Hが示す
値NK対応し九N4地のメモリがアクセス状態になる。
The detection count storage circuit 25 is an M-byte random access memory. Corresponding to the value NK indicated by the time signal H outputted from the circuit 23, the memory at location 9N4 becomes accessed.

判定回路24からリード信号倉入力するとNi1t地の
メモリ内容を判定回路24に検出回数信号として出力し
、判定回路24からライト信号を入力するとN番地のメ
モリに判定回路24から出力される更新回数を記憶する
When a read signal is input from the determination circuit 24, the memory contents at location Ni1 are output as a detection count signal to the determination circuit 24, and when a write signal is input from the determination circuit 24, the update count output from the determination circuit 24 is output to the memory at address N. Remember.

判定回路240機能について説明する。判定回路では、
反射波検出回路23からクロックパルスG、検出信号り
を入力する。クロックパルスG立ΔT 上り時に幅Δ1.  <−のリード信号を記憶2  ・ 回路25に出力することにより、Ni地に格納されてい
る検出回数P)lを読みとる。この時、検出信号りの出
力レベルに従って更新回数P′、を作成し、値P′にと
、幅Δtw(<ΔT/2)のライト信号を記憶回路25
に出力し、N番地のメモリK P’。
The function of the determination circuit 240 will be explained. In the judgment circuit,
A clock pulse G and a detection signal are input from the reflected wave detection circuit 23. Clock pulse G rising ΔT Width Δ1. By outputting a read signal of <- to the memory 2 circuit 25, the number of detections P)l stored in the Ni field is read. At this time, the number of updates P' is created according to the output level of the detection signal, and a write signal with a width Δtw (<ΔT/2) is stored in the storage circuit 25 as the value P'.
and the memory K P' at address N.

を記憶させる。これと同時に判定信号0を出方する。判
定信号″0″の出力レベルVoとP’ヨノ関係は次の条
件で決定する。但しVLは検出信号りの出力レベル、Q
は所定の値を示す。
to remember. At the same time, a determination signal 0 is output. The relationship between the output level Vo and P' of the determination signal "0" is determined by the following conditions. However, VL is the output level of the detection signal, Q
indicates a predetermined value.

ゲート回路26は、判定回路24から出力される判定信
号Oの出力レベルVOが”1”の時にのみ受信信号IQ
信号パルスを出力する。このパルスが 信号工の欠陥パ
ルス11になる。
The gate circuit 26 receives the received signal IQ only when the output level VO of the determination signal O output from the determination circuit 24 is "1".
Outputs signal pulses. This pulse becomes defective pulse 11 of the signal engineer.

以上説明し九機能を果すaWtで探傷し九結釆、発信パ
ルス8、表面パルス9、底面パルス1oおよび12を自
動的に除去でき、欠陥パルス11を効率よく検出できた
。これまで、底面パルス1゜および12が自動除去でき
ないため、解析装置27での探傷データの記憶に際して
、12mのタービンロータ探傷ではフロッピィディスク
を200枚以上使用していた。フロッピィディスクの使
用−が多く、また解析Kl!する時間も10時間以上か
かつていた。本発明により、欠陥部情報のみをフロッピ
ィディスクに記録できる様になったため、フロッピィデ
ィスクの使用数は2枚程度になり、かつ解析時間も数分
と大幅短縮できた。
As described above, flaw detection was performed using the aWt which performs the nine functions, and it was possible to automatically remove nine bolts, the transmitted pulse 8, the surface pulse 9, and the bottom pulses 1o and 12, and to efficiently detect the defective pulse 11. Until now, since the bottom pulses 1° and 12 cannot be automatically removed, more than 200 floppy disks have been used to store flaw detection data in the analyzer 27 for flaw detection on a 12 m turbine rotor. There is a lot of use of floppy disks, and analysis Kl! There were times when I had more than 10 hours to do it. According to the present invention, only the defect information can be recorded on the floppy disk, so the number of floppy disks used is reduced to about two, and the analysis time can be significantly shortened to a few minutes.

以上、本発明の効果をまとめると次の様になる。The effects of the present invention can be summarized as follows.

1) 試料の厚さが変わる場合、時間ゲート位置を#動
させなくて本、欠陥パルスを自動抽出で自る。
1) When the thickness of the sample changes, defective pulses can be automatically extracted without moving the time gate position.

この結果データ解析に不必要な底面の情報などを予め除
去することができデータ記憶の容處、解析時間を大幅削
減できる。
As a result, information on the bottom surface that is unnecessary for data analysis can be removed in advance, and data storage capacity and analysis time can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

名1図は試料と探触子の配置を示した図である。 @2図は第1図における探触子位置X、、X、。 X、での超音波受信信号を示す図である。第3図は本発
明の実施例でタービンロータの探傷した時のタービンロ
ータと探触子走査方法を示す図である。第4図は本発明
の装−画成を示した図である。 第5図は44図における反射波検出回路230回路構成
を示した図である。第6図は篇5図の回路での1言号処
理をタイムチャートで示した図である。 20・・・探S装置、21・・・走査制御装置、22・
・・超音波送受信器、23・・・反射ujL検出回路、
24・・・判定回路、25・・・記憶回路、26・・・
ゲート回路、著 Z 辺 (A) (B) (C) 著 4 図
Figure 1 shows the arrangement of the sample and probe. @Figure 2 is the probe position X,,X, in Figure 1. FIG. 3 is a diagram showing an ultrasound reception signal at X. FIG. 3 is a diagram showing a turbine rotor and a probe scanning method when the turbine rotor is inspected for flaws in an embodiment of the present invention. FIG. 4 is a diagram showing the arrangement of the present invention. FIG. 5 is a diagram showing the circuit configuration of the reflected wave detection circuit 230 in FIG. 44. FIG. 6 is a time chart showing one word processing in the circuit of FIG. 5. 20... Search S device, 21... Scanning control device, 22.
...Ultrasonic transceiver, 23...Reflection ujL detection circuit,
24... Judgment circuit, 25... Memory circuit, 26...
Gate circuit, author Z side (A) (B) (C) author 4 Fig.

Claims (1)

【特許請求の範囲】[Claims] 1、超音波を送受し、欠陥情報を得る探傷装置において
、超音波発信時から一定微小時間間隔毎に反射波受信の
有無を検出する回路と、該一定微小時間間隔毎に反射波
を受信し続けた回数を記憶する回路と、反射波を受信し
続けた回数が所定の回数に満たないことを判定する回路
と、咳判定回路の判定によって受信した反射波パルスを
通過あるいはJ断するゲート回路を具備し、受信時刻が
変化しない試料表面、底面の反射波を自動消去し、欠陥
反射波のみを効率よく抽出することに特徴とする超音波
探傷装置。
1. In a flaw detection device that transmits and receives ultrasonic waves to obtain defect information, there is a circuit that detects the presence or absence of reflected waves at fixed minute time intervals from the time of ultrasonic transmission, and a circuit that detects the presence or absence of reflected waves at every fixed minute time interval from the time of ultrasonic transmission. A circuit that stores the number of continuous receptions, a circuit that determines whether the number of times the reflected wave has been continuously received is less than a predetermined number of times, and a gate circuit that passes or cuts off the received reflected wave pulse based on the determination of the cough determination circuit. An ultrasonic flaw detection device characterized by automatically erasing reflected waves from the surface and bottom of a sample whose reception time does not change, and efficiently extracting only defect reflected waves.
JP57067395A 1982-04-23 1982-04-23 Ultrasonic flaw inspector Granted JPS58184544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57067395A JPS58184544A (en) 1982-04-23 1982-04-23 Ultrasonic flaw inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57067395A JPS58184544A (en) 1982-04-23 1982-04-23 Ultrasonic flaw inspector

Publications (2)

Publication Number Publication Date
JPS58184544A true JPS58184544A (en) 1983-10-28
JPH0339264B2 JPH0339264B2 (en) 1991-06-13

Family

ID=13343734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57067395A Granted JPS58184544A (en) 1982-04-23 1982-04-23 Ultrasonic flaw inspector

Country Status (1)

Country Link
JP (1) JPS58184544A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736719B2 (en) * 2010-10-19 2015-06-17 富士通株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus

Also Published As

Publication number Publication date
JPH0339264B2 (en) 1991-06-13

Similar Documents

Publication Publication Date Title
US3278685A (en) Wave analyzing system
US2883860A (en) Automatic ultrasonic inspection
JPH0862150A (en) Disk defect inspecting apparatus
JPS58184506A (en) Device for preparing map
JPS6361612B2 (en)
US4829249A (en) Method of inspecting magnetic disks for surface defects
JPS58184544A (en) Ultrasonic flaw inspector
JP5904154B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
US5233593A (en) Method of high speed searching for a desired tape portion in a digital audio tape recorder
JPS60125510A (en) Defect examining device of disc body
JPH079713B2 (en) Optical disk defect evaluation system
JPS617465A (en) Ultrasonic wave tester
JP2002310999A (en) Ultrasonic inspection method and ultrasonic inspection device
JP2824864B2 (en) Disk defect inspection device
JPS6337902B2 (en)
KR930703671A (en) Data reading method from rotating disc type recording media
JP2970415B2 (en) Ultrasonic flaw detection signal memory analyzer
JPH01262465A (en) Ultrasonic flaw detector
JP3917737B2 (en) Method and apparatus for detecting a three beam on-track condition
JPS5814062A (en) Pulse height analyser
GB2140561A (en) Ultrasonic testing apparatus and a method of ultrasonic testing
JPS61190720A (en) Detector for disk defect
JP2799706B2 (en) Phase comparison circuit
JPH03150726A (en) Reproduced signal processing circuit for rewrite type optical disk
JPH0252242A (en) Disk defect detecting circuit