JPS58184273A - Lead-acid battery - Google Patents
Lead-acid batteryInfo
- Publication number
- JPS58184273A JPS58184273A JP57066034A JP6603482A JPS58184273A JP S58184273 A JPS58184273 A JP S58184273A JP 57066034 A JP57066034 A JP 57066034A JP 6603482 A JP6603482 A JP 6603482A JP S58184273 A JPS58184273 A JP S58184273A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- particle size
- battery
- electrolyte
- life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/08—Selection of materials as electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は鉛蓄電池の改良に関するもので、その目IFI
は高率放1性能および寿命性能の優れた沿蓄 ゛電池を
得ることにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in lead-acid batteries;
The object of the present invention is to obtain a battery that has a high rate of discharge performance and an excellent long life performance.
鉛蓄電池を省電すると、正−板では活物質である二酸化
fEI(PbOz)が還元されて二価の鉛イオン(Pb
”イオン) となり電解液中の硫酸イオン(804イオ
ン)と結合してdieとして極板表面に析出する。−す
、負嘲板では活物質である金属分が酸化されてPb
イオンとなり電解液中の肛−一イオンと結合して硫#お
として竜板表面に析出する。放電電原が大きい場合、[
E負動板とも活物質の4表面近傍の電解液中のMU、イ
オンが急激に減少し拡散が遅れ、−万Pb イオン
は急激に増加し過飽和吠畷となる。When power is saved in a lead-acid battery, the active material fEI dioxide (PbOz) is reduced on the positive plate and becomes divalent lead ions (PbOz).
Pb is combined with sulfate ions (804 ions) in the electrolyte and deposits on the surface of the electrode plate as die.
It becomes an ion and combines with the ions in the electrolyte to form sulfur and precipitate on the surface of the dragon plate. When the discharge field is large, [
In both cases of the E negative active plate, MU and ions in the electrolyte near the surface of the active material rapidly decrease and diffusion is delayed, and -10,000Pb ions rapidly increase, resulting in supersaturation.
このため濃度分唖が増加し、電池電圧が低ドし、放電で
きなくなってしまう。高濃度の硫酸を電解H+こ巾いる
と、804 イオンが多く存在することになり、濃度
性―が低下し、高率放醒谷鑞が増加するが、逆普ζ活物
質の劣化および格子腐食を促進し寿命性能を低下させる
。As a result, the concentration increase increases, the battery voltage decreases, and it becomes impossible to discharge. When high-concentration sulfuric acid is electrolytically spread over H+, a large number of 804 ions will be present, the concentration property will decrease, and the high rate of released valleys will increase. promotes this and reduces life performance.
本発明はこれらの短所を改良するもので、その要旨は粒
子径0.1〜1μmの範囲のイオン交換樹脂を電解液中
に含有せしめて電池反応に寄与させ放電時の分働を防止
しようとするものである。カチト
オン交換樹脂(fun)は放電時に生成するFbイオン
をCイオンと交換して分―を防ぐ、またアニオン交換樹
脂(804・型)は拍数の近傍に8へ1− 。The present invention aims to improve these shortcomings, and its gist is to include an ion exchange resin with a particle size in the range of 0.1 to 1 μm in an electrolytic solution to contribute to battery reactions and prevent division of action during discharge. It is something to do. The cation exchange resin (fun) exchanges the Fb ions generated during discharge with C ions to prevent the separation, and the anion exchange resin (type 804) has a rate of 8 to 1 in the vicinity of the beat rate.
イオンがなくなると804 イオンを放出して正−およ
び負極の分極を防ぐと考えられる。It is thought that when ions are exhausted, 804 ions are released to prevent positive and negative polarization.
欠に述べる実験の結果から、粒子径0.1−1μmの範
囲のイオン交換樹脂が特に良いことが明らかになった。From the results of the experiments mentioned below, it has become clear that ion exchange resins with a particle size in the range of 0.1-1 μm are particularly good.
本実−例では強塩基性アニオン交換樹脂(スチレ石1と
強酸性カチオン交換樹脂を等分に混合(−r:ものを使
用し、そして粒度の異なる次の8種類の供試々料を選ん
だ。A:粒子径0.1〜1μmのものが混在(エマルジ
ョンタイプ。固形分20%)B:粒子径1〜40μmの
ものが混在(固形分50%)C:粒子径0.1〜40μ
Inのものが混在(ム、B半々混合、固形分50%〕。In this practical example, a strongly basic anion exchange resin (1 styrene and a strongly acidic cation exchange resin were mixed in equal parts (-r) was used, and the following 8 types of test samples with different particle sizes were selected. A: Particle size 0.1-1 μm mixed (emulsion type, solid content 20%) B: Particle size 1-40 μm mixed (solid content 50%) C: Particle size 0.1-40 μm
A mixture of In (half and half mixture of Mu and B, solid content 50%).
この供試々科を電解液1gに討して固形分にして30g
になるよう添加し、硫酸−貫が5モル/e<比@ 1.
27 )となるよう#Iiした。Add this sample to 1g of electrolyte to make the solid content 30g.
Add so that the sulfuric acid concentration is 5 mol/e<ratio@1.
#Ii was made so that 27).
次に通常の方法で組立てtコ公IIS装置50ムhの電
池にこの供試電解液を入れ、通常の方法で充電し、JI
S規格に準じtコ方法で試験した。比較のために、イオ
ン交換樹脂を添加していない5モル/lの硫酸を試験に
付は叩えrこ。Next, put this test electrolyte into a 50mm battery assembled in the usual way, and charge it in the usual way.
Tested according to the S standard. For comparison, 5 mol/l sulfuric acid without added ion exchange resin was tested.
月明性能J5よび寿命性能は第1表のとおりであった。The moonlight performance J5 and life performance were as shown in Table 1.
第 1 表
以上の如く、イオン交換樹脂を添圓しfコを解歇を使用
した電池(A、B、O)は初切、寿命性能とも従来の電
解液を使用したt池ρ)に比して優れt、:性能を示し
た。特に粒子径0.1〜1μmの範囲のイオン交換樹脂
を添加した本発明品のt尊敬を使…【2Tこ電池(5)
)は2QhR@量、寿命サイクルでは15〜20%の向
Eであるのンと対して低温高率放電性能では80%強の
向tであった。低温高率放電性能での効果が大きかった
ことから、融板近傍の804 イオン示h*にI¥4
貸されバルクのSO略 の拡散が追いつかl(い場合に
その勿1が著しく発揮されているとgする。し7かも電
解液中のイオン交換樹脂が正負内崗〜にズ4して叩回な
る割合で作用しているかは今σ〕とCろはつきりしない
が、アニオン交換樹脂カチオノ交鵜樹脂それぞれ%単独
で用いても同様の効果がイ尋られる。寿命性能において
も効果があつfこ1月4、藺脂(スチレン系)が耐酸性
であるtこめに切切の性能が保持されていることが考え
られる。As shown in Table 1, the batteries (A, B, O) containing ion-exchange resin and using the FC battery (A, B, O) have better initial cut and life performance compared to the TC battery (ρ) using the conventional electrolyte. Excellent performance. In particular, using the product of the present invention containing an ion-exchange resin with a particle size in the range of 0.1 to 1 μm...[2T battery (5)]
) was 2QhR@ quantity, and in the life cycle, it was 15 to 20% towards E, whereas in low temperature high rate discharge performance, it was over 80% towards t. Because the effect on low-temperature, high-rate discharge performance was large, the 804 ion index h* near the melting plate was reduced to I¥4.
If the diffusion of SO in the bulk bulk has caught up, it is said that this effect is significantly exhibited.In addition, the ion-exchange resin in the electrolyte is circulating around the positive and negative sides. Although it is not clear whether they act in the proportions of σ and C, it seems likely that the same effect can be obtained even if each of the anion exchange resin and cation exchange resin is used alone.It is also effective in terms of life performance This January 4, it is thought that the performance of cutting is maintained because of the acid resistance of the linseed oil (styrene type).
本実1例ツクイオン交換樹脂の添加量は電解液1e当り
固形分として301であつrコが、実験の結果。In this example, the amount of ion exchange resin added was 301 as solid content per 1 e of electrolyte, and the results of the experiment were as follows.
1O−1110fが11I当であつTこ。1O-1110f is 11I.
以し#述しf二ように本発明によれば、初期性能。According to the present invention, as described below, the initial performance.
奢IfI性能ともに優れrコ鉛暦電池が得られ、本発明
のL業的1d!i 4 t、を大である。A co-lead battery with excellent luxury IfI performance was obtained, and the commercial 1d of the present invention! i 4 t, is large.
Claims (1)
に添加し1こことを特徴とする鉛蓄電池。1. A lead-acid battery characterized in that an ion exchange resin having a particle size in the range of 0.1 to 1 μm is added to an electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57066034A JPS58184273A (en) | 1982-04-19 | 1982-04-19 | Lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57066034A JPS58184273A (en) | 1982-04-19 | 1982-04-19 | Lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58184273A true JPS58184273A (en) | 1983-10-27 |
Family
ID=13304193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57066034A Pending JPS58184273A (en) | 1982-04-19 | 1982-04-19 | Lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58184273A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133667A (en) * | 1983-12-22 | 1985-07-16 | Shin Kobe Electric Mach Co Ltd | Manufacture of sealed type lead storage battery |
CN112349976A (en) * | 2020-09-29 | 2021-02-09 | 双登集团股份有限公司 | Method and process for improving low-temperature starting performance of start-stop battery |
-
1982
- 1982-04-19 JP JP57066034A patent/JPS58184273A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133667A (en) * | 1983-12-22 | 1985-07-16 | Shin Kobe Electric Mach Co Ltd | Manufacture of sealed type lead storage battery |
JPH0546064B2 (en) * | 1983-12-22 | 1993-07-12 | Shin Kobe Electric Machinery | |
CN112349976A (en) * | 2020-09-29 | 2021-02-09 | 双登集团股份有限公司 | Method and process for improving low-temperature starting performance of start-stop battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101291002B (en) | Colloidal electrolyte of lead acid batteries | |
US2938063A (en) | Storage battery active material | |
US4130695A (en) | Lead-acid storage battery and electrode therefor | |
JPS5931573A (en) | Negative electrode for lithium battery | |
JPS58184273A (en) | Lead-acid battery | |
US3650835A (en) | Preparation of battery plates with iron oxides having a fused coating | |
US2771381A (en) | Dry cell | |
JP4222488B2 (en) | Alkaline battery | |
GB2077029A (en) | Lead-acid storage batteries and lead oxide compositions for use therein | |
JPS63257183A (en) | Nonaqueous electrolytic solution battery | |
JPH08339826A (en) | Lithium battery | |
US3615788A (en) | Battery paste expander material | |
US2436299A (en) | Storage battery plate paste expander | |
US1740518A (en) | Alkaline storage battery | |
US1272952A (en) | Electric-battery depolarizer. | |
EP0295830B1 (en) | Solid state batteries | |
JPS60101861A (en) | Separator for hermetically sealed lead battery | |
WO2019234862A1 (en) | Lead storage battery | |
US1487109A (en) | Storage-battery electrolyte | |
JP3614440B6 (en) | High energy battery electrolyte and method for producing the electrolyte | |
JP3614440B2 (en) | High energy battery electrolyte and method for producing the electrolyte | |
JPH01267965A (en) | Sealed lead-acid battery | |
JPS62139275A (en) | Sealed lead-acid battery | |
JPH01117279A (en) | Lead-acid battery | |
KR100448017B1 (en) | An electrode composition for lead storage battery |