JPS58184097A - Gas shielded arc welding method of dead soft steel - Google Patents

Gas shielded arc welding method of dead soft steel

Info

Publication number
JPS58184097A
JPS58184097A JP6710182A JP6710182A JPS58184097A JP S58184097 A JPS58184097 A JP S58184097A JP 6710182 A JP6710182 A JP 6710182A JP 6710182 A JP6710182 A JP 6710182A JP S58184097 A JPS58184097 A JP S58184097A
Authority
JP
Japan
Prior art keywords
wire
carbon
nickel
welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6710182A
Other languages
Japanese (ja)
Inventor
Shoji Saito
斎藤 昭治
Nobutaka Yurioka
百合岡 信孝
Shigeru Oshita
大下 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6710182A priority Critical patent/JPS58184097A/en
Priority to US06/486,239 priority patent/US4593174A/en
Priority to GB08310800A priority patent/GB2122123B/en
Priority to NO831400A priority patent/NO831400L/en
Priority to CA000426476A priority patent/CA1211509A/en
Priority to DE19833314707 priority patent/DE3314707A1/en
Publication of JPS58184097A publication Critical patent/JPS58184097A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent the solidification cracking by welding thoroughly even if a steel material contg. a specific amt. of C is welded at a high speed in the stage of gas shielded arc welding of said material at the specific welding speed or above by contg. Ni in a filler for a compsoite wire at a specific weight ratio with the wire or above. CONSTITUTION:A stee material contg. 0.005-0.06% C is subjected to gas shielded welding at >=40cm/min welding speed. An Ni-contg. composite wire is used in this case and the content of Ni to be contained in the filler of said wire is specified so as to satisfy the equation in the ratio of Ni (w) based on the weight of the wire. In the equation, C(p); the content % of carbon in the steel material, C(t); the content % of carbon in the sheath of the wire, C(w); the content % of carbon in the filler based on the weight of the wire. At least the 1st layer is welded by using such wire.

Description

【発明の詳細な説明】 本発明は複合ワイヤを用いた極低炭素鋼のガスシールド
アーク溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gas-shielded arc welding of ultra-low carbon steel using a composite wire.

近年、鋼材は制御圧延の進歩に伴い、その溶接性の向上
あるいはコスト低減を計るため、ラインパイプ材を含め
、低炭素化の傾向にある。
In recent years, with advances in controlled rolling, there has been a trend towards lower carbon steel materials, including line pipe materials, in order to improve weldability or reduce costs.

従来、これら低炭素鋼材の溶接金属の高温割れ感受性、
とくにその溶接凝固割れ感受性は一般に低いと考えられ
ていた。
Conventionally, the hot cracking susceptibility of the weld metal of these low carbon steel materials,
In particular, its weld solidification cracking susceptibility was generally thought to be low.

ところで、本発明者らの検討によると、従来の認識に反
して、使用する鋼材の炭素量が0.06チ以下のような
極低炭素鋼を既存の複合ワイヤを用いて40(Ml/−
以上の溶接速度でガスシールドアーク溶接を行った際に
溶接金属の炭素含有量が十分低い(二もかかわらず、溶
接凝固割れが発生しやすいという知見をえた。
By the way, according to the studies of the present inventors, contrary to the conventional understanding, ultra-low carbon steel with a carbon content of 0.06 inches or less can be made by using existing composite wires with a carbon content of 40 (Ml/-).
It was found that when gas-shielded arc welding was performed at the above welding speed, weld solidification cracking was likely to occur despite the sufficiently low carbon content of the weld metal.

ところで、このような極低炭素鋼の溶接金属の溶接凝固
割れを解決する方法として、炭素量を高めた複合ワイヤ
を用いることによって、溶接金属中の炭素含有量が低く
なり過ぎないようC二、適正範囲に制御するガスシール
ドアーク溶接法が先に提案されている(特願昭56−1
40384号)。
By the way, as a method to solve such weld solidification cracking of weld metal of ultra-low carbon steel, by using a composite wire with increased carbon content, C2, A gas-shielded arc welding method that controls the welding within an appropriate range was previously proposed (Japanese Patent Application No. 1982-1).
No. 40384).

一方、本発明者らは、炭素量0.06%以下の極低炭素
鋼材を、40cwr/−以上の溶接速度でガスメタルア
ーク溶接した際(シ”層成される低炭素化した溶接金属
の溶接凝固割れに影響を及ぼす諸因子(二ついて、鋭意
検討を重ねた結果、低次てニッケルが著効を有すること
を見出した。
On the other hand, the present inventors found that when ultra-low carbon steel materials with a carbon content of 0.06% or less were gas metal arc welded at a welding speed of 40 cwr/- or more, the As a result of extensive research into the various factors that affect weld solidification cracking, we discovered that nickel has a significant effect on low-order nickel.

すなわち、低炭素溶接金属の炭素含有量に対応して決定
される所要ニッケル含有蓋以上の適量のニッケルを溶接
金属に含有せしめることによって、40crR/−以上
の溶接速度で溶接しても、低炭素溶接金属の溶接凝固割
れを完全に防止できることに成功した。
In other words, by making the weld metal contain an appropriate amount of nickel that exceeds the required nickel-containing lid determined in accordance with the carbon content of the low-carbon weld metal, low-carbon welding can be achieved even when welding at a welding speed of 40 crR/- or more. We succeeded in completely preventing weld solidification cracking of weld metal.

本発明は以上の知見に基づいてなされたものであって、
その要旨とするところは、炭素0.005〜0.06%
を含有する鋼材を、40 cm / #I以上の溶接速
度でガスシールドアーク溶接するに際して、複合ワイヤ
の充填剤に含まれるニッケル量を対ワイヤ重量比でNi
(刺チ、鋼材炭素量” fpiチ、複合ワイヤの外皮材
の炭素量をC(1)チ、充填剤中の炭素量を対ワイヤ重
置比でC(W)aIbと表示するとき    、。
The present invention was made based on the above findings, and
The gist of this is that carbon 0.005-0.06%
When gas-shielded arc welding steel containing Ni at a welding speed of 40 cm/#I or higher, the amount of nickel contained in the filler of the composite wire should be adjusted to the weight ratio of Ni to the wire.
(Steel carbon content) When the carbon content of the outer sheath material of the composite wire is expressed as C(1)chi, and the carbon content of the filler is expressed as C(W)aIb in terms of the overlapping ratio to the wire.

1\ 0.55 N i(w1≧2.0 (8,OC(p)+
 7.8 C(1)+ 9.9 C(wl )なる式を
満足する含ニツケル複合ワイヤを用いて少くとも第1層
目を溶接することを特徴とする極低炭素鋼のガスシール
ドアーク溶接方法および炭素0.005〜0.06%を
含有する含ニッケル鋼材ヲ、40crn/−以上の溶接
速度でガスシールドアーク溶接するに際して、鋼材のニ
ッケル量ThN1(p1%、複合ワイヤの充填剤に含ま
れるニッケル量を対ワイヤ重量比でN i (wl %
 、鋼材の炭素量をC1p)’、複合ワイヤの外皮材の
炭素量” Cft)%、充填剤中の炭素量を対ワイヤ重
量比でC(旬チと表示するとき 0.45 N +(p) +0−55 N I(W+≧
2.0(8,OCfpi+7.8 C(t)+9.9 
cfW+ )なる式を満足する含ニツケル複合ワイヤを
用いて少くとも第一層目を溶接することを特徴とする極
低炭素鋼のガスシールドアーク溶接方法にある。
1\ 0.55 N i(w1≧2.0 (8,OC(p)+
Gas-shielded arc welding of ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing composite wire that satisfies the formula: 7.8 C(1) + 9.9 C(wl) Method and when nickel-containing steel materials containing 0.005 to 0.06% carbon are gas-shielded arc welded at a welding speed of 40 crn/- or more, the amount of nickel in the steel material ThN1 (p1%, contained in the filler of the composite wire) Ni (wl %)
, the carbon content of the steel material is C1p)', the carbon content of the outer skin material of the composite wire is Cft)%, and the carbon content of the filler is the weight ratio of the wire to C (when expressed as 0.45 N + (p) ) +0-55 N I(W+≧
2.0(8,OCfpi+7.8 C(t)+9.9
The present invention provides a gas-shielded arc welding method for ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing composite wire that satisfies the formula: cfW+).

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

溶接金属の高温および低温域の耐割れ感受性と靭性の向
上のため、溶接金属の炭素量は、母あれば、高温域の溶
接高温割れは発生しないと考えられており、炭素量が0
.1%以下になってもこの考えが内挿して成立するもの
と信じられていた。
In order to improve the cracking resistance and toughness of weld metal in high and low temperature ranges, it is believed that weld hot cracking in high temperature ranges will not occur if the carbon content of the weld metal is 0.
.. It was believed that this idea would hold true even if it was less than 1%.

ところが本発明者らの検討によると、極低炭素鋼を従来
から常用されている複合ワイヤを用いて、ガスシールド
アーク溶接してえられる低炭素溶接金属の溶接凝固割れ
感受性はむしろ増大することを知見し、第1図を得た。
However, according to the studies of the present inventors, the susceptibility to weld solidification cracking of low-carbon weld metal obtained by gas-shielded arc welding of ultra-low carbon steel using composite wire, which has been commonly used in the past, actually increases. Figure 1 was obtained.

即ち、第1図は溶接金属の炭素量(%)と溶接速度(c
m /mM )と溶接凝固割れの関係を示すもので、炭
素量0.01〜0.16%の鋼板を用いて、第2図の開
先形状をもち、銅バッキングCを施した第3図に示す寸
法形状の溶接試験体を作製し、0.02〜0.08%の
炭素量の外皮材と炭素蓋を対ワイヤ重量比で、0.02
〜0.10%に調整した充填剤からなる複合ワイヤを用
いて、第1表に示す溶接条件でルート溶接した際に得ら
れたものであって、溶接金属にニッケルは含まれていな
い。
That is, Figure 1 shows the relationship between carbon content (%) of weld metal and welding speed (c
Fig. 3 shows the relationship between weld solidification cracking (m/mM) and weld solidification cracking, using a steel plate with a carbon content of 0.01 to 0.16%, having the groove shape shown in Fig. 2, and having a copper backing C applied. A welded test specimen having the dimensions and shape shown in was prepared, and the outer skin material and the carbon lid having a carbon content of 0.02 to 0.08% were mixed at a weight ratio of 0.02 to the wire.
This was obtained by root welding using a composite wire containing a filler adjusted to ~0.10% under the welding conditions shown in Table 1, and the weld metal does not contain nickel.

第  1  表 第2図においてt、:2.5IIl、  t2: 1.
511鳳。
In Table 1 and Figure 2, t: 2.5IIl, t2: 1.
511 Otori.

R,:22.5’、  R2:5’、  R,:2.7
5Rとした。
R,:22.5', R2:5', R,:2.7
It was set as 5R.

又第3図においてW、 :30011m、  W2及び
W、:100111、   11  :40011. 
  12  :3011.    t:100藷とした
Also, in Fig. 3, W, :30011m, W2 and W, :100111, 11 :40011.
12:3011. t: 100 pieces.

第1図に示されるように、溶接金属の炭素量が0.10
51未満、溶接速度40 cm/mM以上の領域Aにお
いて、溶接凝固割れが発生し、領域Bでは発生しないこ
とを確認した。即ち、溶接金属に の凝固割れ感受性は、従来の常識とは異なり、限界炭素
量以下(二なった場合、限界溶接速度以上で、かえって
溶接凝固割れ感受性が高くなつた。
As shown in Figure 1, the carbon content of the weld metal is 0.10
It was confirmed that weld solidification cracking occurs in region A where the welding speed is less than 51 and the welding speed is 40 cm/mM or more, but does not occur in region B. That is, the susceptibility to solidification cracking of the weld metal is different from conventional wisdom, and when the carbon content is below the limit carbon content (2), the susceptibility to solidification cracking of weld metal increases when the welding speed exceeds the limit.

この理由としては、溶接金属が低炭素化されるはどδ相
凝固が増加することが考えられ、溶接凝固割れを低減さ
せるには、δ相を極力抑制を有するとみられる炭素量0
.005%以上を含んだ一般構造用鋼、低温用低合金鋼
などの極低炭素鋼である。
The reason for this is thought to be that the δ phase solidification increases as the weld metal is reduced in carbon, and in order to reduce weld solidification cracking, it is necessary to suppress the δ phase as much as possible.
.. These are ultra-low carbon steels such as general structural steels and low-alloy steels for low temperature use, which contain 0.005% or more.

低炭素溶接金属におけるδ相生成を抑制するためγ相形
成元素であるニッケルの効果を検討するべくニッケルを
含有させた複合ワイヤを作製し、第1図と同じ溶接試験
方法を用いて一層溶接を行い、ルート溶接金属の溶接凝
固割れを詳細に調査して第4図を得た。複合ワイヤにニ
ッケルを含有させることによって溶接凝固割れ発生域の
炭素量上限値が低炭素側に移行した。
In order to investigate the effect of nickel, which is a γ phase-forming element, in order to suppress δ phase formation in low carbon weld metal, a composite wire containing nickel was fabricated, and further welding was performed using the same welding test method as shown in Figure 1. Fig. 4 was obtained by conducting a detailed investigation of weld solidification cracking in the root weld metal. By incorporating nickel into the composite wire, the upper limit of the carbon content in the weld solidification cracking region shifted to the lower carbon side.

:::□ 図中、複合ワイヤのNi(%)は■:0%、■二0.8
%、■:1.7チ、■:2,5%とした。
:::□ In the figure, the Ni (%) of the composite wire is ■: 0%, ■20.8
%, ■: 1.7%, ■: 2.5%.

これによって、低炭素溶接金属の溶接凝固割れ感受性の
低下に対して、ニッケルが極めて顕著な効果を有してい
ることが判明した。また、40 cm/llI#II未
満の溶接速度で溶接する場合には、溶接金属の最終凝固
部へ溶鋼が継続的に供給されるため、ニッケルを含有し
ない低炭素溶接金属であっても、溶接凝固割れの発生が
みられなかった。
This revealed that nickel has an extremely significant effect on reducing the weld solidification cracking susceptibility of low carbon weld metals. In addition, when welding at a welding speed of less than 40 cm/llI#II, molten steel is continuously supplied to the final solidification part of the weld metal, so even if the weld metal is low carbon and does not contain nickel, welding No solidification cracking was observed.

すなわち、低炭素溶接金属の溶接凝固割れは49 cm
/min以上の溶接速度でガスシールドアーク溶接した
際に起こる現象であった。冶金的条件および力学的条件
から、溶接凝固割れはルート溶接金属に最も発生し易い
ので、ルート溶接金属の凝固割れを防止できさえすれば
、後続溶接による低炭素溶接金属の凝固割れの懸念はな
くなる。このルート溶接金属の溶接凝固割れを防止する
ためには、使用する鋼材、複合ワイヤ、溶接条件できま
るルート溶接金属の炭素量C(R)チに対して、このC
(R)%が溶接凝固割れの上限値となるようなニッケル
量以上のニッケルを含有する複合ワイヤを使用すればよ
いことを第4図は示唆している。第4図をもとにして、
溶接凝固割れ不発生域におけるc(R)と複合ワイヤ中
のニッケル量Ni(ロ)の関係式として次式を得ること
ができた。
In other words, the weld solidification crack of low carbon weld metal is 49 cm
This phenomenon occurred when gas-shielded arc welding was performed at a welding speed of /min or more. Due to metallurgical and mechanical conditions, weld solidification cracking is most likely to occur in the root weld metal, so as long as solidification cracking in the root weld metal can be prevented, there is no need to worry about solidification cracking in low carbon weld metal due to subsequent welding. . In order to prevent this welding solidification cracking of the root weld metal, it is necessary to
FIG. 4 suggests that it is sufficient to use a composite wire containing more than the amount of nickel such that (R)% is the upper limit for weld solidification cracking. Based on Figure 4,
The following equation could be obtained as a relation between c(R) in the welding solidification crack-free region and the amount of nickel Ni(b) in the composite wire.

0.55Ni(旬≧2.2−2 I C(R)    
   (1)一方、本発明者らは、40 cm/rMM
以上の溶接速度で多数のガスシールドアーク溶接試験を
実施し、ルート溶接金属の炭素量c(R)に対する鋼材
の炭素量C(1)と複合ワイヤの外皮材の炭素量C(1
)と充填剤の炭素量C(w)の相互関係について詳細な
検討を行った結果、c(R)の予測式として次式を得る
ことができた。
0.55Ni (season≧2.2-2 IC(R)
(1) On the other hand, the present inventors
A large number of gas-shielded arc welding tests were carried out at the above welding speeds, and the carbon content of the steel material C(1) relative to the carbon content c(R) of the root weld metal and the carbon content of the outer skin material of the composite wire C(1)
) and the carbon content of the filler C(w), the following equation was obtained as a prediction equation for c(R).

C(R) = 0.38C(p)+ 0.37 C(t
l+ O;47 C(w)+ 0.01  (2)(1
)式と(2)式から低炭素溶接金属の溶接凝固割れ?防
止するため(二は、複合ワイヤ中のニッケル量が次式を
満足すればよいことが分った。
C(R) = 0.38C(p)+0.37C(t
l+ O;47 C(w)+ 0.01 (2)(1
) and (2), weld solidification cracking of low carbon weld metal? In order to prevent this, it was found that the amount of nickel in the composite wire should satisfy the following formula.

0.55 N i fwl≧2.0 (8,0C(p)
+7.8C(t1+9.9C(w))  (3)次に、
極低炭素鋼材は良好な溶接部靭性を確保する目的でニッ
ケルを含有している場合がある。このような含ニツケル
極低炭素鋼をガスシールドアーク溶接すると、当然のこ
とながら、鋼材中のニッケルが溶接金属へ移行するので
、溶接凝固割、れの防止に必要な複合ワイヤのニッケル
量は、鋼材側から移行してきたニッケル量(−相当する
量だけ減少させることができる。
0.55 N i fwl≧2.0 (8,0C(p)
+7.8C (t1+9.9C(w)) (3) Next,
Ultra-low carbon steel materials may contain nickel to ensure good weld toughness. When such nickel-containing ultra-low carbon steel is gas-shielded arc welded, nickel in the steel material naturally migrates to the weld metal, so the amount of nickel in the composite wire required to prevent welding solidification cracking and cracking is: The amount of nickel transferred from the steel material side (- can be reduced by the corresponding amount.

40cIn/−以上の溶接速度でガスシールドアーク溶
接した際のルート溶接金属形成への鋼材側からの寄与率
は45%であったこと、および溶接時(ニニッケルの酸
化損失がほとんどないことから鋼材中のニッケル”(9
1は複合ワイヤ中(二0.45”(piのニッケルが含
有されていることに相当している。
The contribution rate from the steel material side to the root weld metal formation during gas-shielded arc welding at a welding speed of 40 cIn/- or higher was 45%, and the contribution rate from the steel material side to the root weld metal formation during welding (because there is almost no oxidation loss of Ni-nickel in the steel material) Nickel” (9
1 corresponds to 20.45" (pi) of nickel in the composite wire.

したがって、含ニツケル極低炭素鋼をガスシールドアー
ク溶接した際のルート溶接金属の溶1 接凝固割れを完全に防止する゛た1めには、上述の理由
と(3)式から、複合ワイヤ中のニッケル量として、は
次式を満足できるようにきめればよいの0.45 N 
1lp) + 0.55 N i(ロ)≧2.0(8,
OC(p) + 7.8 C(0+9.90(wl )
なお、本発明シニおいて使用される複合ワイヤとしては
要する(二前述の関係を満足するものであればよいので
あるが、ニッケルは充填剤中に金属ニッケルおよびフェ
ロアロイの金属粉として添加するのがよく、その添加量
は実用的見地から、対ワイヤ重量比で1.0〜2.5%
が望ましい。
Therefore, in order to completely prevent weld solidification cracking of the root weld metal when nickel-containing ultra-low carbon steel is gas-shielded arc welded, from the above reasons and equation (3), it is necessary to The amount of nickel in the equation should be determined to satisfy the following formula: 0.45 N
1lp) + 0.55 N i (b) ≧ 2.0 (8,
OC (p) + 7.8 C (0 + 9.90 (wl)
It should be noted that the composite wire used in the present invention may be any material as long as it satisfies the above-mentioned relationship, but it is preferable to add nickel to the filler in the form of metallic nickel and ferroalloy metal powder. From a practical standpoint, the amount added is usually 1.0 to 2.5% based on the weight of the wire.
is desirable.

その他の充填剤成分としては、次のようなものを使用す
ることができる。すなわち、ワイヤ重量比に換算して、
脱酸剤と合金剤としてのマンガンとシリコンは0.5〜
3..5%Mn5O11〜1.5%Siオ!び酸化物と
L テT+02 、ZrO2,Al2O3。
As other filler components, the following can be used. In other words, in terms of wire weight ratio,
Manganese and silicon as deoxidizing agents and alloying agents are 0.5~
3. .. 5%Mn5O11~1.5%SiO! ZrO2, Al2O3 and LteT+02.

5in2の1種以上の合計を20%まで添加でき、・“
・、l 他に各種の弗化物、炭酸基などのアーク安定剤、鉄粉な
どの補充剤ヲコ゛添加できる。
One or more types of 5in2 can be added up to 20% in total,
In addition, various fluorides, arc stabilizers such as carbonate groups, and replenishers such as iron powder can be added.

なお、本発明ワイヤの外皮材としては、優れた加工性を
もった軟鋼を使用する。また複合ワイヤの断面形状につ
いては特に定める必要はなく、折込み形のものやシーム
レスワイヤであっても構わない。さらに複合ワイヤ中の
充填剤はワイヤ重量比10〜30%の範囲にするのがよ
い。
Incidentally, as the outer skin material of the wire of the present invention, mild steel having excellent workability is used. Further, the cross-sectional shape of the composite wire does not need to be particularly determined, and it may be a folded wire or a seamless wire. Furthermore, the filler in the composite wire is preferably in the range of 10 to 30% by weight of the wire.

次シ:実施例によって本発明をさら(−具体的に説明す
る。
Next: The present invention will be further explained in detail with reference to Examples.

実施例1 第2表に示す化学成分の厚板を用いて、第2図に示す開
先形・状をもった第3図に示す溶接試験体を作製し、第
3表に示す1.6 IIφの複合ワイヤを用いて、第4
表に示す溶接条件で1パス溶接を行い、溶接金属の凝固
割れを調査した。
Example 1 A welding test specimen shown in FIG. 3 having the groove shape and shape shown in FIG. 2 was prepared using a thick plate having the chemical composition shown in Table 2. Using a composite wire of IIφ, the fourth
One-pass welding was performed under the welding conditions shown in the table, and solidification cracking of the weld metal was investigated.

試験結果を第5表に示す。The test results are shown in Table 5.

本発明の範囲にあるもの(=は、X線透過試験および溶
接ビード断面検査で溶接凝固割れは皆無である。
Items within the scope of the present invention (= indicates no weld solidification cracking in X-ray transmission test and weld bead cross-sectional inspection.

51 ただし A = 2.0  (8,0C(p)+ 7.80(1
)+9.90(W) )B = 0.55 N i (
1) C” 0.45Ni(p) +0.55Ni(f10印
は割れなし、 X印は割れあり 実施例2 第2図に示す開先形状をした第6表に示す化学成分の鋼
管(外径1.2191mxlO00關)を第3表の複合
ワイヤを用い、第7表に示す溶接条件でルート溶接を行
った。試験結果を第8表に示す。
51 However, A = 2.0 (8,0C(p) + 7.80(1
) + 9.90 (W) ) B = 0.55 N i (
1) C" 0.45Ni (p) +0.55Ni (f10 mark indicates no cracks, Root welding was performed using the composite wire shown in Table 3 under the welding conditions shown in Table 7. The test results are shown in Table 8.

本発明の範囲にあるものはX線透過試験および溶接ビー
ド断面検査で凝固割れは皆無である。
The products within the scope of the present invention showed no solidification cracking in X-ray transmission tests and weld bead cross-sectional inspections.

観 qり 滅 ただし A = 2.0  (8,0C(p)+7.8C(11
+9.9C(wl )B = 0.55Ni(f) C= 0.45N 1(p) + 0.55N 1(f
10印は割れなし、 X印は割れあり
A = 2.0 (8,0C(p)+7.8C(11
+9.9C(wl)B = 0.55Ni(f) C= 0.45N 1(p) + 0.55N 1(f
10 mark indicates no crack, X mark indicates crack.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は極低炭素鋼をガスシールドアーク溶接した場合
にルート溶接全綱に発生する凝固割れ領域と溶接金属炭
素量と溶接速度との関係を示す図表、第2図は開先形状
の模式図、第3図は溶接試験体の寸法、形状を示す模式
図、第4図は極低炭素鋼のガスシールドアーク溶接にお
けるルート溶接金属に発生する凝固割れ感受性に及ぼす
ニッケルの効果を示す図表である。 笥1図 溶接金鷹戻素i (X) 第2図 第3図 1第4図 0    0.05   0.10   0,15  
 0.20;溶接金属炭素量(%) 手続補正書 昭和57年57’124  日 特許庁長官島 1)春 樹 殿 1事件の表示 昭和57年特許願第 67101  芳
性 所  東京都千代田区大手町2丁目6番3号名 称
  (665)  新日本製鐵株式食紅代表者  武 
1)  豊 4代 理 人 住 所  東京都中央区日本橋3丁目3番3号5、補正
命令の日付 昭和  年  月  日(発送日)6補正
によシ増加する発明の数
Figure 1 is a chart showing the relationship between the solidification cracking area that occurs in all root welded steels, weld metal carbon content, and welding speed when ultra-low carbon steel is gas-shielded arc welded, and Figure 2 is a schematic diagram of the groove shape. Figure 3 is a schematic diagram showing the dimensions and shape of a welding test specimen, and Figure 4 is a diagram showing the effect of nickel on the susceptibility to solidification cracking that occurs in root weld metal during gas-shielded arc welding of ultra-low carbon steel. be. Figure 1 Welding metal return element i (X) Figure 2 Figure 3 Figure 1 Figure 4 0 0.05 0.10 0,15
0.20; Weld metal carbon content (%) Procedural amendment dated 57'124, 1980, Japan Patent Office Commissioner Shima 1) Indication of Haruki Tono 1 case Patent application No. 67101, 1981 Otemachi, Chiyoda-ku, Tokyo 2-6-3 Name (665) Nippon Steel Stock Food Coloring Representative Takeshi
1) Toyota 4th generation Osamu Address: 3-3-3-5, Nihonbashi, Chuo-ku, Tokyo Date of amendment order: Showa Year, month, day (shipment date) 6 Number of inventions to be increased by amendment

Claims (1)

【特許請求の範囲】 1、炭素0.005〜0.061e含!する鋼;In、
4 Q cm/1Jul+以上の溶接速度でガスシール
ドアーク溶接するに際して、複合ワイヤの充填剤に含ま
れるニッケル量を対ワイヤ重量比でN i twlチ、
鋼材の炭素量をC(1)チ、複合ワイヤの外皮材の炭素
1 vil−C(t1%、充填剤中の炭素量を対ワイヤ
重量比でCHIと表示するとき0.55Ni(1)上2
゜0 (8,OC(p)+ 7.80(t1+ 9.9
 C(wl )なる成金満足する含ニツケル複合ワイヤ
を用いて少くとも第一層目を溶接することを特徴とする
極低炭素鋼のガスシールドアーク溶接方法。 2、炭素0.005〜0.06%’fr含有する含ニツ
ケル鋼材を、40α/mis以上の溶接速度でガスシー
ルドアーク溶接するに際して、鋼材のニッケル量e N
I(pl %−複合ワイヤの充填剤に含まれるニッケル
量を対ワイヤ重量比でNI(w) % 、鋼材の炭素量
をC(p)%、複合ワイヤの外皮材の炭素量をC(t)
ts、充填剤中の炭素量を対ワイヤ重量比でC1旬%と
表示するとき 0.45N 1(p) + 0.55N i(w)上2
゜0(8,OC(川+ 7.8 C(tl+ 9.9 
c(Wl )なる式を満足する含ニツケル複合ワイヤを
用いて、少くとも第一層目を溶接することを特徴とする
極低炭素鋼のガスシールドアーク溶接方法。
[Claims] 1. Contains 0.005 to 0.061e of carbon! Steel; In,
When performing gas-shielded arc welding at a welding speed of 4 Q cm/1 Jul+ or more, the amount of nickel contained in the filler of the composite wire is N i twl in weight ratio to the wire,
The carbon content of the steel material is C(1)chi, the carbon content of the outer sheath material of the composite wire is 1 vil-C (t1%), and the carbon content of the filler is expressed as CHI in terms of weight ratio to the wire. 2
゜0 (8, OC(p)+ 7.80(t1+ 9.9
A gas-shielded arc welding method for ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing composite wire having a satisfactory metal formation of C(wl). 2. When performing gas-shielded arc welding of nickel-containing steel materials containing 0.005 to 0.06%'fr of carbon at a welding speed of 40α/mis or more, the amount of nickel in the steel material eN
I(pl%) - The amount of nickel contained in the filler of the composite wire is NI(w)% as a weight ratio to the wire, the amount of carbon in the steel is C(p)%, and the amount of carbon in the outer skin material of the composite wire is C(t). )
ts, when the amount of carbon in the filler is expressed as C1% by weight relative to the wire, 0.45N 1 (p) + 0.55N i (w) upper 2
゜0(8, OC(kawa+7.8 C(tl+9.9
A gas-shielded arc welding method for ultra-low carbon steel, characterized in that at least the first layer is welded using a nickel-containing composite wire that satisfies the formula: c(Wl).
JP6710182A 1982-04-23 1982-04-23 Gas shielded arc welding method of dead soft steel Pending JPS58184097A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6710182A JPS58184097A (en) 1982-04-23 1982-04-23 Gas shielded arc welding method of dead soft steel
US06/486,239 US4593174A (en) 1982-04-23 1983-04-18 Method for welding very low carbon steel
GB08310800A GB2122123B (en) 1982-04-23 1983-04-21 Method for arc welding of very-low carbon steel
NO831400A NO831400L (en) 1982-04-23 1983-04-21 PROCEDURE FOR LOW CARBON STEEL WELDING
CA000426476A CA1211509A (en) 1982-04-23 1983-04-22 Method for arc welding of very low carbon steel
DE19833314707 DE3314707A1 (en) 1982-04-23 1983-04-22 METHOD FOR ARC WELDING STEEL WITH A VERY LOW CARBON CONTENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6710182A JPS58184097A (en) 1982-04-23 1982-04-23 Gas shielded arc welding method of dead soft steel

Publications (1)

Publication Number Publication Date
JPS58184097A true JPS58184097A (en) 1983-10-27

Family

ID=13335152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6710182A Pending JPS58184097A (en) 1982-04-23 1982-04-23 Gas shielded arc welding method of dead soft steel

Country Status (1)

Country Link
JP (1) JPS58184097A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265736A (en) * 1975-11-28 1977-05-31 Nippon Steel Corp Fluxxcored electrode wire for low temperature high tenacity low alloy steel
JPS5536007A (en) * 1978-09-04 1980-03-13 Hitachi Ltd Compound wire for automatic and semi-automatic arc welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265736A (en) * 1975-11-28 1977-05-31 Nippon Steel Corp Fluxxcored electrode wire for low temperature high tenacity low alloy steel
JPS5536007A (en) * 1978-09-04 1980-03-13 Hitachi Ltd Compound wire for automatic and semi-automatic arc welding

Similar Documents

Publication Publication Date Title
JP5644984B1 (en) Flux-cored wire, welding method using flux-cored wire, manufacturing method of welded joint using flux-cored wire, and welded joint
CA2204339C (en) Metal-core weld wire for welding galvanized steels
JP5565518B2 (en) Welding method, welded joint manufacturing method and welded joint
WO2015068261A1 (en) Method for producing weld joint
WO2010073763A1 (en) Stainless steel flux-cored welding wire for the welding of galvanized steel sheets and process for arc welding of galvanized steel sheets with the same
WO1998010888A1 (en) Welding material for stainless steels
JP4864506B2 (en) Submerged arc weld metal of high strength steel
JP2018144071A (en) Flux-cored wire for gas shield arc welding, and method for production of weld joint
JPH07195193A (en) Solid wire for thin sheet of high tension steel
US5272305A (en) Girth-welding process for a pipe and a high cellulose type coated electrode
JP2018192518A (en) Flux-cored wire for gas shield arc welding, and manufacturing method of weld joint
JP6829111B2 (en) Filling material for TIG welding
JPS58184097A (en) Gas shielded arc welding method of dead soft steel
JPH0242313B2 (en)
JP2001293596A (en) Flux-filled wire for welding ferritic stainless steel
JPS58199847A (en) Steel for pressure vessel with superior disbonding resistance
JPS6048584B2 (en) Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability
JPS60121099A (en) Compound wire for welding
JP6728806B2 (en) High Ni flux-cored wire for gas shield arc welding and method for manufacturing welded joint
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
KR101856703B1 (en) Flux cored wire for galva-annealed steel welding
RU2387526C2 (en) Flux cored wire for welding of tubes of strength category x70-x80
JPH11267881A (en) Welding material for high cromium steel
JP2004181527A (en) Wire for mig welding of martensitic stainless steel pipe and welding method for the same pipe
JP2003103399A (en) Flux-filled wire for welding weather resistant steel