JPS58184067A - Method and apparatus for automatic working of three- dimensional curved surface - Google Patents

Method and apparatus for automatic working of three- dimensional curved surface

Info

Publication number
JPS58184067A
JPS58184067A JP6533782A JP6533782A JPS58184067A JP S58184067 A JPS58184067 A JP S58184067A JP 6533782 A JP6533782 A JP 6533782A JP 6533782 A JP6533782 A JP 6533782A JP S58184067 A JPS58184067 A JP S58184067A
Authority
JP
Japan
Prior art keywords
controlling
processing
control device
tip
nozzle hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6533782A
Other languages
Japanese (ja)
Other versions
JPH0318985B2 (en
Inventor
Tetsuki Matsui
松井 哲鬼
Hidetomo Fukuhara
福原 秀倶
Takao Okamura
岡村 隆夫
Takeshi Yano
健 矢野
Kazumi Uchiyama
内山 和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6533782A priority Critical patent/JPS58184067A/en
Publication of JPS58184067A publication Critical patent/JPS58184067A/en
Publication of JPH0318985B2 publication Critical patent/JPH0318985B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams

Abstract

PURPOSE:To perform titled working by setting a value in accordance with dimension indicated in the drawing of a position to be worked to a controlling device, controlling a measuring device by above-mentioned value to perform measurement and controlling a working device by corrected measured value, and thereby moving the tip of the working device according to the indicated dimension. CONSTITUTION:For instance, the dimension indicated in the drawing of a nozzle hole is inputted to controlling devices 16, 17. A rotary table 18 is driven by a driving motor 14 basing on a command from the device 16, and the center of the nozzle hole is made to coincide with the center line in the left and right directions of a main shaft 5. An arm 7 is controlled by an output signal of a driving system controlling device 15 inputted through the device 17, and sets the center to the position of the center of nozzle hole. A measuring terminal 10 at the tip of the arm 7 measures the shape of a place to be cut and worked automatically and the measured value and a prescribed dimension are compared and corrected by the device 17. The corrected value is programmatically inputted from the device 17 to the device 15, and the tip of a cutting torch 12 travels automatically according to an output signal of the device 15 along the worked face keeping a fixed distance from the work 18, and cuts the nozzle hole.

Description

【発明の詳細な説明】 本発明は三次元曲面の自動加工方法および装置に係り、
特に型性加工された球面状の鏡板において、基準線のけ
がきとノズル穴およびフランジ端面の溶接用開先部の切
断加工とを複合加工するのに好適な自動加工方法および
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic processing method and apparatus for three-dimensional curved surfaces,
In particular, the present invention relates to an automatic processing method and apparatus suitable for performing a combined process of marking a reference line and cutting a welding groove on a nozzle hole and a flange end surface in a spherical end plate that has been subjected to mold processing. .

圧力容器などの鏡板は三次元曲面をなしており、一般に
型性加工される関係上図面寸法との誤差が大きく、かつ
均一な加工精度が得難い。したがって、重性加工後の二
次加工例えばノズル穴の溶接開先の切断加工の自動化は
非常に困難である。
The end plate of a pressure vessel or the like has a three-dimensional curved surface, and because it is generally subjected to mold processing, there is a large error in the dimensions from the drawing, and it is difficult to obtain uniform processing accuracy. Therefore, it is very difficult to automate secondary processing after heavy processing, such as cutting of welding grooves for nozzle holes.

従来、一般的にはけがきは手動で行なわれ、開先用の切
断加工は手動か又は半自動のガスあるいはプラズマ切断
で加工するか、又は機械加工代を残して切断し工作機械
で加工されている。
Traditionally, scribing has been done manually, and beveling cutting has been done manually or by semi-automatic gas or plasma cutting, or by cutting with a machining allowance and using a machine tool. There is.

ところで、第1図に示すような塑性加工後の鏡板の基準
@A、 Bなどのけかきとノズル穴および7ランジ端面
の開先切断加工を自動化するには、!2図に示すように
けがきおよび切断トーチ11゜校の先端部を被加工物1
8に対し所定の角度θ (鉛直線との角度)に制御し、
かつ一定の高さhに保ち、被加工物18の曲面形状に従
った一定の軌道で移動させて所定のけかき線および開先
形状を得る加工を行なう必要がある。
By the way, in order to automate the bevel cutting of the nozzle hole and the 7-lunge end face, the reference plate @ A, B etc. after plastic working as shown in Fig. 1 can be automated! As shown in Figure 2, attach the tip of the scribing and cutting torch 11° to the workpiece 1.
8 to a predetermined angle θ (angle with the vertical line),
In addition, it is necessary to maintain the height h at a constant height and move the workpiece 18 along a constant trajectory according to the curved surface shape of the workpiece 18 to obtain a predetermined score line and groove shape.

この場合に、トーチ先端部を所定の角度θに変化させ、
移動する軌道を一定に制御することは可能であるが、被
加工物の曲面形状が規定寸法通りでなく個々にあるいは
部位によ4て不均一であると、トーチ先端部と被加工面
との間隔が変動して所定のけかき線および開先形状が得
られなくなる。
In this case, the tip of the torch is changed to a predetermined angle θ,
It is possible to control the moving trajectory at a constant level, but if the curved surface shape of the workpiece does not conform to the specified dimensions and is uneven individually or depending on the part, the relationship between the torch tip and the workpiece surface may be affected. The spacing fluctuates, making it impossible to obtain a predetermined score line and groove shape.

以上のような問題のため、■性加工品である鏡板のよう
な被加工物のけがきや開先切断加工の複合自動加工装置
は実用化されていなからだ。
Because of the problems mentioned above, multi-purpose automatic processing equipment for marking and cutting grooves on workpieces such as end plates, which are semi-finished products, has not been put into practical use.

本発明は、上記問題点を解決するために、けが′1.i きおよび切断トーチなど加工装置の先端部と被加工面と
の間隔を被加工物が規定寸法通りに加工されていなくて
も常に一定に保持し、被加工物の三次元曲面形状に沿っ
て加工装置先端部を寸法通りに自動的に移動できるよう
にすることを目的としたものである。
In order to solve the above-mentioned problems, the present invention aims to solve the above-mentioned problems. i Always keep the distance between the tip of processing equipment such as a cutting torch and the workpiece surface constant even if the workpiece is not processed to the specified dimensions, and follow the three-dimensional curved shape of the workpiece. The purpose is to automatically move the tip of the processing device according to the dimensions.

本発明は、被加工瞼な位置決めし、制御装置に加工個所
の図面寸法通りの数値を設定し、計測装置を上記数値に
より数値制御して加工個所を自動計測し、二の計測数値
を制御装置に入力し初期数値と比較して形状誤差分を自
動修正し、この修正された数値により加工装置を数値制
御し、加工装置の先端部が加工個所との間隔を一定に保
ち、かつ加工個所に沿って自動走行するようにしたこと
を特徴とする。
The present invention positions the eyelid to be processed, sets numerical values according to the drawing dimensions of the processed area in the control device, numerically controls the measuring device using the above-mentioned values, automatically measures the processed area, and transmits the second measured value to the control device. The shape error is automatically corrected by comparing it with the initial value, and the processing equipment is numerically controlled using the corrected value, so that the tip of the processing equipment maintains a constant distance from the processing location, and the distance between the processing equipment and the processing location is maintained constant. It is characterized by being able to automatically travel along the line.

以下、本発明の一実施例を第3〜5図により説 5明す
る。1,1′はコラム、2はコラム1,1′で固定され
たフレームで、ヘッド駆動モータ4を有するヘッド3が
左右方向(Y方向)に摺動可能に取付けられている。5
ば″□生細軸駆動モータ6より上下方向(2方向)に移
動するようにヘッド3に取付けられた中空をなす主軸、
7は主軸5下部に設けられたアームで、駆動力は駆動モ
ータ8より主軸5中空部を経て伝えられ矢印α方向に角
度を変更でき、また、同様に駆動モータ9により主軸5
中空部を経て回転可能にされている。10.11.12
は、各加工ごとにアーム7の先端部に装着されるそれぞ
れ計測端子、けがきトーチおよび切断トーチ、13は回
転テーブル駆動モータ14により所定角度に回転できる
回転テーブル、15は上記ヘッド駆動モータ4.主軸駆
動モータ6、駆動モータ8゜9を制御するための数値制
御による駆動系制御装置、16は回転テーブル駆動モー
タ14用の制御装置。
An embodiment of the present invention will be explained below with reference to FIGS. 3 to 5. 1 and 1' are columns, and 2 is a frame fixed by the columns 1 and 1', on which a head 3 having a head drive motor 4 is attached so as to be slidable in the left-right direction (Y direction). 5
A hollow main shaft is attached to the head 3 so as to be moved vertically (in two directions) by the fine shaft drive motor 6;
Reference numeral 7 denotes an arm provided at the bottom of the main shaft 5. The driving force is transmitted from the drive motor 8 through the hollow part of the main shaft 5, and the angle can be changed in the direction of the arrow α.
It is rotatable through a hollow part. 10.11.12
1 is a measuring terminal, a scribing torch, and a cutting torch that are attached to the tip of the arm 7 for each process; 13 is a rotary table that can be rotated at a predetermined angle by a rotary table drive motor 14; 15 is the head drive motor 4. A drive system control device using numerical control for controlling the main shaft drive motor 6 and the drive motor 8.9; 16 is a control device for the rotary table drive motor 14;

17は駆動系制御装W115をプログラム制御する制御
装置、18は被加工物である。
17 is a control device for program-controlling the drive system control device W115, and 18 is a workpiece.

次に、本装置の動作を被加工物18におけるノズル穴の
切断加工を例によって説明する。
Next, the operation of the present apparatus will be explained using an example of cutting a nozzle hole in the workpiece 18.

(1)加工個所であるノズル穴の図面寸法を制御装置1
6および制御装[17に入力する。
(1) Control device 1 controls the drawing dimensions of the nozzle hole, which is the processing location.
6 and the control device [17].

(2)  回転テーブル13は制御装置16からの回転
指令にもとづき回転テーブル駆動モータ14により駆動
され、予め回転テーブル13上の目盛に合わせて基準位
置に載置された被加工物18を回転させ、ノズル穴の中
心を主軸5の左右方向中心線上に一致せしめる。
(2) The rotary table 13 is driven by the rotary table drive motor 14 based on a rotation command from the control device 16, and rotates the workpiece 18 placed at a reference position in advance according to the scale on the rotary table 13. The center of the nozzle hole is made to coincide with the center line of the main shaft 5 in the left-right direction.

(3)制御装置17を介してプログラム入力された駆動
系制御装置j15の出力信号に従ってヘッド駆動モータ
4I主軸駆動モータ6、駆動モータ8および9が駆動さ
れ、アーム7は図示矢印方向の上下、左右方向の移動お
よび角度一回転が制御され、その中心はグログラムされ
たとおりノズル穴の中心位置にセットされ、アーム7自
身は回転する。
(3) The head drive motor 4I, the main shaft drive motor 6, and the drive motors 8 and 9 are driven according to the output signal of the drive system control device j15, which is programmed through the control device 17, and the arm 7 is moved vertically, horizontally, and vertically in the direction of the arrow shown in the figure. The directional movement and angular rotation are controlled, the center is set at the center position of the nozzle hole as programmed, and the arm 7 itself rotates.

(4)  アーム7の先端部には予め所定半径にセット
された計測端子lOが取付けられており、上記(3)の
制御により切断加工個所の形状計測を自動的に行なう。
(4) A measurement terminal 1O, which is set to a predetermined radius in advance, is attached to the tip of the arm 7, and the shape of the cutting location is automatically measured by the control described in (3) above.

そして、信号が計測端子10より制御装置17にフィー
ドバックされ、規定寸法と計測値との比較修正が自動的
に行なわれる。
Then, the signal is fed back from the measurement terminal 10 to the control device 17, and comparison and correction between the specified dimension and the measured value is automatically performed.

(5)上記により修正された数値は、二次指令として制
御装置17から駆動系制御装[15にプログラム入力さ
れ−る。そして、駆動系制御装置15の出力信号に従っ
てヘッド駆動モータ4.主軸駆動モータ6および駆動モ
ータ9が数値制御により駆動される。そこで、この場合
に計測端子10を切断トーチ化に取換えておけば、切断
トーチ戎の先端部は被加工物18との間隔を一足に保ち
(5) The numerical values corrected above are input into the program from the control device 17 to the drive system control device [15] as secondary commands. Then, according to the output signal of the drive system control device 15, the head drive motor 4. The main shaft drive motor 6 and the drive motor 9 are driven by numerical control. Therefore, in this case, if the measurement terminal 10 is replaced with a cutting torch, the distance between the tip of the cutting torch and the workpiece 18 can be maintained at one foot.

かつ被加工面に沿って自動走行してノズル大の切断加工
が行なわれる。
The nozzle-sized cutting process is performed by automatically traveling along the work surface.

なお、けがきの場合も同、様である。The same applies to scribing.

以上のように上記実施例によれば、けがきおよび切断の
複合加工が所定の図面寸法を入力するだけで本装置自身
がプログラムを作成し、計測および加工を自動的に行な
うことができ、また、自動化により加工精度も向上して
後続工程に対する波及効果もある。
As described above, according to the above-mentioned embodiment, the device itself can create a program and automatically perform measurement and processing by simply inputting the predetermined drawing dimensions for complex processing of marking and cutting. , automation also improves processing accuracy and has a ripple effect on subsequent processes.

本発明によれば、被加工物の三次元曲面形状に沿って加
工装W1扼端部を寸法通りに自動的に移動することがで
きるという効果がある。
According to the present invention, there is an effect that the end portion of the processing device W1 can be automatically moved according to the dimensions along the three-dimensional curved shape of the workpiece.

【図面の簡単な説明】[Brief explanation of the drawing]

!J1図は本発明の対象である被−〇1智の一例の正面
図、第2図はトーチと被加工面との関係を示す説明図、
第3図は本発明装置の一実施例を示す平面図、第4図は
その正面図、第5図は本発明のフローチャートである。 1・・・・・・コラム、2・・・・・・フレーム、3・
・・・・・ヘッド、4・・・・・・ヘッド駆動モータ、
5・・・・・・主軸、6・・・・・・主軸駆動モータ、
7・・・・・・アーム、8,9・・・・・・駆動モータ
、10・・・・・・計測端子、11・・・・・・けがき
トーチ、12・・・・・・切断トーチ、13・・・・・
・回転テーブル、14・・・・・・回転テーブル駆動モ
ータ、b・・・・・・駆動系制御装置、才5m −3簡−
! Figure J1 is a front view of an example of the workpiece 〇1chi which is the object of the present invention, Figure 2 is an explanatory diagram showing the relationship between the torch and the workpiece surface,
FIG. 3 is a plan view showing an embodiment of the apparatus of the present invention, FIG. 4 is a front view thereof, and FIG. 5 is a flowchart of the present invention. 1...Column, 2...Frame, 3.
...Head, 4...Head drive motor,
5... Main shaft, 6... Main shaft drive motor,
7... Arm, 8, 9... Drive motor, 10... Measuring terminal, 11... Marking torch, 12... Cutting Torch, 13...
・Rotary table, 14...Rotary table drive motor, b...Drive system control device, length 5m -3simpler-

Claims (1)

【特許請求の範囲】 1 計測装置を加工個所の図面寸法通りに数値制御し、
被加工物の加工個所を自動計測し、この計測数値を制御
装置に入力し初期数値と比較して形状誤差分を自動修正
し、この修正された数値により加工装置を数値制御し、
加工装置の先端部が加工個所との間隔を一定に保ち、か
つ加工個所に沿って自動走行するようにしたことを特徴
とする三次元曲面の自動加工方法。 2、被加工物を載置する回転テーブルの上方に設けたフ
レームに主軸を垂直面での二次元方向に移動可能に取付
け、この主軸にそれぞれ計測装置又は加工装置を取付は
得るアームを角度可変かつ回転可能に設け、上記回転テ
ーブルを制御する回転テーブル制御装置および上記主軸
とアームとを駆動制御する駆動系制御装置を設置し、か
つこの駆動系制御装置をプログラム制御する制御装置を
設けたことを特徴とする三次元曲面の自動加工装置。
[Claims] 1. A measuring device is numerically controlled according to the drawing dimensions of the processing location,
Automatically measures the processing location of the workpiece, inputs this measured value into the control device, compares it with the initial value, automatically corrects the shape error, and numerically controls the processing device using the corrected value,
1. A method for automatically processing a three-dimensional curved surface, characterized in that the tip of the processing device maintains a constant distance from the processing location and automatically travels along the processing location. 2. The main shaft is attached to the frame provided above the rotary table on which the workpiece is placed so that it can move in two dimensions on a vertical plane, and the measuring device or processing device is attached to each of the main shafts, and the angle of the arm to be obtained is variable. and a rotary table control device for controlling the rotary table and a drive system control device for driving and controlling the main shaft and arm, and a control device for program-controlling the drive system control device. Automatic processing equipment for three-dimensional curved surfaces.
JP6533782A 1982-04-21 1982-04-21 Method and apparatus for automatic working of three- dimensional curved surface Granted JPS58184067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6533782A JPS58184067A (en) 1982-04-21 1982-04-21 Method and apparatus for automatic working of three- dimensional curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6533782A JPS58184067A (en) 1982-04-21 1982-04-21 Method and apparatus for automatic working of three- dimensional curved surface

Publications (2)

Publication Number Publication Date
JPS58184067A true JPS58184067A (en) 1983-10-27
JPH0318985B2 JPH0318985B2 (en) 1991-03-13

Family

ID=13284010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6533782A Granted JPS58184067A (en) 1982-04-21 1982-04-21 Method and apparatus for automatic working of three- dimensional curved surface

Country Status (1)

Country Link
JP (1) JPS58184067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025086B2 (en) 2002-03-07 2006-04-11 Fujitsu Limited Reverse flow preventing device and electronic apparatus
KR20070070733A (en) * 2005-12-29 2007-07-04 삼성중공업 주식회사 3d self-measurement system for the curved surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025086B2 (en) 2002-03-07 2006-04-11 Fujitsu Limited Reverse flow preventing device and electronic apparatus
US7302967B2 (en) 2002-03-07 2007-12-04 Fujitsu Limited Reverse flow preventing device and electronic apparatus
KR20070070733A (en) * 2005-12-29 2007-07-04 삼성중공업 주식회사 3d self-measurement system for the curved surface

Also Published As

Publication number Publication date
JPH0318985B2 (en) 1991-03-13

Similar Documents

Publication Publication Date Title
JPS6130342A (en) Profile machining device
EP2560786B1 (en) Method and device for cutting openings in flat, concave or convex surfaces
JPH0292471A (en) Automatic seam welding device for fuel tank
US3945236A (en) Formation of segments for containers and the like
JPS58184067A (en) Method and apparatus for automatic working of three- dimensional curved surface
JPH11161316A (en) Milling device with nuerical controller, storage medium where program for calculating movement data of cutting blade is recorded, and storage medium where movement data of cutting blade is recorded
JPS6310073A (en) Cutting device
JP2000263495A (en) Cutting method and cutting device of plate
JPH0342147B2 (en)
JPH09267219A (en) Device for working forming tool by numerical control
JP2828424B2 (en) Machining method of forming tool by numerical control
RU2470769C1 (en) Method of cutting metal part contour
JPH01316112A (en) Two-axis control for v-shaped groove working machine
JPH079325A (en) Forming device of surface plate surface
JP2740004B2 (en) Teaching method for laser beam machine
CN117484210B (en) Cradle type five-axis linkage machine tool and linkage control system thereof
JPS6096377A (en) Automatic welding device
JPH0357411Y2 (en)
JPH05177370A (en) Three-dimensional laser beam machine
JP2002366212A (en) Numerical control machine tool
JPH04100676A (en) Device and method for profile gas cutting
JP2003001639A (en) Device for removing burr of molding
JPS5837704A (en) Simultaneous four-axis controlling method
DE3924262A1 (en) Rotary-disc tool rectification - by laser-beam heating simultaneously measuring un-eveness and angular position for application of laser beam to localised irregularities
JPH0453995Y2 (en)