JPS58182871A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS58182871A JPS58182871A JP6582082A JP6582082A JPS58182871A JP S58182871 A JPS58182871 A JP S58182871A JP 6582082 A JP6582082 A JP 6582082A JP 6582082 A JP6582082 A JP 6582082A JP S58182871 A JPS58182871 A JP S58182871A
- Authority
- JP
- Japan
- Prior art keywords
- film
- region
- source
- drain
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 5
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000009792 diffusion process Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 239000010703 silicon Substances 0.000 abstract description 8
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 5
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 6
- 229910052681 coesite Inorganic materials 0.000 abstract 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract 3
- 239000000377 silicon dioxide Substances 0.000 abstract 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract 3
- 229910052682 stishovite Inorganic materials 0.000 abstract 3
- 229910052905 tridymite Inorganic materials 0.000 abstract 3
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- -1 boron ions Chemical class 0.000 abstract 1
- 229910021340 platinum monosilicide Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 23
- 230000007423 decrease Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- ZXEYZECDXFPJRJ-UHFFFAOYSA-N $l^{3}-silane;platinum Chemical compound [SiH3].[Pt] ZXEYZECDXFPJRJ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021339 platinum silicide Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7839—Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は半導体装置に関し、特に微細化に適し六MIS
構造の半導体装置の改良に係る。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device suitable for miniaturization.
This relates to improvements in the structure of semiconductor devices.
半導体装置の分野において、MO3ICの微細化は目覚
しいものがある。特に、Mosトランジスタのスイッチ
ング速度の改善の観点がらケ゛−ト電極のチャンネル長
の縮小化が図られている。In the field of semiconductor devices, the miniaturization of MO3ICs is remarkable. In particular, efforts have been made to reduce the channel length of the gate electrode with a view to improving the switching speed of Mos transistors.
しかしながら、チャンネル長が減少するに伴なって、素
子%性の而から次のような問題が生じる。However, as the channel length decreases, the following problems arise due to elemental characteristics.
まず、一つにはチャンネル長が減少するにつれて短チヤ
ンネル領域でのトランジスタの閾値電圧が浅くなる、い
わゆるショートチャンネル効果が生じる。具体的には、
ダートチャンネル長としきい値電圧との関係を示す第1
図の特性線の如く、短チヤンネル領域でトランジスタの
しきい値電圧が急激に低下し、素子の製造工程での僅か
な変化によってしきい値電圧が大巾、に変動する。これ
は、ソース、ドレイン間の間隔が短くなるため、その間
の電界が強くなり、その結果実効的にチャンネル領域表
面の反転電圧が低くなることによって説明される。一般
に、チャンネル領域を形成する基板の電位はソース領域
の電位と等しいか、もしくは非常に近いので、ソース、
ドレイン間の電界は集中的にドレイン近傍のチャンネル
領域で強くなり、従ってしきい値電圧の低下もこの部分
で最も強くなる。First, as the channel length decreases, the threshold voltage of the transistor in the short channel region becomes shallower, which is the so-called short channel effect. in particular,
The first diagram shows the relationship between dart channel length and threshold voltage.
As shown by the characteristic line in the figure, the threshold voltage of the transistor drops rapidly in the short channel region, and the threshold voltage fluctuates widely due to slight changes in the device manufacturing process. This is explained by the fact that since the distance between the source and drain becomes shorter, the electric field therebetween becomes stronger, and as a result, the inversion voltage at the surface of the channel region is effectively lowered. Generally, the potential of the substrate forming the channel region is equal to or very close to the potential of the source region, so the source
The electric field between the drains is concentrated and strong in the channel region near the drain, and therefore the threshold voltage decreases most strongly in this region.
もう一つはダートチャンネル長とソース、ドレイン間の
最大印加可能電圧との関係を示す第2図の特性線の如く
、チャンネル長が減少するにつれてソース、ドレイン間
に印加することができる最大電圧が急激に減少すること
である。The other is that as the channel length decreases, the maximum voltage that can be applied between the source and drain increases, as shown in the characteristic line in Figure 2, which shows the relationship between the dart channel length and the maximum voltage that can be applied between the source and drain. It is a rapid decrease.
これは、第3図に示す如く例えばn型半導体基板1に互
に電気的に分離したp+mソース、ドレイン領域5,6
に電圧全印加した場合、空乏層7が生じ、これら空乏層
7が互に接触すると、そこを謙−出してソース、ドレイ
ン領域5,6間に電流パ・・スが・生じることに起因す
るものである。前述したのと同様、チャンネル領域を形
成する基板1の電位とソース領域5の電位はほぼ等しい
ので、空乏層7は主としてドレイン領域6近傍で生じ、
ソース領域5近傍ではほとんど生じない。なお、第3図
中の2は基板1に設けられた素子分離のためのフィール
ド酸化膜、4はダート酸化膜3を介してソース、ドレイ
ン領域5,6間の基板1上に設けられたダート電極、8
は層間絶縁膜、9,9は層間絶縁膜8上にそのコンタク
トホールを介してソース、ドレイン領域5,6と接続す
るように設けられたAt配線である。As shown in FIG. 3, for example, p+m source and drain regions 5 and 6 are electrically isolated from each other in an n-type semiconductor substrate 1.
When a full voltage is applied to the depletion layer 7, a depletion layer 7 is formed, and when these depletion layers 7 come into contact with each other, they are exposed and a current path is created between the source and drain regions 5 and 6. It is something. As described above, since the potential of the substrate 1 forming the channel region and the potential of the source region 5 are almost equal, the depletion layer 7 mainly occurs near the drain region 6,
It hardly occurs near the source region 5. Note that 2 in FIG. 3 is a field oxide film provided on the substrate 1 for element isolation, and 4 is a dirt oxide film provided on the substrate 1 between the source and drain regions 5 and 6 via the dirt oxide film 3. electrode, 8
9 is an interlayer insulating film, and 9 and 9 are At wirings provided on the interlayer insulating film 8 so as to be connected to the source and drain regions 5 and 6 through the contact holes.
このようなことから、最近、第4図に示す如くソース、
ドレイン領域をショットキー接合にヨリ形成したMOS
)ランジスタが開発されている。即ち、図中の11は
例えばn型半導体基板である。この基板1のフィールド
酸化膜12で分離された島領域にはソース、ドレイン領
域となるショットキー接合を形成するための2つの金属
層(又は金属シリサイド層)131,13*が互に電気
的に分離して設けられている。これら金属層13I 、
132間の基板11上にはダート酸化膜14を介してダ
ート電極15が設けられている。そして全面に層間絶縁
膜16が被覆されていると共に、該絶縁膜16上にはそ
のコンタクトホールを介して前記金属層131 。For this reason, recently, as shown in Figure 4, the source
MOS with drain region formed around Schottky junction
) transistors have been developed. That is, 11 in the figure is, for example, an n-type semiconductor substrate. In the island region of the substrate 1 separated by the field oxide film 12, two metal layers (or metal silicide layers) 131 and 13* for forming a Schottky junction that becomes the source and drain regions are electrically connected to each other. It is set up separately. These metal layers 13I,
A dirt electrode 15 is provided on the substrate 11 between the dirt electrodes 132 with a dirt oxide film 14 interposed therebetween. The entire surface is covered with an interlayer insulating film 16, and the metal layer 131 is formed on the insulating film 16 through the contact hole.
13!と接続するAt配線17.17が設けられている
。こうした構造のMOS )ランノスタを等価回路で示
すと、第5図の如くなり、トランジスタQのドレイン、
ソース端子にショットキー接合によるダイオードD、、
D2が存在することになる。かかるMOS )ランジス
タはソース。13! At wires 17 and 17 are provided to connect with. An equivalent circuit diagram of a MOS (Runnostar) with this structure is shown in Figure 5, where the drain of transistor Q,
Diode D with Schottky junction at the source terminal,
D2 will exist. Such a MOS) transistor is a source.
ドレイン領域がショットキー接合によシ形成されている
ため、上述したチャンネル長の減少によるしきい値電圧
の変動やドレインへの印加電圧の制限等を改善できる。Since the drain region is formed by a Schottky junction, it is possible to improve the fluctuation of the threshold voltage caused by the decrease in channel length and the limitation of the voltage applied to the drain.
しかしながら、前記MO8)ランゾスタにあってはドレ
イン、ソース側の両方にダイオードDl 、D2が存在
するため、ソース側のダイオードD2は電流方向に対し
て逆方向となり、ソース領域からの電流供給能力を制限
するという問題があった。なお、ドレイン側に存在する
ダイオードD1は電流方向に対して順方向になっている
ため、トランシス−5=
夕の動作−ヒはとんど影響し7ない。However, in the MO8) Lanzostar, since diodes Dl and D2 are present on both the drain and source sides, the diode D2 on the source side is in the opposite direction to the current direction, limiting the current supply ability from the source region. There was a problem. It should be noted that since the diode D1 present on the drain side is in the forward direction with respect to the current direction, the transis-5=evening operation-hi has almost no effect.
本発明はチャンネル長の減少に伴なうしきい値電圧の低
下やソース、ドレイン間への印加可能な電圧の低下を改
善すると共に、ソース領域からの電流供給能力の低下を
防止して高性能。The present invention improves the decrease in threshold voltage caused by a decrease in channel length and the decrease in the voltage that can be applied between the source and drain, and prevents the decrease in current supply ability from the source region, resulting in high performance.
高信頼性のMOS )ランジスタ等の半導体装置を提供
しようとするものである。The aim is to provide semiconductor devices such as highly reliable MOS transistors.
本発明は不純物拡散層によシソース領域を、金属又は金
属シリサイドと半導体とのショットキー接合によりドレ
イン領域を形成することによって既述した高性能、高信
頼性のMOS )ランジスタ等の半導体装置を実現する
ことを骨子とするものである。The present invention realizes a semiconductor device such as a high performance and highly reliable MOS transistor as described above by forming a source region using an impurity diffusion layer and a drain region using a Schottky junction between a metal or metal silicide and a semiconductor. The main point is to do this.
次に、本発明をpチャンネルMOB )ランジスタに適
用した例について第6図(a)〜(j)図示の製造方法
を併記して説明する。Next, an example in which the present invention is applied to a p-channel MOB transistor will be described with reference to the manufacturing method shown in FIGS. 6(a) to 6(j).
(1)マず、第6図(a)に示す如くn型シリコン基6
−
板101を選択酸化して該基板101を分離するための
フィールド酸化膜102を形成した。(1) First, as shown in FIG. 6(a), the n-type silicon base 6
- A field oxide film 102 for separating the substrate 101 was formed by selectively oxidizing the plate 101.
つづいて、1000℃の酸素雰囲気中で熱酸化処理を施
して、フィールド酸化膜102で分離された島状の基板
10ノ領域(素子領域)に厚さ250λの酸化膜103
を成長させた(第6図(b)図示)。ひきつづき、全面
にスパッタ法によシ厚さ3000Xの白金シリサイド膜
(pts+膜)を堆積した後、これをフォトエツチング
技術により・!ターニングして酸化膜103上にPtS
]からなるダート電極104を形成した(第6図(c)
図示)。Subsequently, thermal oxidation treatment is performed in an oxygen atmosphere at 1000° C. to form an oxide film 103 with a thickness of 250λ on the island-shaped substrate 10 region (device region) separated by the field oxide film 102.
was grown (as shown in FIG. 6(b)). Subsequently, a platinum silicide film (PTS+ film) with a thickness of 3000X was deposited on the entire surface by sputtering, and then this was deposited using photoetching technology. After turning, PtS is deposited on the oxide film 103.
] A dart electrode 104 was formed (Fig. 6(c)).
(Illustrated).
(I)) 次いで、光蝕刻法により選択的に7オトレ
ゾス) z?ターフ105を形成した後、該レジストパ
ターン105、ダート電極104及びフィールド酸化膜
102をマスクとしてp型不純物、例えばゾロンを加速
電圧30 KeV 、ドーズ量I X 10” /c−
の条件で酸化膜103を通して基板101表面にイオン
注入した(第6図(d)図示)。つづいて、フォトレゾ
スト・ぐターフ105を除去し、熱処理を施して注入さ
れたボロンを活性化してソース領域としてのp1拡散層
106を形成した。ひきつづき、p1拡散層106上の
酸化膜103を覆う様に光蝕刻法によりフォトレジスト
パターン107f形成し、該フォトレジストノfターン
107、ダート電極104等をマスクとしてドレイン領
域予定部上の酸化膜103を選択的にエツチング除去し
てその箇所の基板101部分を露出させた(第6図(、
)図示)。(I)) Then, selectively etching the 7otrezos) by photoetching method. After forming the turf 105, using the resist pattern 105, the dirt electrode 104, and the field oxide film 102 as a mask, a p-type impurity, such as zolon, is applied at an acceleration voltage of 30 KeV and a dose of I x 10''/c-.
Ions were implanted into the surface of the substrate 101 through the oxide film 103 under the following conditions (as shown in FIG. 6(d)). Subsequently, the photoresist turf 105 was removed and a heat treatment was performed to activate the implanted boron to form a p1 diffusion layer 106 as a source region. Subsequently, a photoresist pattern 107f is formed by photolithography so as to cover the oxide film 103 on the P1 diffusion layer 106, and the oxide film 103 on the planned drain region is formed using the photoresist no-f turn 107, dirt electrode 104, etc. as a mask. was selectively etched away to expose the part of the substrate 101 at that location (see Figure 6).
).
0ii) 次いで、フォトレゾストパターン107f
除去した後、全面に例えば厚さ3000XのCVD −
8IO2膜10Bを堆積した(第6図(f)図示)。つ
づいてCVD−S + 02膜10Bをリアクティブイ
オンエツチング法(RIE法)により、該5IO2膜1
08η膜厚分、エツチングした。この時、第6図(g)
に示す如くドレイン領域予定部の基板101部分は再度
露出するが、ダート電極104側面に堆積したS r
02膜は垂直方向への膜厚が厚いため、ダート電極10
4の周囲側面に5I02膜108′が残存すると共に、
ソース領域106土の酸化膜103もエツチングされず
に残った。0ii) Next, photoresist pattern 107f
After removal, the entire surface is coated with CVD to a thickness of, for example, 3000X.
An 8IO2 film 10B was deposited (as shown in FIG. 6(f)). Subsequently, the CVD-S+02 film 10B is etched by reactive ion etching (RIE method) to form the 5IO2 film 1.
Etching was performed by a thickness of 0.08η. At this time, Fig. 6 (g)
As shown in the figure, the portion of the substrate 101 in the planned drain region is exposed again, but the Sr deposited on the side surface of the dirt electrode 104
Since the 02 film is thick in the vertical direction, the dart electrode 10
While the 5I02 film 108' remains on the peripheral side of 4,
The oxide film 103 on the source region 106 also remained without being etched.
(iJ 次いで、全面にスパッタ法により例えば厚さ
3000Xの療を膜109を蒸着した(第6図(h)図
示)。つづいて、650℃のN2雰囲気中で20分間熱
処理を施した。この時、露出したシリコン基板101と
接触するptがシリコンと反応してPtS 1層110
が形成され、Pt5I層110と基板101にドレイン
領域となるショットキー接合が作られた(第6図0)図
示)。その後、未反応のPtMを王水で除去し、全面に
例えば厚さ8000K(7) CVD−3102膜(層
間絶縁膜)111を堆積し、更にコンタクトホール11
2・・・を開口し、At膜の蒸着、パターニングによす
Aj配線113・・・を形成してpチャンネルMO8)
ランジスタを製造した(第6図(j)図示)。(iJ) Next, a film 109 having a thickness of, for example, 3000X was deposited on the entire surface by sputtering (as shown in FIG. 6(h)).Subsequently, heat treatment was performed for 20 minutes in a N2 atmosphere at 650°C. , Pt in contact with the exposed silicon substrate 101 reacts with silicon to form a PtS layer 110.
was formed, and a Schottky junction was formed between the Pt5I layer 110 and the substrate 101 to serve as a drain region (as shown in FIG. 60). Thereafter, unreacted PtM is removed with aqua regia, and a CVD-3102 film (interlayer insulating film) 111 with a thickness of, for example, 8000K (7) is deposited on the entire surface.
2... is opened, and Aj wiring 113... is formed by vapor deposition and patterning of an At film to form a p-channel MO8).
A transistor was manufactured (as shown in FIG. 6(j)).
しかして、本発明のMOS )ランジスタは第6図(j
)に示す如< p”型拡散層106によりソース領域(
(、Pt5I層110とシリコン基板101とのショッ
トキー接合によりドレイン領域金、夫夫形成した構造に
なっている。このようにドレ9−
イン領域がシリコン基板101表面に作られた厚さ2
(l OX程度のPtS 1層110からナルV Hz
トキー接合により構成されているため、ソース。Therefore, the MOS transistor of the present invention is shown in FIG.
), the source region (
(The structure is such that a drain region is formed by a Schottky junction between the Pt5I layer 110 and the silicon substrate 101. In this way, the drain region is formed on the surface of the silicon substrate 101 with a thickness of 2.
(PtS 1 layer 110 to null V Hz of about l OX
source because it is constructed by a tokey junction.
ドレイン間に印加される電圧によって生じる電界がドレ
イン近傍のチャンネル領域に集中するのを回避できる。It is possible to prevent the electric field generated by the voltage applied between the drains from concentrating on the channel region near the drains.
その結果、ドレイン領域付近での反転電圧の低下を最低
限に抑制でき、しきい値電圧の低下を防止できる。As a result, a decrease in inversion voltage near the drain region can be suppressed to a minimum, and a decrease in threshold voltage can be prevented.
また、ドレイン領域よりソース領域方向へ机びる空乏層
はチャンネル領域の表面近傍に沿って存在するに貿ま勺
、これはダート電極104に印加される電圧によって充
分制御し得る範囲にあるため、ドレイン領域への印加可
能な電圧値を向上できる。なお、ソース領域はp1型拡
散層106によって形成されているが、ソース領域の電
位は基板101と略等しく、空乏層の拡がりはほとんど
生じないため、問題とならない。In addition, the depletion layer extending from the drain region toward the source region exists near the surface of the channel region, and since this is within a range that can be sufficiently controlled by the voltage applied to the dart electrode 104, the depletion layer extends from the drain region toward the source region. The voltage value that can be applied to the area can be improved. Note that although the source region is formed by the p1 type diffusion layer 106, the potential of the source region is approximately equal to that of the substrate 101, and the depletion layer hardly spreads, so this does not pose a problem.
更に、ソース領域はp+tj1拡散N11o6で形成さ
れ、ダート電極104からの電圧によってチャンネル領
域表面に反転して生じるp型チャン10−
ネルとの間には第5図図示の従来構造のようなダイオー
ドが存在しない。その結果、ソース領域からチャンネル
領域に流れ込む電流を制限する障害がなくなり、充分な
電流供給能力を持ったMOS )ランジスタを実現でき
る。Furthermore, the source region is formed of p+tj1 diffusion N11o6, and a diode like the conventional structure shown in FIG. not exist. As a result, there is no obstacle that limits the current flowing from the source region to the channel region, making it possible to realize a MOS transistor with sufficient current supply capability.
一方、実施例に示す製造方法のようにIJtsi層11
0全110るためのpt膜109を蒸着する前に、ダー
ト電極1θ4の周囲側面にCVD −8IO2膜108
′を残存させることによって、ダート電極104とドレ
イン領域との短絡を招くことなく、ケ゛−ト電極104
に対してセルファラインでショットキー接合形成のため
のPtl l11110を作ることができる。On the other hand, as in the manufacturing method shown in the embodiment, the IJtsi layer 11
Before depositing the PT film 109 for all 0 and 110 layers, a CVD-8IO2 film 108 is deposited on the peripheral side surface of the dirt electrode 1θ4.
′ remains, the dirt electrode 104 can be connected to the gate electrode 104 without causing a short circuit between the dirt electrode 104 and the drain region.
On the other hand, Ptl l11110 for forming a Schottky junction can be made using a self-aligned line.
なお、上記実施例ではダート電極をPt51で形成した
が、これに限定されない。例えば、W。Note that in the above embodiment, the dart electrode was formed of Pt51, but the present invention is not limited thereto. For example, W.
Mo、 Pd、 Ptなどの金属、或いはptを除くこ
れら金属のシリサイド、その他P 、 As 、 Bな
どの不純物をドープした多結晶シリコンから形成しても
よい。It may be formed from polycrystalline silicon doped with metals such as Mo, Pd, and Pt, silicides of these metals except pt, and other impurities such as P, As, and B.
また、ドレイン領域で基板との間にショットキー接合を
作る物質はPtS Iに限らず、W、Mo、Pdなどの
金属或いはそれらのシリサイドを挙げることかできる。Further, the material that forms the Schottky junction between the drain region and the substrate is not limited to PtSI, but may include metals such as W, Mo, and Pd, or their silicides.
更に、上記実施例ではシリコン基板を用いたMOS )
ランジスタについて説明したが、絶縁基板上に半導体膜
を成長させたもの、例えばSO8基板等を用いてもよく
、或いはGe、 GaAs など他の半導体基板を用
いることも可能である。Furthermore, in the above embodiment, a MOS (MOS) using a silicon substrate is used.
Although a transistor has been described, a semiconductor film grown on an insulating substrate, such as an SO8 substrate, may be used, or other semiconductor substrates such as Ge or GaAs may also be used.
本発明の半導体装置は上記実施例の如きpチャンネルM
O8)ランジスタに限らず、nチャンネルMO8)ラン
ジスタ、CMO8等にも同様に適用できる。The semiconductor device of the present invention has a p-channel M as in the above embodiment.
The present invention is not limited to transistors such as O8), but can be similarly applied to n-channel MO8) transistors, CMO8, and the like.
以上詳述した如く、本発明によればチャンネル長の減少
に伴なうしきい値電圧の低下やソース、ドレイン間に印
加可能な電圧の低下を改善できると共に、ソース領域か
らの電流供給能力の低下を防止した高性能化、高集積度
化を実現し得るMOS )ランジスタ等の半導体装置を
提供できる。As detailed above, according to the present invention, it is possible to improve the decrease in threshold voltage caused by a decrease in channel length and the decrease in the voltage that can be applied between the source and drain, as well as the decrease in current supply ability from the source region. It is possible to provide a semiconductor device such as a MOS (MOS) transistor that can realize high performance and high integration while preventing the above problems.
第1図はダートチャンネル長としきい値電圧との関係を
示す特性図、第2図はダートチャンネル長とソース、ド
レイン間の最大印加可能電圧との関係を示す特性図、第
3図は従来のpチャンネルMO8)ランジスタを示す断
面図、第4図は従来の改良されたpチャンネルMO8)
ランジスタの断面図、第5図は第4図のトランジスタの
等価回路図、第6図(a)〜(j)は本発明の一実施例
であるpチャンネルMOSトランジスタを得るための製
造工程を示す断面図である。
101・・・n!シリコン基板、102・・・フィール
ド酸化膜、103・・・酸化膜、104・・・ダート電
極、106・・・p1拡散層、110・・・Pt51層
、113・・・A/、配線。
出願人代理人 弁理士 鈴 江 武 彦13−
第1図
ゲートチXンイル我→
ケ゛ニドチャ)81シ表−一→−Figure 1 is a characteristic diagram showing the relationship between dart channel length and threshold voltage, Figure 2 is a characteristic diagram showing the relationship between dart channel length and maximum applicable voltage between source and drain, and Figure 3 is a characteristic diagram showing the relationship between dart channel length and maximum voltage that can be applied between the source and drain. A cross-sectional view showing a p-channel MO8) transistor, FIG. 4 is a conventional improved p-channel MO8)
5 is an equivalent circuit diagram of the transistor shown in FIG. 4, and FIGS. 6(a) to (j) show manufacturing steps for obtaining a p-channel MOS transistor according to an embodiment of the present invention. FIG. 101...n! Silicon substrate, 102... Field oxide film, 103... Oxide film, 104... Dirt electrode, 106... P1 diffusion layer, 110... Pt51 layer, 113... A/, wiring. Applicant's agent Patent attorney Takehiko Suzue 13- Figure 1 Gate Ch.
Claims (2)
気的に分離して設け、かつこれらソース、ドレイン領域
間の挾まれた部分を少なくとも含む領域上にダート絶縁
膜を介してダート電極を設けた構造の半導体装置におい
て、前記ソース領域を不純物拡散層によって形成し、か
つ前記ドレイン領域を半導体と金属もしくは金属シリサ
イドとのショットキー接合により形成したことを特徴と
す半導体装置。(1) Source and drain regions are provided electrically separated from each other on the surface of the semiconductor layer, and a dart electrode is provided via a dart insulating film over a region that includes at least the portion sandwiched between the source and drain regions. 1. A semiconductor device having such a structure, wherein the source region is formed by an impurity diffusion layer, and the drain region is formed by a Schottky junction between a semiconductor and a metal or metal silicide.
もしくは金属シリサイドから構成されることを特徴とす
る特許請求の範囲第1項記載の半導体装置。(2) The semiconductor device according to claim 1, wherein the dart electrode is made of the metal or metal silicide used to form the Schottky junction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6582082A JPS58182871A (en) | 1982-04-20 | 1982-04-20 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6582082A JPS58182871A (en) | 1982-04-20 | 1982-04-20 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58182871A true JPS58182871A (en) | 1983-10-25 |
Family
ID=13298042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6582082A Pending JPS58182871A (en) | 1982-04-20 | 1982-04-20 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182871A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0601823A1 (en) * | 1992-12-09 | 1994-06-15 | Digital Equipment Corporation | Field effect transistor with integrated schottky diode clamp |
-
1982
- 1982-04-20 JP JP6582082A patent/JPS58182871A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0601823A1 (en) * | 1992-12-09 | 1994-06-15 | Digital Equipment Corporation | Field effect transistor with integrated schottky diode clamp |
US5525829A (en) * | 1992-12-09 | 1996-06-11 | Digital Equipment Corporation | Field effect transistor with integrated schottky diode clamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3039967B2 (en) | Semiconductor device | |
JP2940880B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS6316673A (en) | Manufacture of semiconductor device | |
JPS6154252B2 (en) | ||
JPS58182871A (en) | Semiconductor device | |
JPH0460352B2 (en) | ||
JPH06204173A (en) | Manufacture of semiconductor device | |
JPH10284438A (en) | Semiconductor integrated circuit and its manufacture | |
JPS61154172A (en) | Manufacture of semiconductor device | |
JPS6334619B2 (en) | ||
JPS61267365A (en) | Semiconductor device | |
JPS63241965A (en) | Insulated-gate field-effect transistor and manufacture thereof | |
JPS6352784B2 (en) | ||
JPH0612822B2 (en) | Semiconductor device | |
JPH053294A (en) | Semiconductor integrated circuit | |
JPH0618200B2 (en) | Method of manufacturing lateral transistor semiconductor device | |
JPH056345B2 (en) | ||
JP3380069B2 (en) | Method for manufacturing MOS semiconductor device | |
JPH03201558A (en) | Bi-cmos semiconductor device | |
JP3218777B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS59181669A (en) | Mos type semiconductor device | |
JPH0714060B2 (en) | Method for manufacturing semiconductor device | |
JPS61134073A (en) | Manufacture of semiconductor device | |
JPH0564469B2 (en) | ||
JPH03191574A (en) | Semiconductor device |