JPS58181489A - Electron beam deflector - Google Patents

Electron beam deflector

Info

Publication number
JPS58181489A
JPS58181489A JP57066792A JP6679282A JPS58181489A JP S58181489 A JPS58181489 A JP S58181489A JP 57066792 A JP57066792 A JP 57066792A JP 6679282 A JP6679282 A JP 6679282A JP S58181489 A JPS58181489 A JP S58181489A
Authority
JP
Japan
Prior art keywords
electron beam
axis
scanning
voltage
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57066792A
Other languages
Japanese (ja)
Other versions
JPH0211357B2 (en
Inventor
Eishin Murakami
村上 英信
Masashi Yasunaga
安永 政司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57066792A priority Critical patent/JPS58181489A/en
Publication of JPS58181489A publication Critical patent/JPS58181489A/en
Publication of JPH0211357B2 publication Critical patent/JPH0211357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/02Control circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To enable the movement of the position to be irradiated with an electron beam to a target position at a high speed and with high accuracy and to prevent the transient oscillation after the movement, by impressing the pulse voltage which moves the position to be irradiated with the electron beam and the voltage waveform corresponding to the locus of the scanning electron beam to deflection coils. CONSTITUTION:A titled device provided with deflection coils 8, 9 and a means which generates the voltage waveform for the scanning locus corresponding to the prescribed scanning locus and superposes the voltage pulses simultaneously or successively on the voltage waveform of the scanning locus. The coils 8, 9 receive the deflection currents 19, 20 for deflecting an electron beam 4 for welding and move the beam 4 so as to draw the prescribed scanning locus. The waveform difference of the voltage waveform for the scanning locus by the transient response of said currents 19, 20 is corrected by the above-described voltage pulses. The position to be irradiated of the beam 4 is moved at a high speed with high accuracy by the above-mentioned method, whereby the transient oscillation after the movement is prevented.

Description

【発明の詳細な説明】 この発明は、電子ビーム加工装置において、電子ビーム
の被照射物表面上の照射位置を、現在位置から目標位置
へ高速かつ高精度で移動させる電子ビーム偏向装置に関
するものでめる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam deflection device for moving the irradiation position of the electron beam on the surface of an object to be irradiated from the current position to the target position at high speed and with high precision in an electron beam processing device. Melt.

こOlmの装置10例として、W、1図〜第1図に示す
インプロセス溶接線検出を行なう電子ビーム溶接機につ
いて説明する。第1図は電子ビーム溶接におけるインプ
ロセス溶接線検出装置の構成例でToり、図において、
/は電子銃、コは被溶接物、3r!被溶接物−〇溶接線
、弘は溶接を行なう電子ビーム(以下、溶接電子ビーム
という)、Sは溶接@3の検出を行なうだめの走査電子
ビーム、6は溶接電子ビーム亭の現照射位tt−原点と
したI軸、7Fi同じく!軸、ttl−1走査電子ビー
ム3を得るためのX軸−向コイル、デはNじ〈Y軸端向
コイル、/QFi被*接−コ上におする走査電子ビーム
jo!射位f(以下、率に照射位置とめう)の軌跡(以
下、単に軌跡という)、/lは走査電子と−ムjを被溶
接物コに照射し友場合に発生する反射電子、二次電子ま
たFiX線(以下、反射電子ま友は!縁という)、lコ
は反射電子またFiX線//の検出子、/Jd検出子/
コの出力信号の増幅器、lダは溶接線検出期間を指令す
るゲートパルス発生器、isはX軸の走査波形発生器、
14はY軸の走査波形発振器、/ tfiX軸走査披形
の増幅器(以下、X軸増S器という)、/friY軸走
査波形の増幅器(以下、!軸増幅器という)、IYFi
X軸偏向電流、20FiY@偏向電流1.2/1−IX
@偏向電内篭デの検出抵抗(以下、X軸検出抵抗とい5
)、ココはY41Il1gA向電流コOの検内篭抗(以
下、Y軸検出抵抗という)、コ3はゲートパルス発生器
lダの出力信号により動作tU始し、X軸偏内篭流/9
の検出信号、Ylliil向電流−〇の検出信号および
検出子lコの増幅器isの出力信号により溶接線のズレ
量を求める演算装置、2Ilは演算装置コJの出力信号
によ)モーター駆動信号を発生するサーボ増幅器、コS
は電子銃駆動装置、−6は被溶接物−の駆動装置でるる
As an example of this Olm device, an electron beam welding machine that performs in-process welding line detection shown in Figs. 1 to 1 will be described. Figure 1 shows an example of the configuration of an in-process weld line detection device for electron beam welding.
/ is the electron gun, ko is the object to be welded, 3r! Object to be welded - ○ Welding line, Hiroshi is the electron beam for welding (hereinafter referred to as welding electron beam), S is the scanning electron beam for detecting welding @3, 6 is the current irradiation position of the welding electron beam tt -The I-axis used as the origin, same as 7Fi! Coil in the X-axis direction to obtain the scanning electron beam 3, ttl-1 scanning electron beam jo! The locus (hereinafter simply referred to as the locus) of the irradiation position f (hereinafter referred to as the irradiation position), /l is the reflected electron and secondary electrons generated when the workpiece is irradiated with the scanning electron and -muj. Electrons or FiX rays (hereinafter referred to as backscattered electrons or FiX rays), l is a detector for backscattered electrons or FiX rays, /Jd detector/
d is a gate pulse generator that commands the welding line detection period, is is an X-axis scanning waveform generator,
14 is a Y-axis scanning waveform oscillator, /tfi X-axis scanning arcuate amplifier (hereinafter referred to as X-axis amplifier), /fri Y-axis scanning waveform amplifier (hereinafter referred to as !-axis amplifier), IYFi
X-axis deflection current, 20FiY @ deflection current 1.2/1-IX
@Detection resistor of the deflection cable (hereinafter referred to as X-axis detection resistor) 5
), here is Y41Il1gA internal current detection resistor (hereinafter referred to as Y-axis detection resistor), and Co3 starts operation tU by the output signal of gate pulse generator Lda,
A calculation device that calculates the amount of deviation of the welding line from the detection signal of the Ylliil direction current -〇 and the output signal of the amplifier is of the detector l, and 2Il is the motor drive signal based on the output signal of the calculation device J. Generated servo amplifier, KoS
1 is an electron gun drive device, and 6 is a drive device for the workpiece to be welded.

第4図は軌跡io付近の拡大図でToシ、コアは既に溶
接を終了した部分(以下、既#l!接部とめう)、−t
Fi溶接電子ビームの現照射位置でるる原点、−ツは三
角形走査を行なう場合の第1の走査線、30は溶接線検
出の開始点、3/ri三角形走査を行なう場合の第一の
走査線、3コは溶接線3を検出する点、33は#接線検
出の終了点、3には三角形走査を行なう場合の1g3の
走査線でるる。
Figure 4 is an enlarged view of the vicinity of the locus io.
The origin is the current irradiation position of the Fi welding electron beam, -tsu is the first scanning line when performing triangular scanning, 30 is the starting point of welding line detection, and the first scanning line when performing 3/ri triangular scanning. , 3 is the point for detecting the welding line 3, 33 is the end point of #tangent detection, and 3 is the scanning line of 1g3 when performing triangular scanning.

第3図F′ix軸およびY軸の走査波形発生器の構  
 □成図でるり、jjri基準電源、36はゲートパル
ス発生器/eの出力信号の立上多部分で動作を開始し、
立下多部分でリセットされる基準電源3jの積分器1.
?7F′iゲートパルス発生器/ダの出力信号と積分器
36の出力信号の加算器でるる。
Figure 3 Structure of F'ix-axis and Y-axis scanning waveform generator
□The reference power source 36 starts operating at the rising edge of the output signal of the gate pulse generator/e.
Integrator 1 of reference power supply 3j that is reset at many points of falling.
? 7F'i is an adder for the output signal of the gate pulse generator/da and the output signal of the integrator 36.

第を図は走査電子ビームの走査信号を示す波形図でTo
υ、(a)はX軸信号、<b)はY軸信号、tは時間軸
、J?al′il軸走査波形発生益の出力電圧(隻・ 以下、X輸出力電圧という)、ll0dY軸走査波形発
生器の出力電圧(以下、Y軸出力電圧という)である。
Figure 1 is a waveform diagram showing the scanning signal of the scanning electron beam.
υ, (a) is the X-axis signal, <b) is the Y-axis signal, t is the time axis, J? The output voltage of the al'il-axis scanning waveform generator (hereinafter referred to as the X output voltage), and the output voltage of the Y-axis scanning waveform generator (hereinafter referred to as the Y-axis output voltage).

第5図は走査電子ビームの軌跡でめシ、参lは実際に得
られる走査電子ビームの軌跡(以下、実際の軌跡という
)でるる。第6図はX軸増幅器/7またはY軸層幅器1
5に用いる足電流増輪姦(図ではX軸周でるる)でめシ
、ダコは出力の大きい演算増幅器、グ3F′i入力抵抗
、ダダはIE流検出抵抗、asFi帰還抵抗でめる。第
7図は走査電子ビームの走査信号でめシ、(a)はX軸
信号、(b)はY軸信号てめる。第5図は走査電子ビー
ムの軌跡でるる。
FIG. 5 shows the trajectory of the scanning electron beam, and reference 1 shows the trajectory of the scanning electron beam actually obtained (hereinafter referred to as the actual trajectory). Figure 6 shows X-axis amplifier/7 or Y-axis layer width amplifier 1
In the foot current increasing gangbang used in 5 (in the figure, it is around the X-axis), the second part is an operational amplifier with a large output, the second part is an input resistor of 3F'i, the third part is an IE current detection resistor, and the asFi feedback resistor. FIG. 7 shows the scanning signal of the scanning electron beam, (a) shows the X-axis signal, and (b) shows the Y-axis signal. Figure 5 shows the locus of the scanning electron beam.

次に動作について説明する。電子銃/から放射された溶
接電子ビーム亭で被溶接物λの溶接線3を溶接する場合
、溶接電子ビーム亭の被溶接物コ上の照射点を溶接線3
に正1iK一致させる必歎がろる。その方法としてイン
プロセス溶接線検出法かめる。この検出法では、溶接電
子ビーム多を偏向コイルt、9によシ時分割て偏向して
走査電子ビームよを作夛、溶接電子ビーム−〇現照射点
の前方を走査する。走査電子ビームSF1次のようにし
て作られる。ゲートパルス発生器/41の出力信号によ
りx軸走査波形発生器/jおよびY軸走査波形発生器1
6が動作し、その出力信号はそれぞれX軸層幅器17お
よびY軸増幅器7gで増幅され、X@−内篭tILlデ
シ↓ひY軸−内篭fi−〇となってX@f14向コイル
tおよびY@−向コイルデに流れて、−走査電子ビーム
SのX軸6およびY軸7の偏向を行なり。X軸−内篭訛
/テおよびY軸鍋内篭流コQはそれぞれX軸検出抵抗コ
lおよび!@検出抵抗ココで検出され、演算装置−3に
入力きれる。一方、走査電子ビームSが被溶接物−に術
突して発生する反射電子またはX!/ /Fi周知の如
く照射点が溶接、IIJに一敦した場合に最小となり、
それは検出子12で検出され、その検出信号に増幅器1
3で増幅され、その出力信号は演算装置コ3に入力てれ
る。演算装置23Fiゲ一トパルス発生器/4’の出力
期間中動作し、Y@偏向内篭EコOが零になる時間と反
射電子またはX線/lの強度が零になる時間との差を求
める。この時間差は、X軸偏内篭流/?から求められる
溶接電子ビーム亭のIJ4照射点の前方の位置における
f!接巌3と照射点の誤差でろる。この誤差は1差信号
として演算装置23から出力式れ、サーボ増幅器コにで
増一式nる。次いで、電子銃駆動装置コ!または被溶接
物駆動装置λ基がそれぞれ電子銃/−1九は被溶接物−
′frY軸方向に移動させて、#I接接電上ピームダ被
溶接物コ上における照射点の位置修正を行なう。
Next, the operation will be explained. When welding the welding line 3 of the workpiece λ with the welding electron beam emitted from the electron gun, the irradiation point on the workpiece λ of the welding electron beam is set to the welding line 3.
It is necessary to make a positive 1iK match. In-process weld line detection method is used as a method for this purpose. In this detection method, the welding electron beam is deflected in time division by the deflection coils t and 9 to produce a scanning electron beam, which scans the welding electron beam in front of the current irradiation point. A scanning electron beam SF is produced as follows. The output signal of the gate pulse generator/41 causes the x-axis scanning waveform generator/j and the Y-axis scanning waveform generator 1
6 operates, and its output signal is amplified by the X-axis layer width amplifier 17 and the Y-axis amplifier 7g, respectively, and becomes t and Y@-direction coil de to deflect the scanning electron beam S along the X-axis 6 and Y-axis 7. The X-axis - Naikaro accent/TE and the Y-axis Naikaro flow Q are the X-axis detection resistors Kol and !, respectively. @It is detected by the detection resistor here and can be input to the arithmetic unit-3. On the other hand, reflected electrons or X! generated when the scanning electron beam S collides with the workpiece to be welded. / /Fi As is well known, when the irradiation point is welding or IIJ, it becomes the minimum,
It is detected by a detector 12, and an amplifier 1 is applied to the detection signal.
3, and its output signal is input to the arithmetic unit 3. It operates during the output period of the arithmetic unit 23Fi gate pulse generator/4' and calculates the difference between the time when Y@deflection inner cage EcoO becomes zero and the time when the intensity of backscattered electrons or X-rays/l becomes zero. demand. This time difference is the X-axis eccentric inward flow/? f! at the position in front of the IJ4 irradiation point of the welding electron beam bower, which is found from It's due to the error between the contact point 3 and the irradiation point. This error is output from the arithmetic unit 23 as a difference signal and is amplified by the servo amplifier. Next, the electron gun drive device! Or the welding object drive device λ group is an electron gun/-19 is the welding object-
'fr is moved in the Y-axis direction to correct the position of the irradiation point on the #I contact and electrical connection piece to be welded.

軌跡10の例として三角形のものを第2図に示す。この
場合、溶接線検出ri第一の走査*、?/の部分で行な
われる。この三角形の軌跡を作成するためのX軸および
Y@O走査妓形発生器の構成を第3図に示す。X軸の走
査波形の信号はゲートパルス発生器/lの出力信号がそ
のiま用いられる1、また、Y軸の走査波形の信号は、
ゲートパルス発生器/4(の出力信号の立上シ部分より
基準電源3jの電圧を積分器36で積分し、ゲートパル
ス発生器/Qの出力信号の立下シ部分で積分器3孟をリ
セットして三角波を作9、それをゲートパルス発生器/
ヂの出力信号に加算器37で加算することによシ得られ
る。従って、X軸増幅器17およびY軸増幅器/lの出
力電圧は、各増幅器/7./1に電圧増幅形のものを用
いると第亭図(a) 、 (t)Jに示す各増幅器/7
.IIの入力信号Jta、uOaと同じ波形となる。し
かし、各増幅器/7./にの負荷が偏向コイルつ1り誘
導性でろるため、第7図(a+ 、 <b)に示すよう
に!軸−内篭流/?aおよびY軸−内篭tILコ0hF
iX軸出力電圧J9hおよびY軸出力電圧4IOa、!
:Fi異なったものとなる。従って、軌跡は三角形にな
らず、第5図に亭lで示すような軌跡となる。
As an example of the locus 10, a triangular one is shown in FIG. In this case, weld line detection ri first scan *,? This is done in the / part. FIG. 3 shows the configuration of the X-axis and Y@O scanning shape generator for creating this triangular locus. The output signal of the gate pulse generator/l is used as the X-axis scanning waveform signal, and the Y-axis scanning waveform signal is as follows.
The voltage of the reference power supply 3j is integrated by the integrator 36 from the rising edge of the output signal of the gate pulse generator/4(), and the integrator 3j is reset by the falling edge of the output signal of the gate pulse generator/Q. to create a triangular wave9, and use it with a gate pulse generator/
This is obtained by adding the output signal of 2 with the adder 37. Therefore, the output voltage of the X-axis amplifier 17 and the Y-axis amplifier /l is the same as that of each amplifier /7. If a voltage amplification type is used for /1, each amplifier /7 shown in Figures (a) and (t)J
.. It has the same waveform as the input signals Jta and uOa of II. However, each amplifier/7. Since the load on / is due to the inductive nature of the deflection coil, as shown in Figure 7 (a+, <b)! Axis - Uchigoryu/? a and Y axis - inner basket tIL 0hF
iX-axis output voltage J9h and Y-axis output voltage 4IOa,!
:Fi will be different. Therefore, the locus will not be triangular, but will be a locus as shown by 1 in FIG. 5.

ヤこで、実際の軌跡ダlを三角形にするために各増幅器
i’t、1tt−第6図に示した定電流形にすることが
考えられる。この場合、−面電流を電流検出抵抗4I4
Iで検出し、負NINをかけて入力電圧信号と同じ出力
電流とする。l〜かし、溶接巌検田期間中は溶接が中断
するため、検出に許てれる時間ilt/〜10mmでシ
シ、しかも矩形波信号を用いているため各増41iI器
/’/、/にの周波数帯域は非常に広いことが要求され
る。従って、各増幅器/7゜itの不安定性による出力
電流の過渡的な振動は避けらnず、jI7図・IL) 
、 (b)に示すような波形itb。
In order to make the actual trajectory d into a triangle, it is conceivable to make each of the amplifiers i't and 1tt a constant current type as shown in FIG. In this case, the negative plane current is determined by the current detection resistor 4I4
Detected by I and multiplied by negative NIN to obtain the same output current as the input voltage signal. However, since welding is interrupted during the welding inspection period, the time allowed for detection is ilt/~10mm, and since a rectangular wave signal is used, each increaser /'/, / is required to have a very wide frequency band. Therefore, transient oscillations in the output current due to instability of each amplifier/7゜it are unavoidable.
, waveform itb as shown in (b).

コObとなる。故に、軌跡は、第3図に示すように検出
開始点30付近で振動しダ/aのようになり、また原点
21付近で振動して峠すのようになる。
Becomes a Ob. Therefore, as shown in FIG. 3, the trajectory oscillates near the detection starting point 30 and becomes like ``da/a'', and oscillates near the origin 21 and becomes like ``pass''.

従来のインプロセス溶接検出を行なう電子ビーム溶接機
は以上のように構成されてiるので、電圧増幅形の偏向
信号増幅器を用いると、−向コイル電流の過渡応答は偏
向コイル回路の時定数よシも速くすることはできず、電
子ビームの偏向速度が遅くなる。従って、溶接中に時分
割によシ溶接ビーム電流で溶接線検出を行なう場合、溶
接線検出に要する時間が長くなるので溶接部分の溶m部
に悪影響を与え、また溶接線検出のための被溶接−の走
査部分への入熱が大きくなって、非溶接部分の溶融や熱
歪の原因となる。ま九、定電流形の偏向信号増幅器を用
いると、偏向電流が過渡的に振動し、走査電子ビームの
被溶接物上の軌跡が歪み、溶接線検出後の信号処理が複
雑かつ長時間を要するなどの欠点がめった。
Since the conventional electron beam welding machine that performs in-process welding detection is configured as described above, when a voltage amplification type deflection signal amplifier is used, the transient response of the -direction coil current is reduced by the time constant of the deflection coil circuit. The deflection speed of the electron beam becomes slow. Therefore, when welding line detection is performed using time-division welding beam current during welding, the time required for welding line detection becomes longer, which adversely affects the molten part of the welded part. The heat input to the welding scanning portion increases, causing melting and thermal distortion of the non-welded portion. (9) When a constant current type deflection signal amplifier is used, the deflection current oscillates transiently, the trajectory of the scanning electron beam on the workpiece is distorted, and signal processing after welding line detection is complicated and takes a long time. Such shortcomings were rare.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、被#1&物上で電子ビーム照射位
置を瞬時に移動させるパルス電圧と、被溶接物上の走査
電子ビームの軌跡に対応した電圧波形t−、PU時にま
たは順次に偏向コイルに印加することによシ、電子ビー
ムの高速−向か可能な電子ビーム偏向装wItt−提供
すること全目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and it uses a pulse voltage that instantly moves the electron beam irradiation position on the object to be welded, and a trajectory of the scanning electron beam on the object to be welded. The overall object is to provide an electron beam deflection system wItt- capable of directing an electron beam at high speed by applying a voltage waveform t- corresponding to t- to the deflection coil during PU or sequentially.

以下、まず、この発明の原理を図について説明する。第
デ因(a)において、シロは偏向信号発生器、シフは自
己インダクタンスL−ij−持つ偏向コイル、Iftは
偏向信号発生器ダ乙の出力抵抗および偏向コイル参70
内部抵抗を等価的に表わす抵抗値Rの直列抵抗、il′
iこの回路を流れる偏向を流でるる。
Hereinafter, first, the principle of this invention will be explained with reference to the drawings. In factor (a), Shiro is the deflection signal generator, Schif is the deflection coil with self-inductance L-ij-, Ift is the output resistance of the deflection signal generator and the deflection coil reference 70.
Series resistance, il', with a resistance value R that equivalently represents the internal resistance
i The deflection that flows through this circuit flows out.

偏向コイルデフに第9図(b′ンに示すioの電流を流
すためには、−向信号発生器1Ibne形SOで示さ扛
るE・=Ri・のステンプ電圧を発生すればよいが、こ
の場合、電fiiの314渡応答は第デ図(b〕の波形
j/に示すようになシ、次式で表わされる。
In order to flow the current io shown in Fig. 9 (b') through the deflection coil differential, it is sufficient to generate a step voltage of E = Ri shown by the negative direction signal generator 1Ibne type SO. , the 314-pass response of electric power fii is expressed by the following equation, as shown in the waveform j/ of Figure D (b).

但し、T=4でめシ、回路同南の定数でめる。従って、
ioの値に近づく規格化さ扛た時間t/rは1゜のデO
s  =t/r =λ、301゜のデ デ囁  : 客
 ;ダ、1/1、の! デ、デー : 客 −6,デ 
lとなる。
However, T = 4, and the constant of the same south of the circuit. Therefore,
The normalized time t/r approaching the value of io is 1° deO
s = t/r = λ, 301° De De whisper: Customer; Da, 1/1, of! De, De: Customer -6, De
It becomes l.

次に、!開信号発生器ダ6でE、よシ大きいステップ電
圧−Sコを発生し、電流1が1゜に違した時刻1.にE
l′t−E・に低下させる方法を考える。この場合、’
を流1の過度応答は第デ図(C)の波形S3に示すよう
になシ、次式で表わされる。
next,! The open signal generator 6 generates a larger step voltage -S, and at the time 1 when the current 1 differs by 1 degree. niE
Let us consider a method of lowering it to l't-E. in this case,'
The transient response of flow 1 is expressed by the following equation, as shown in waveform S3 of Figure D (C).

i =”i (t−e−T)   O≦t≦1゜E。i=”i (t-e-T) O≦t≦1゜E.

1x−t、(t また、to/rは次式で表わ妊れる。1x-t, (t Moreover, to/r can be expressed by the following formula.

r=−・・(・−町 E。r=-...(-town E.

従って、8041とj67、との関係はE、 =yoE
*  : t/r=θ、101H,−10010,/、
−0,010/となる。例えば、前者の方法により1o
の99囁の値に達する時間に対して、後者の”1=10
E0  のパルスを追加する方法は約乞、の時間でよく
、しかも最終設定値1・との−差は生じない。
Therefore, the relationship between 8041 and j67 is E, =yoE
*: t/r=θ, 101H, -10010,/,
-0,010/. For example, by the former method, 1o
For the time it takes to reach the value of 99 whispers, the latter's 1=10
The method of adding the E0 pulse only takes about a few minutes, and there is no difference from the final setting value of 1.

次に、偏向コイルダ7にラング電fi 1=Kt金流す
場合を考える。この場合、−向信号発生器弘6でランプ
電圧jダに−KRt t−発生すると、電流1の過渡応
答Fiili10図(a)の波形s3に示すようになり
、次式で表わされる。
Next, consider the case where a Lang electric current fi 1=Kt is applied to the deflection coiler 7. In this case, when the negative direction signal generator 6 generates a lamp voltage j da -KRt t-, the transient response of the current 1 becomes as shown in the waveform s3 of Fig. 10 (a), and is expressed by the following equation.

1wKr(θ−+−/)+Kt 従って、設定値に対してにτ(eτ−/)の偏差が生じ
る。次に、−開信号発生器llbでJC=KRt K 
E2−Krのステップ電圧を重畳場せた波形j6を発生
すると、電流1の過渡応答は#!/θ図(b)の波形j
′7に示すようになり、次式で表わ逼れる。
1wKr(θ-+-/)+Kt Therefore, a deviation of τ(eτ-/) occurs with respect to the set value. Then, in the −open signal generator llb, JC=KRt K
When a waveform j6 with a step voltage of E2-Kr superimposed is generated, the transient response of current 1 is #! /θ Waveform j in diagram (b)
'7, and is expressed by the following equation.

1=Kt 従って、設定値に対する偏差は生じない。1=Kt Therefore, no deviation from the set value occurs.

次に、上記のm理に基づく一実施例を図について説明す
る。第11図において、st*、sgb、りgcおよび
jjd ri、照射位vtを1lii1時に移動式せる
パルス電圧(以下、移動パルス電圧という)、jtaお
よびtyb F′i軌跡に対応した電圧波形(以下、基
準電圧波形とiう)でるる。また、第1−図において、
A oFix軸D/Aりニア 7 /(−/、4/$1
!Y輔D/Aコンバータ、6コは従来方式のゲートパル
ス発生器の出力信号に対応するゲート信号、ふ3はマイ
クロコンピュータでめる。
Next, an embodiment based on the above-mentioned principle will be described with reference to the drawings. In FIG. 11, st*, sgb, ri gc and jjd ri, pulse voltage that moves the irradiation position vt at 1lii1 (hereinafter referred to as moving pulse voltage), jta and tyb voltage waveforms corresponding to the F'i locus (hereinafter referred to as moving pulse voltage), , the reference voltage waveform i). Also, in Figure 1,
A oFix axis D/A linear 7 /(-/, 4/$1
! In the Y/S D/A converter, number 6 is a gate signal corresponding to the output signal of a conventional gate pulse generator, and number 3 is generated by a microcomputer.

次に動作について説明する。Next, the operation will be explained.

被溶接物上にM−図の三角波形の軌跡コf、J/。The locus of the triangular waveform of the M-diagram is shown on the workpiece to be welded f, J/.

3ダに沿って電子ビームを走査し、溶接線3の検出を行
なう場合を考える。原点2jから検出開始点30への走
査と検出終了点33から原点二tへの走査は溶接線検出
に関係なく、瞬時に行なう。
Consider a case in which a weld line 3 is detected by scanning an electron beam along three lines. The scanning from the origin 2j to the detection start point 30 and the scanning from the detection end point 33 to the origin 2t are performed instantaneously, regardless of the welding line detection.

検出開始点3θから検出終了点33への走査ViY@7
に平行に、等速度で行なう。この場合、X軸の偏向電流
に要求される波形は第11図(a)の/PCでおり、こ
の電流iqcを流すために必要な電圧波形は上記の原理
によりjta、!;9a、jibとなる。また、Y軸の
偏向電流に要求でねる波形は第1/図(b)の二〇〇で
69、この電流200 K−流すために必喪な電圧波形
は上記の原理によシrta、syb、sざdとなる。
Scanning from detection start point 3θ to detection end point 33 ViY@7
parallel to and at a constant speed. In this case, the waveform required for the X-axis deflection current is /PC in FIG. 11(a), and the voltage waveform required to flow this current iqc is jta, ! according to the above principle. ;9a, jib. In addition, the required waveform for the Y-axis deflection current is 200 and 69 in Figure 1 (b), and the voltage waveform required to flow this current 200 K is based on the above principle , szad.

これらの電圧波形はいくつかの基本波形に分けることが
できる。移動パルス電圧3に& 、 jlcは照射位#
Itを原点−tから検出開始点30へ移動させるもので
ろシ、移動パルス電圧Hb、sgdFi照射位[を検出
終了点3Jから原点コtへ移動式せるものでるる。移動
パルス電圧rttt、rib、zxc、sxdのピーク
電圧rix軸増幅器77mおよびY軸層−a/Kaの出
し得る最大電圧近くの電圧に設定する。また、基準電圧
波形1m Fi溶接癲検出期間中、照射位置のX軸座m
を一定にするものでめシ、基準電圧波形tybは溶接線
検出期間中、照射位置をY軸に平行に一定速度で移動式
せるもので、上記の原理で示したようにランプ電圧にス
テップ電圧を重fさせ−Cいる。これらの移動パルス電
圧および基準電圧波形の合成ざnた電圧波形はパルス回
路を用いても容易に作成することができるが、これらの
電圧波形はパルス電圧とランプ電圧の率なる組み合わせ
でろ夛、第1コ図に示すようにマイクロコンピュータ−
13とX軸およびY軸1)/Aコンバータto。
These voltage waveforms can be divided into several basic waveforms. Move pulse voltage 3 &, jlc is irradiation position #
It moves it from the origin -t to the detection start point 30, and it moves the moving pulse voltage Hb and the sgdFi irradiation position from the detection end point 3J to the origin t. The peak voltages of the moving pulse voltages rttt, rib, zxc, and sxd are set to voltages close to the maximum voltages that can be output by the rix-axis amplifier 77m and the Y-axis layer -a/Ka. In addition, during the reference voltage waveform 1m Fi welding error detection period,
The reference voltage waveform tyb is designed to move the irradiation position parallel to the Y-axis at a constant speed during the welding line detection period, and as shown in the above principle, the step voltage is applied to the lamp voltage. -C. The synthetic voltage waveform of these moving pulse voltages and reference voltage waveforms can be easily created using a pulse circuit, but these voltage waveforms can also be created using a combination of pulse voltage and lamp voltage. As shown in Figure 1, a microcomputer
13 and X-axis and Y-axis 1)/A converter to.

61によシ高速かっ容易に電圧波形を合成することがで
きる。
61, voltage waveforms can be synthesized quickly and easily.

なお、上記実施例ではインプロセス溶接線検出を行なう
電子ビーム溶接機について説明したが、電子ビームの照
射位置を高速かつ高精度で移動させる必要かめる電子ビ
ーム焼入れ機でろっでもよく、上記実施例と同様の効果
を奏する。電子ビーム焼入れ機の場合、電子ビーム電力
の入熱範囲を限定するため、高速かつ間欠的に走査を行
なう。
Although the above embodiment describes an electron beam welding machine that detects in-process welding lines, it is also possible to use an electron beam hardening machine that moves the electron beam irradiation position at high speed and with high precision. It has a similar effect. In the case of an electron beam hardening machine, scanning is performed at high speed and intermittently in order to limit the heat input range of electron beam power.

以上のように、この発明によれば被溶接物上で電子ビー
ム照射位置t−瞬時に移動場せるパルス電圧と、被溶接
物上の走査電子ビームの軌跡に対応した電圧波形を、同
時にま九は順次に偏向コイルに印加するように構成した
ので、移動パルス電圧を加えない場合に比較して70〜
700倍の高速走査ができ、移動後の過渡振動が発生せ
ず、移動中も位置f#度の高い走査ができる効果がめる
As described above, according to the present invention, the pulse voltage that instantaneously moves the electron beam irradiation position t on the workpiece and the voltage waveform corresponding to the trajectory of the scanning electron beam on the workpiece can be simultaneously generated. is configured to be applied to the deflection coils sequentially, so compared to the case where no moving pulse voltage is applied, the
It can perform 700 times faster scanning, does not cause transient vibrations after movement, and has the advantage of being able to scan at a high position f# degree even during movement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインプロセス溶接線検出を行なう電子ビーム溶
接機を示す概略構成図、第2図は走査電子ビームの被溶
接物上の照射位置の軌跡を示す図、第3図は従来の走査
波形発生器の構成図、第7図ないし第を図は従来の欠点
t−説明するための図、WJ9図(al 、 (bJ 
、 (CJおよびalO図(a) 、 (blはこの発
明の詳細な説明するだめの図、第11図(aンおよび(
bJはこの発明の一実施例による動作全説明するための
図、第1コ図はこの発明の−実り例による走査波形発生
器を示す概略構成図でるる。図において、lは電子銃、
2は被溶接物 lは1輪−向コイル、?Fiy@−向コ
イル、ノコイル出子、13は増幅器、/?はX@偏向内
篭t、λOはY軸−内篭ft*5irix@検出抵抗、
2.11dY軸検出抵抗。 23は演算装置、211riザーボ増暢器、2には電子
銃駆動装置、コAij被溶接物駆wJvctILe 3
ざaおよびstbはX軸の移動パルス電圧、 zrcお
よびjtdはY軸の移動パルス電圧、6θViX @ 
11/ムコンバータe A / FiY軸D/りコンバ
ータ、1コはマイクロコンピュータで6る。 なお、図中、同一符号は同一、または相当部分を示す。 代理人 葛W偵− 亮1図 44 壓2因 馬3図 馬6図 島7図 壓8図 愚4図 島5図 馬9図 馬10図
Figure 1 is a schematic configuration diagram showing an electron beam welding machine that performs in-process welding line detection, Figure 2 is a diagram showing the locus of the scanning electron beam irradiation position on the workpiece, and Figure 3 is a diagram showing the conventional scanning waveform. The configuration diagrams of the generator, Figures 7 to 7, are diagrams for explaining the conventional drawbacks, Figures WJ9 (al, (bJ
, (CJ and alO diagrams (a), (bl is a detailed explanation of this invention), Figure 11 (a and (
bJ is a diagram for explaining the entire operation according to an embodiment of the present invention, and the first diagram is a schematic configuration diagram showing a scanning waveform generator according to a practical example of the present invention. In the figure, l is an electron gun,
2 is the object to be welded, l is the one-wheel direction coil, ? Fiy@-direction coil, no coil output, 13 is amplifier, /? is X@deflection inner basket t, λO is Y axis-inner basket ft*5irix@detection resistor,
2.11dY-axis detection resistor. 23 is an arithmetic unit, 211ri servo amplifier, 2 is an electron gun drive device, and welded object driver wJvctILe 3
za and stb are the X-axis movement pulse voltages, zrc and jtd are the Y-axis movement pulse voltages, 6θViX @
11/M converter e A/Fi Y axis D/re converter, 1 unit is controlled by a microcomputer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent: Katsura W Detective - Ryo 1 Figure 44 Figure 2 Inma Figure 3 Horse Figure 6 Island 7 Figure Figure Ul 8 Figure Gu 4 Figure Island 5 Figure Horse 9 Figure Horse 10 Figure

Claims (1)

【特許請求の範囲】 +1)  電子ビーム加工装置において、電子ビームが
所定の走査軌跡を描くようにその電子ビームを偏向する
ための偏向電流が供給される偏向コイルと、 前記所定の走査軌跡に対応した走査軌跡電圧鼓形を発生
すると共に、前rfi向電流電流渡応答による前記走査
軌跡電圧波形との波形差を補正するための電圧パルスを
前記走査軌跡電圧波形に同時にまたは順次に重畳場せる
手段とを備えたことを特徴とする電子ビーム偏向装置。 (2)  前記電子ビーム加工装置は電子ビーム溶接機
でるり、前記偏向コイルと前記手段とは溶接中に時分割
で癖接線検出を行うために設けられた特許請求の範囲第
1項記載の電子ビーム偏向装置。
[Claims] +1) In an electron beam processing device, a deflection coil to which a deflection current is supplied for deflecting the electron beam so that the electron beam draws a predetermined scanning trajectory; and a deflection coil corresponding to the predetermined scanning trajectory. means for simultaneously or sequentially superimposing a voltage pulse on the scanning trajectory voltage waveform for correcting a waveform difference between the scanning trajectory voltage waveform and the scanning trajectory voltage waveform due to the previous RFI direction current passing response; An electron beam deflection device comprising: (2) The electron beam processing device according to claim 1, wherein the electron beam processing device is an electron beam welding machine, and the deflection coil and the means are provided for time-divisionally detecting the curve tangent during welding. Beam deflection device.
JP57066792A 1982-04-19 1982-04-19 Electron beam deflector Granted JPS58181489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066792A JPS58181489A (en) 1982-04-19 1982-04-19 Electron beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066792A JPS58181489A (en) 1982-04-19 1982-04-19 Electron beam deflector

Publications (2)

Publication Number Publication Date
JPS58181489A true JPS58181489A (en) 1983-10-24
JPH0211357B2 JPH0211357B2 (en) 1990-03-13

Family

ID=13326062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066792A Granted JPS58181489A (en) 1982-04-19 1982-04-19 Electron beam deflector

Country Status (1)

Country Link
JP (1) JPS58181489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224548A (en) * 1985-07-25 1987-02-02 Mitsubishi Electric Corp Deflection device for electron beam
CN110253130A (en) * 2019-07-03 2019-09-20 中国航空制造技术研究院 Deflection scanning control method when electron beam welding different alloys thin plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224548A (en) * 1985-07-25 1987-02-02 Mitsubishi Electric Corp Deflection device for electron beam
CN110253130A (en) * 2019-07-03 2019-09-20 中国航空制造技术研究院 Deflection scanning control method when electron beam welding different alloys thin plate

Also Published As

Publication number Publication date
JPH0211357B2 (en) 1990-03-13

Similar Documents

Publication Publication Date Title
CN102481664B (en) Acousto-optic deflector applications in laser processing of dielectric or other materials
US8426768B2 (en) Position-based laser triggering for scanner
EP3059031B1 (en) Three-dimensional printing device, three-dimensional printing device control method, and control program
US6436466B2 (en) Method for the operation of an electron beam
US4591688A (en) System and method for processing a work piece by a focussed electron beam
JPS58181489A (en) Electron beam deflector
US3842236A (en) Process to control the movement of a workpiece with respect to a beam of a stock processing machine operating by means of controllable power irradiation
US3993889A (en) Seam tracking method improvement
EP2888070B1 (en) Method of operational control of electron beam welding based on the synchronous integration method
CA1285621C (en) Beam position correction device
US4357517A (en) Electron beam welding with beam focus controlled responsive to absorbed beam power
US3529123A (en) Electron beam heating with controlled beam
KR910003526B1 (en) Method for controlling a bead
Wang et al. Energy density distribution and temperature closed-loop control in electron beam processing
US4595819A (en) Method and system for deflecting a focussed electron beam along a predetermined processing path
JPH0545356B2 (en)
JPS5813486A (en) Electron beam welding device
JP2845595B2 (en) Moving stage for drawing equipment
RU2023557C1 (en) Method of and device for electron beam welding
JPH0631465A (en) Electron beam machine
JPS5814055Y2 (en) Oscillating device for arc welding
JP3167186B2 (en) Consumable electrode arc welding method
JPS6021036B2 (en) electron beam equipment
JPS60191667A (en) Arc welding robot
JPS61293690A (en) Method for detecting work distance in electron beam welding