JPH0211357B2 - - Google Patents

Info

Publication number
JPH0211357B2
JPH0211357B2 JP57066792A JP6679282A JPH0211357B2 JP H0211357 B2 JPH0211357 B2 JP H0211357B2 JP 57066792 A JP57066792 A JP 57066792A JP 6679282 A JP6679282 A JP 6679282A JP H0211357 B2 JPH0211357 B2 JP H0211357B2
Authority
JP
Japan
Prior art keywords
electron beam
axis
scanning
deflection
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57066792A
Other languages
Japanese (ja)
Other versions
JPS58181489A (en
Inventor
Eishin Murakami
Masashi Yasunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57066792A priority Critical patent/JPS58181489A/en
Publication of JPS58181489A publication Critical patent/JPS58181489A/en
Publication of JPH0211357B2 publication Critical patent/JPH0211357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/02Control circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】 この発明は、電子ビーム加工装置において、電
子ビームの被照射物表面上の照射位置を、現在位
置から目標位置へ高速かつ高精度で移動させる電
子ビーム偏向装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam deflection device for moving the irradiation position of the electron beam on the surface of an object to be irradiated from the current position to the target position at high speed and with high precision in an electron beam processing device. be.

この種の装置の例として、第1図〜第8図に示
すインプロセス溶接線検出を行なう電子ビーム溶
接機について説明する。第1図は電子ビーム溶接
におけるインプロセス溶接線検出装置の構成例で
あり、図において、1は電子銃、2は被溶接物、
3は被溶接物2の溶接線、4は溶接を行なう電子
ビーム(以下、溶接電子ビームという)、5は溶
接線3の検出を行なうための走査電子ビーム、6
は溶接電子ビーム4の現照射位置を原点としたX
軸、7は同じくY軸、8は走査電子ビーム5を得
るためのX軸偏向コイル、9は同じくY軸偏向コ
イル、10は被溶接物2上における走査電子ビー
ム5の照射位置(以下、単に照射位置という)の
三角形の軌跡(以下、単に軌跡という)、11は
走査電子ビーム5を被溶接物2に照射した場合に
発生する反射電子、二次電子またはX線(以下、
反射電子またはX線という)、12は反射電子ま
たはX線11の検出子、13は検出子12の出力
信号の増幅器、14は溶接線検出期間を指令する
ゲートパルス発生器、15はY軸走査波形発生
器、16はY軸走査波形発生器、17はX軸走査
波形の増幅器(以下、X軸増幅器という)、18
はY軸走査波形の増幅器(以下、Y軸増幅器とい
う)、19はX軸偏向電流、20はY軸偏向電流、
21はX軸偏向電流19の検出抵抗(以下、X軸
検出抵抗という)、22はY軸偏向電流20の検
出抵抗(以下、Y軸検出抵抗という)、23はゲ
ートパルス発生器14の出力信号により動作を開
始し、X軸偏向電流19の検出信号、Y軸偏向電
流20の検出信号および検出子12の増幅器13
の出力信号により溶接線3のズレ量を求める演算
装置、24は演算装置23の出力信号によりモー
ター駆動信号を発生するサーボ増幅器、25は電
子銃駆動装置、26は被溶接物駆動装置である。
As an example of this type of apparatus, an electron beam welding machine for detecting in-process welding lines shown in FIGS. 1 to 8 will be described. FIG. 1 shows a configuration example of an in-process welding line detection device for electron beam welding. In the figure, 1 is an electron gun, 2 is a workpiece to be welded,
3 is a welding line on the workpiece 2; 4 is an electron beam for welding (hereinafter referred to as a welding electron beam); 5 is a scanning electron beam for detecting the welding line 3; 6 is a scanning electron beam for detecting the welding line 3;
is X with the current irradiation position of welding electron beam 4 as the origin
7 is also the Y-axis, 8 is the X-axis deflection coil for obtaining the scanning electron beam 5, 9 is the same Y-axis deflection coil, and 10 is the irradiation position of the scanning electron beam 5 on the workpiece 2 (hereinafter simply referred to as 11 is a triangular locus (hereinafter simply referred to as a locus) of the irradiation position), and 11 is a backscattered electron, secondary electron, or X-ray (hereinafter referred to as
(referred to as backscattered electrons or A waveform generator, 16 a Y-axis scanning waveform generator, 17 an X-axis scanning waveform amplifier (hereinafter referred to as an X-axis amplifier), 18
is a Y-axis scanning waveform amplifier (hereinafter referred to as Y-axis amplifier), 19 is an X-axis deflection current, 20 is a Y-axis deflection current,
21 is a detection resistor for the X-axis deflection current 19 (hereinafter referred to as X-axis detection resistor), 22 is a detection resistor for Y-axis deflection current 20 (hereinafter referred to as Y-axis detection resistor), and 23 is an output signal of the gate pulse generator 14. The operation is started by the detection signal of the X-axis deflection current 19, the detection signal of the Y-axis deflection current 20, and the amplifier 13 of the detector 12.
24 is a servo amplifier that generates a motor drive signal based on the output signal of the calculation device 23, 25 is an electron gun drive device, and 26 is a workpiece drive device.

第2図は軌跡10付近の拡大図であり、27は
既に溶接を終了した部分(以下、既溶接部とい
う)、28は溶接電子ビームの現照射位置である
原点、29は三角形走査を行なう場合の第1の走
査線、30は溶接線検出の開始点、31は三角形
走査を行なう場合の第2の走査線、32は溶接線
3を検出する点、33は溶接線検出の終了点、3
4は三角形走査を行なう場合の第3の走査線であ
る。
Fig. 2 is an enlarged view of the vicinity of the locus 10, where 27 is the part where welding has already been completed (hereinafter referred to as the "already welded part"), 28 is the origin which is the current irradiation position of the welding electron beam, and 29 is the case where triangular scanning is performed. 30 is the starting point of welding line detection, 31 is the second scanning line when performing triangular scanning, 32 is the point at which welding line 3 is detected, 33 is the ending point of welding line detection, 3
4 is the third scanning line when performing triangular scanning.

第3図はX軸走査波形発生器15およびY軸走
査波形発生器16の構成図であり、35は基準電
源、36はゲートパルス発生器14の出力信号の
立上り部分で動作を開始し、立下り部分でリセツ
トされる基準電源35の積分器、37はゲートパ
ルス発生器14の出力信号と積分器36の出力信
号の加算器である。
FIG. 3 is a configuration diagram of the X-axis scanning waveform generator 15 and the Y-axis scanning waveform generator 16, where 35 is a reference power supply, 36 is a reference power source, and 36 starts operation at the rising edge of the output signal of the gate pulse generator 14. The integrator 37 of the reference power supply 35, which is reset in the descending portion, is an adder for the output signal of the gate pulse generator 14 and the output signal of the integrator 36.

第4図は走査電子ビームの走査信号を示す波形
図であり、aはX軸信号、bはY軸信号、tは時
間軸、39aはX軸走査波形発生器15の出力電
圧(以下、X軸出力電圧という)、40aはY軸
走査波形発生器16の出力電圧(以下、Y軸出力
電圧という)である。
FIG. 4 is a waveform diagram showing the scanning signal of the scanning electron beam, where a is the X-axis signal, b is the Y-axis signal, t is the time axis, and 39a is the output voltage of the X-axis scanning waveform generator 15 (hereinafter referred to as 40a is the output voltage of the Y-axis scanning waveform generator 16 (hereinafter referred to as the Y-axis output voltage).

第5図は走査電子ビームの軌跡であり、41は
実際に得られる走査電子ビームの軌跡(以下、実
際の軌跡という)である。第6図はX軸増幅器1
7またはY軸増幅器18に用いる定電流増幅器
(図ではX軸用である)であり、42は出力の大
きい演算増幅器、43は入力抵抗、44は電流検
出抵抗、45は帰還抵抗である。第7図は走査電
子ビームの走査信号であり、aはX軸信号、bは
Y軸信号である。第8図は走査電子ビームの軌跡
である。
FIG. 5 shows the trajectory of the scanning electron beam, and numeral 41 indicates the trajectory of the scanning electron beam actually obtained (hereinafter referred to as the actual trajectory). Figure 6 shows X-axis amplifier 1
7 is a constant current amplifier (for the X axis in the figure) used for the Y-axis amplifier 18, 42 is an operational amplifier with a large output, 43 is an input resistor, 44 is a current detection resistor, and 45 is a feedback resistor. FIG. 7 shows the scanning signal of the scanning electron beam, where a is the X-axis signal and b is the Y-axis signal. FIG. 8 shows the locus of the scanning electron beam.

次に動作について説明する。電子銃1から放射
された溶接電子ビーム4で被溶接物2の溶接線3
を溶接する場合、溶接電子ビーム4の被溶接物2
上の照射点を溶接線3に正確に一致させる必要が
ある。その方法としてインプロセス溶接線検出法
がある。この検出法では、溶接電子ビーム4を偏
向コイル8,9により時分割で偏向して走査電子
ビーム5を作り、溶接電子ビーム4の現照射点の
前方を走査する。走査電子ビーム5は次のように
して作られる。ゲートパルス発生器14の出力信
号によりX軸走査波形発生器15およびY軸走査
波形発生器16が動作し、その出力信号はそれぞ
れX軸増幅器17およびY軸増幅器18で増幅さ
れ、X軸偏向電流19およびY軸偏向電流20と
なつてX軸偏向コイル8およびY軸偏向コイル9
に流れて、走査電子ビーム5のX軸6およびY軸
7の偏向を行なう。X軸偏向電流19およびY軸
偏向電流20はそれぞれX軸検出抵抗21および
Y軸検出抵抗22で検出され、演算装置23に入
力される。一方、走査電子ビーム5が被溶接物2
に衝突して発生する反射電子またはX線11は周
知の如く照射点が溶接線3に一致した場合に最小
となり、それは検出子12で検出され、その検出
信号は増幅器13で増幅され、その出力信号は演
算装置23に入力される。演算装置23はゲート
パルス発生器14の出力期間中動作し、Y軸偏向
電流20が零になる時間と反射電子またはX軸1
1の強度が零になる時間との差を求める。この時
間差は、X軸偏向電流19から求められる溶接電
子ビーム4の現照射点の前方の位置における溶接
線3と照射点の誤差である。この誤差は誤差信号
として演算装置23から出力され、サーボ増幅器
24で増幅される。次いで、電子銃駆動装置25
または被溶接物駆動装置26がそれぞれ電子銃1
または被溶接物2をY軸方向に移動させて、溶接
電子ビーム4の被溶接物2上における照射点の位
置修正を行なう。
Next, the operation will be explained. The welding electron beam 4 emitted from the electron gun 1 creates a welding line 3 on the workpiece 2.
When welding the workpiece 2 of the welding electron beam 4
It is necessary to align the upper irradiation point exactly with the welding line 3. An in-process weld line detection method is a method for this purpose. In this detection method, the welding electron beam 4 is time-divisionally deflected by deflection coils 8 and 9 to create a scanning electron beam 5, which scans the area in front of the current irradiation point of the welding electron beam 4. The scanning electron beam 5 is produced as follows. The output signal of the gate pulse generator 14 operates the X-axis scanning waveform generator 15 and the Y-axis scanning waveform generator 16, and the output signals are amplified by the X-axis amplifier 17 and Y-axis amplifier 18, respectively, and the X-axis deflection current is 19 and Y-axis deflection current 20 to form X-axis deflection coil 8 and Y-axis deflection coil 9.
, and deflects the scanning electron beam 5 along the X-axis 6 and the Y-axis 7. The X-axis deflection current 19 and the Y-axis deflection current 20 are detected by an X-axis detection resistor 21 and a Y-axis detection resistor 22, respectively, and are input to an arithmetic unit 23. On the other hand, the scanning electron beam 5
As is well known, the reflected electrons or X-rays 11 generated by colliding with the The signal is input to the arithmetic unit 23. The arithmetic unit 23 operates during the output period of the gate pulse generator 14, and calculates the time when the Y-axis deflection current 20 becomes zero and the backscattered electrons or the X-axis 1.
Find the difference between the time when the intensity of 1 becomes zero. This time difference is an error between the welding line 3 and the irradiation point at a position in front of the current irradiation point of the welding electron beam 4, which is determined from the X-axis deflection current 19. This error is output as an error signal from the arithmetic unit 23 and amplified by the servo amplifier 24. Next, the electron gun drive device 25
Alternatively, the welding object drive device 26 is connected to the electron gun 1, respectively.
Alternatively, the welding object 2 is moved in the Y-axis direction to correct the position of the irradiation point of the welding electron beam 4 on the welding object 2.

軌跡10の例として三角形のものを第2図に示
す。この場合、溶接線検出は第2の走査線31の
部分で行なわれる。この三角形の軌跡を作成する
ためのX軸およびY軸の走査波形発生器の構成を
第3図に示す。X軸の走査波形の信号はゲートパ
ルス発生器14の出力信号がそのまま用いられ
る。また、Y軸の走査波形の信号は、ゲートパル
ス発生器14の出力信号の立上り部分より基準電
源35の電圧を積分器36で積分し、ゲートパル
ス発生器14の出力信号の立下り部分で積分器3
6をリセツトして三角波を作り、それをゲートパ
ルス発生器14の出力信号に加算器37で加算す
ることにより得られる。従つて、X軸増幅器17
およびY軸増幅器18の出力電圧は、各増幅器1
7,18に電圧増幅形のものを用いると第4図
a,bに示す各増幅器17,18の入力信号39
a,40aと同じ波形となる。しかし、各増幅器
17,18の負荷が偏向コイルつまり誘導性であ
るため、第4図a,bに示すようにX軸偏向電流
19aおよびY軸偏向電流20aはX軸出力電圧
39aおよびY軸出力電圧40aとは異なつたも
のとなる。従つて、軌跡は三角形にならず、第5
図に41で示すような軌跡となる。
As an example of the locus 10, a triangular one is shown in FIG. In this case, weld line detection is performed in the second scanning line 31 portion. FIG. 3 shows the configuration of an X-axis and Y-axis scanning waveform generator for creating this triangular locus. As the X-axis scanning waveform signal, the output signal of the gate pulse generator 14 is used as is. Furthermore, the signal of the Y-axis scanning waveform is obtained by integrating the voltage of the reference power supply 35 from the rising part of the output signal of the gate pulse generator 14 by the integrator 36, and by integrating the voltage of the reference power supply 35 from the falling part of the output signal of the gate pulse generator 14. Vessel 3
6 to create a triangular wave, and add it to the output signal of the gate pulse generator 14 in the adder 37. Therefore, the X-axis amplifier 17
and the output voltage of the Y-axis amplifier 18 is
When voltage amplification types are used for 7 and 18, the input signal 39 of each amplifier 17 and 18 shown in FIG.
It has the same waveform as a and 40a. However, since the load of each amplifier 17, 18 is a deflection coil, that is, an inductive load, the X-axis deflection current 19a and the Y-axis deflection current 20a, as shown in FIG. The voltage is different from the voltage 40a. Therefore, the trajectory is not triangular and the fifth
The trajectory will be as shown at 41 in the figure.

そこで、実際の軌跡41を三角形にするために
各増幅器17,18を第6図に示した定電流形に
することが考えられる。この場合、偏向電流を電
流検出抵抗44で検出し、負帰還をかけて入力電
圧信号と同じ出力電流とする。しかし、溶接線検
出期間中は溶接が中断するため、検出に許される
時間は1〜10msであり、しかも矩形波信号を用
いているため各増幅器17,18の周波数帯域は
非常に広いことが要求される。従つて、各増幅器
17,18の不安定性による出力電流の過渡的な
振動は避けられず、第7図a,bに示すような波
形19b,20bとなる。故に、軌跡は、第8図
に示すように検出開始点30付近で振動し41a
のようになり、また原点28付近で振動して41
bのようになる。
Therefore, in order to make the actual locus 41 triangular, it is conceivable to make each of the amplifiers 17 and 18 a constant current type as shown in FIG. In this case, the deflection current is detected by the current detection resistor 44 and negative feedback is applied to make the output current the same as the input voltage signal. However, since welding is interrupted during the weld line detection period, the time allowed for detection is 1 to 10 ms, and since rectangular wave signals are used, the frequency band of each amplifier 17 and 18 is required to be extremely wide. be done. Therefore, transient oscillations in the output current due to instability of each amplifier 17 and 18 are unavoidable, resulting in waveforms 19b and 20b as shown in FIGS. 7a and 7b. Therefore, the trajectory oscillates near the detection starting point 30 as shown in FIG.
It becomes like this, and it vibrates around the origin 28 again and becomes 41
It becomes like b.

従来のインプロセス溶接検出を行なう電子ビー
ム溶接機は以上のように構成されているので、電
圧増幅形の偏向信号増幅器を用いると、偏向コイ
ル電流の過渡応答は偏向コイル回路の時定数より
も速くすることはできず、電子ビームの偏向速度
が遅くなる。従つて、溶接中に時分割により溶接
ビーム電流で溶接線検出を行なう場合、溶接線検
出に要する時間が長くなるので溶接部分の溶融部
に悪影響を与え、また溶接線検出のための被溶接
物の走査部分への入熱が大きくなつて、非溶接部
分の溶融や熱歪の原因となる。また、定電流形の
偏向信号増幅器を用いると、偏向電流が過渡的に
振動し、走査電子ビームの被溶接物上の軌跡が歪
み、溶接線検出後の信号処理が複雑かつ長時間を
要するなどの欠点があつた。
Conventional electron beam welding machines that perform in-process welding detection are configured as described above, so if a voltage amplification type deflection signal amplifier is used, the transient response of the deflection coil current is faster than the time constant of the deflection coil circuit. This will slow down the deflection speed of the electron beam. Therefore, when welding line detection is performed using welding beam current in a time-sharing manner during welding, the time required for welding line detection becomes longer, which has a negative effect on the molten part of the welded part, and also reduces the amount of time required to detect the welding line. The heat input to the scanning part becomes large, causing melting and thermal distortion of the non-welded part. In addition, when a constant current type deflection signal amplifier is used, the deflection current oscillates transiently, the trajectory of the scanning electron beam on the workpiece is distorted, and signal processing after welding line detection is complicated and takes a long time. There were some shortcomings.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、被溶接物上で電子
ビーム照射位置を瞬時に移動させるパルス電圧
と、被溶接物上の走査電子ビームの軌跡に対応し
た電圧波形を、同時にまたは順次に偏向コイルに
印加することにより、電子ビームの高速偏向が可
能な電子ビーム偏向装置を提供することを目的と
している。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and it uses a pulse voltage that instantly moves the electron beam irradiation position on the workpiece and a scanning electron beam trajectory on the workpiece. It is an object of the present invention to provide an electron beam deflection device capable of high-speed deflection of an electron beam by simultaneously or sequentially applying corresponding voltage waveforms to deflection coils.

以下、まず、この発明の原理を図について説明
する。第9図aにおいて、46は偏向信号発生
器、47は自己インダクタンスLを持つ偏向コイ
ル、48は偏向信号発生器46の出力抵抗および
偏向コイル47の内部抵抗を等価的に表わす抵抗
値Rの直列抵抗、iはこの回路を流れる偏向電流
である。
Hereinafter, first, the principle of this invention will be explained with reference to the drawings. In FIG. 9a, 46 is a deflection signal generator, 47 is a deflection coil having self-inductance L, and 48 is a series of resistance values R equivalently representing the output resistance of the deflection signal generator 46 and the internal resistance of the deflection coil 47. The resistance, i, is the deflection current flowing through this circuit.

偏向コイル47に第9図bに示すi0の電流を流
すためには、偏向信号発生器46は波形50で示
されるE0=Ri0のステツプ電圧を発生すればよい
が、この場合、電流iの過渡応答は第9図bの波
形51に示すようになり、次式で表わされる。
In order to cause the current i 0 shown in FIG. 9b to flow through the deflection coil 47, the deflection signal generator 46 should generate a step voltage E 0 =Ri 0 shown by the waveform 50. In this case, the current The transient response of i is shown in waveform 51 in FIG. 9b, and is expressed by the following equation.

i=E0/R(1−e-t/〓) 但し、τ=L/Rであり、回路固有の定数であ
る。従つて、i0の値に近づく規格化された時間
t/τは i0の90%:t/τ=2.30 i0の99%:t/τ=4.61 i0の99.9%:t/τ=6.91 となる。
i=E 0 /R (1−e −t/ 〓) However, τ=L/R, which is a constant specific to the circuit. Therefore, the normalized time t/τ to approach the value of i 0 is 90% of i 0 : t/τ = 2.30 99% of i 0 : t/τ = 4.61 99.9% of i 0 : t/τ = It becomes 6.91.

次に、偏向信号発生器46でE0より大きいス
テツプ電圧E152を発生し、電流iがi0に達した
時刻t0にE1をE0に低下させる方法を考える。この
場合、電流iの過度応答は第9図cの波形53に
示すようになり、次式で表わされる。
Next, consider a method in which the deflection signal generator 46 generates a step voltage E 1 52 greater than E 0 and lowers E 1 to E 0 at time t 0 when the current i reaches i 0 . In this case, the transient response of the current i becomes as shown by the waveform 53 in FIG. 9c, and is expressed by the following equation.

i=E1/R(1−e-t/〓) O≦t≦t0 i=E0/R t0<t また、t0/τは次式で表わされる。 i=E 1 /R(1-e -t/ 〓) O≦t≦t 0 i=E 0 /R t 0 <t Further, t 0 /τ is expressed by the following formula.

t0/τ=−ln(1−E0/E1) 従つて、E0/E1とt0/τとの関係は E1=10E0:t0/τ=0.105 E1=100E0:t0/τ=0.0101 となる。例えば、前者の方法によりi0の99%の値
に達する時間に対して、後者のE1=10E0のパル
スを追加する方法は約1/44の時間でよく、しかも
最終設定値i0との偏差は生じない。
t 0 /τ = -ln (1-E 0 /E 1 ) Therefore, the relationship between E 0 /E 1 and t 0 /τ is E 1 = 10E 0 :t 0 /τ = 0.105 E 1 = 100E 0 :t 0 /τ=0.0101. For example, compared to the time it takes to reach 99% of i 0 using the former method, the latter method of adding a pulse of E 1 = 10E 0 takes about 1/44th of the time, and moreover , No deviation occurs.

次に、偏向コイル47にランプ電流i=Ktを
流す場合を考える。この場合、偏向信号発生器4
6でランプ電圧54E=KRtを発生すると、電流i
の過渡応答は第10図aの波形55に示すように
なり、次式で表わされる。
Next, consider the case where lamp current i=Kt is caused to flow through the deflection coil 47. In this case, the deflection signal generator 4
When the lamp voltage 54E=KRt is generated in 6, the current i
The transient response of is shown in waveform 55 in FIG. 10a, and is expressed by the following equation.

i=Kτ(e-t/〓−1)+Kt 従つて、設定値に対してKτ(e-t/〓−1)の偏差
が生じる。次に、偏向信号発生器46でE=KRt
にE2=Kτのステツプ電圧を重畳させた波形56
を発生すると、電流iの過渡応答は第10図bの
波形57に示すようになり、次式で表わされる。
i=Kτ(e -t/ 〓-1)+Kt Therefore, a deviation of Kτ(e -t/ 〓-1) occurs from the set value. Next, in the deflection signal generator 46, E=KRt
Waveform 56 in which a step voltage of E 2 =Kτ is superimposed on
When , the transient response of the current i becomes as shown by the waveform 57 in FIG. 10b, and is expressed by the following equation.

i=Kt 従つて、設定値に対する偏差は生じない。 i=Kt Therefore, no deviation from the set value occurs.

次に、上記の原理に基づく一実施例を図につい
て説明する。第11図において、58a,58
b,58cおよび58dは、照射位置を瞬時に移
動させるパルス電圧(以下、移動パルス電圧とい
う)、59aおよび59bは軌跡に対応した電圧
波形(以下、基準電圧波形という)である。ま
た、第12図において、60はX軸D/Aコンバ
ータ、61はY軸D/Aコンバータ、62は従来
方式のゲートパルス発生器の出力信号に対応する
ゲート信号、63はマイクロコンピユータであ
る。
Next, an embodiment based on the above principle will be described with reference to the drawings. In FIG. 11, 58a, 58
b, 58c, and 58d are pulse voltages that instantaneously move the irradiation position (hereinafter referred to as moving pulse voltages), and 59a and 59b are voltage waveforms corresponding to the trajectory (hereinafter referred to as reference voltage waveforms). Further, in FIG. 12, 60 is an X-axis D/A converter, 61 is a Y-axis D/A converter, 62 is a gate signal corresponding to the output signal of a conventional gate pulse generator, and 63 is a microcomputer.

次に動作について説明する。 Next, the operation will be explained.

被溶接物上に第2図の三角波形の軌跡29,3
1,34に沿つて電子ビームを走査し、溶接線3
の検出を行なう場合を考える。原点28から検出
開始点30への走査と検出終了点33から原点2
8への走査は溶接線検出に関係なく、瞬時に行な
う。検出開始点30から検出終了点33への走査
はY軸7に平行に、等速度で行なう。この場合、
X軸の偏向電流に要求される波形は第11図aの
19cであり、この電流19cを流すために必要
な電圧波形は上記の原理により58a,59a,
58bとなる。また、Y軸の偏向電流に要求され
る波形は第11図bの20cであり、この電流2
0cを流すために必要な電圧波形は上記の原理に
より58c,59b,58dとなる。これらの電
圧波形はいくつかの基本波形に分けることができ
る。移動パルス電圧58a,58cは照射位置を
原点28から検出開始点30へ移動させるもので
あり、移動パルス電圧58b,58dは照射位置
を検出終了点33から原点28へ移動させるもの
である。移動パルス電圧58a,58b,58
c,58dのピーク電圧はX軸増幅器17aおよ
びY軸増幅器18aの出し得る最大電圧近くの走
査に設定する。また、基準電圧波形59aは溶接
線検出期間中、照射位置のX軸座標を一定にする
ものであり、基準電圧波形59bは溶接線検出期
間中、照射位置をY軸に平行に一定速度で移動さ
せるもので、上記の原理で示したようにランプ電
圧にステツプ電圧を重畳させている。これらの移
動パルス電圧58a,58b,58c,58dお
よび基準電圧波形59a,59bの合成された電
圧波形39b,40bはパルス回路を用いても容
易に作成することができるが、これらの電圧波形
39b,40bはパルス電圧とランプ電圧の単な
る組み合わせであり、第12図に示すようにマイ
クロコンピユーター63とX軸およびY軸D/A
コンバータ60,61により高速かつ容易に電圧
波形を合成することができる。
The locus 29, 3 of the triangular waveform shown in Fig. 2 is placed on the workpiece to be welded.
The electron beam is scanned along lines 1 and 34, and the welding line 3
Consider the case of detecting. Scanning from origin 28 to detection start point 30 and from detection end point 33 to origin 2
Scanning to 8 is performed instantaneously regardless of weld line detection. Scanning from the detection start point 30 to the detection end point 33 is performed parallel to the Y-axis 7 at a constant speed. in this case,
The waveform required for the X-axis deflection current is 19c in Figure 11a, and the voltage waveforms required to flow this current 19c are 58a, 59a, 59a,
It becomes 58b. The waveform required for the Y-axis deflection current is 20c in Figure 11b, and this current 2
The voltage waveforms required to flow 0c are 58c, 59b, and 58d based on the above principle. These voltage waveforms can be divided into several basic waveforms. The moving pulse voltages 58a and 58c move the irradiation position from the origin 28 to the detection start point 30, and the moving pulse voltages 58b and 58d move the irradiation position from the detection end point 33 to the origin 28. Moving pulse voltages 58a, 58b, 58
The peak voltages of c and 58d are set to scan near the maximum voltages that can be output by the X-axis amplifier 17a and the Y-axis amplifier 18a. Further, the reference voltage waveform 59a is for keeping the X-axis coordinate of the irradiation position constant during the welding line detection period, and the reference voltage waveform 59b is for moving the irradiation position at a constant speed parallel to the Y-axis during the welding line detection period. As shown in the above principle, a step voltage is superimposed on the lamp voltage. The voltage waveforms 39b and 40b, which are the composites of the moving pulse voltages 58a, 58b, 58c, and 58d and the reference voltage waveforms 59a and 59b, can be easily created using a pulse circuit, but these voltage waveforms 39b, 40b is simply a combination of pulse voltage and lamp voltage, and as shown in FIG.
The converters 60 and 61 allow voltage waveforms to be synthesized quickly and easily.

なお、上記実施例ではインプロセス溶接線検出
を行なう電子ビーム溶接機について説明したが、
電子ビームの照射位置を高速かつ高精度で移動さ
せる必要がある電子ビーム焼入れ機であつてもよ
く、上記実施例と同様の効果を奏する。電子ビー
ム焼入れ機の場合、電子ビーム電力の入熱範囲を
限定するため、高速かつ間欠的に走査を行なう。
Note that in the above embodiment, an electron beam welding machine that performs in-process welding line detection was explained.
The present invention may be an electron beam hardening machine that requires moving the electron beam irradiation position at high speed and with high precision, and the same effects as in the above embodiments can be achieved. In the case of an electron beam hardening machine, scanning is performed at high speed and intermittently in order to limit the heat input range of electron beam power.

以上のように、この発明によれば被溶接物上で
電子ビーム照射位置を瞬時に移動させるパルス電
圧と、被溶接物上の走査電子ビームの軌跡に対応
した電圧波形を、同時にまたは順次に偏向コイル
に印加するように構成したので、移動パルス電圧
を加えない場合に比較して10〜100倍の高速走査
ができ、移動後の過渡振動が発生せず、移動中も
位置精度の高い走査ができる効果がある。
As described above, according to the present invention, the pulse voltage that instantaneously moves the electron beam irradiation position on the workpiece and the voltage waveform corresponding to the trajectory of the scanning electron beam on the workpiece are deflected simultaneously or sequentially. Since it is configured to be applied to the coil, scanning can be performed 10 to 100 times faster than when no moving pulse voltage is applied, and transient vibrations do not occur after movement, and scanning with high positional accuracy is possible even during movement. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインプロセス溶接線検出を行なう電子
ビーム溶接機を示す概略構成図、第2図は走査電
子ビームの被溶接物上の照射位置の軌跡を示す
図、第3図は従来の走査波形発生器の構成図、第
4図ないし第8図は従来の欠点を説明するための
図、第9図a,b,cおよび第10図a,bはこ
の発明の原理を説明するための図、第11図aお
よびbはこの発明の一実施例による動作を説明す
るための図、第12図はこの発明の一実施例によ
る走査波形発生器を示す概略構成図である。図に
おいて、1は電子銃、2は被溶接物、8はX軸偏
向コイル、9はY軸偏向コイル、12は検出子、
13は増幅器、19はX軸偏向電流、20はY軸
偏向電流、21はX軸検出抵抗、22はY軸検出
抵抗、23は演算装置、24はサーボ増幅器、2
5は電子銃駆動装置、、26は被溶接物駆動装置、
58aおよび58bはX軸の移動パルス電圧、5
8cおよび58dはY軸の移動パルス電圧、60
はX軸D/Aコンバータ、61はY軸D/Aコン
バータ、62はマイクロコンピユータである。な
お、図中、同一符号は同一、または相当部分を示
す。
Figure 1 is a schematic configuration diagram showing an electron beam welding machine that performs in-process welding line detection, Figure 2 is a diagram showing the locus of the scanning electron beam irradiation position on the workpiece, and Figure 3 is a diagram showing the conventional scanning waveform. The configuration diagram of the generator, FIGS. 4 to 8 are diagrams for explaining the conventional drawbacks, and FIGS. 9 a, b, and c and FIGS. 10 a and b are diagrams for explaining the principle of the present invention. , FIGS. 11a and 11b are diagrams for explaining the operation according to an embodiment of the present invention, and FIG. 12 is a schematic configuration diagram showing a scanning waveform generator according to an embodiment of the present invention. In the figure, 1 is an electron gun, 2 is an object to be welded, 8 is an X-axis deflection coil, 9 is a Y-axis deflection coil, 12 is a detector,
13 is an amplifier, 19 is an X-axis deflection current, 20 is a Y-axis deflection current, 21 is an X-axis detection resistor, 22 is a Y-axis detection resistor, 23 is an arithmetic unit, 24 is a servo amplifier, 2
5 is an electron gun drive device, 26 is a workpiece drive device,
58a and 58b are X-axis movement pulse voltages, 5
8c and 58d are Y-axis movement pulse voltages, 60
61 is an X-axis D/A converter, 61 is a Y-axis D/A converter, and 62 is a microcomputer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 電子ビーム加工装置において、電子ビームが
所定の走査軌跡を描くようにその電子ビームを偏
向するための偏向電流が供給される偏向コイル
と、 前記所定の走査軌跡に対応した走査軌跡電圧波
形を発生すると共に、前記偏向電流の過渡応答に
よる前記走査軌跡電圧波形との波形差を補正する
ための電圧パルスを前記走査軌跡電圧波形に同時
にまたは順次に重畳させる手段とを備えたことを
特徴とする電子ビーム偏向装置。 2 前記電子ビーム加工装置は電子ビーム溶接機
であり、前記偏向コイルと前記手段とは溶接中に
時分割で溶接線検出を行うために設けられた特許
請求の範囲第1項記載の電子ビーム偏向装置。
[Claims] 1. In an electron beam processing device, a deflection coil to which a deflection current is supplied for deflecting the electron beam so that the electron beam follows a predetermined scanning trajectory; means for generating a scanning locus voltage waveform and simultaneously or sequentially superimposing a voltage pulse on the scanning locus voltage waveform for correcting a waveform difference with the scanning locus voltage waveform due to a transient response of the deflection current. An electron beam deflection device characterized by: 2. The electron beam deflector according to claim 1, wherein the electron beam processing device is an electron beam welding machine, and the deflection coil and the means are provided for time-sharing welding line detection during welding. Device.
JP57066792A 1982-04-19 1982-04-19 Electron beam deflector Granted JPS58181489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066792A JPS58181489A (en) 1982-04-19 1982-04-19 Electron beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066792A JPS58181489A (en) 1982-04-19 1982-04-19 Electron beam deflector

Publications (2)

Publication Number Publication Date
JPS58181489A JPS58181489A (en) 1983-10-24
JPH0211357B2 true JPH0211357B2 (en) 1990-03-13

Family

ID=13326062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066792A Granted JPS58181489A (en) 1982-04-19 1982-04-19 Electron beam deflector

Country Status (1)

Country Link
JP (1) JPS58181489A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224548A (en) * 1985-07-25 1987-02-02 Mitsubishi Electric Corp Deflection device for electron beam
CN110253130A (en) * 2019-07-03 2019-09-20 中国航空制造技术研究院 Deflection scanning control method when electron beam welding different alloys thin plate

Also Published As

Publication number Publication date
JPS58181489A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
GB1329559A (en) Apparatus and method for controlling an electronically generated beam
JPH0513037A (en) Charged particle beam device and control thereof
JPH0211357B2 (en)
US3842236A (en) Process to control the movement of a workpiece with respect to a beam of a stock processing machine operating by means of controllable power irradiation
JPH0796377A (en) Electron beam welding method and device
CA1285621C (en) Beam position correction device
US4012620A (en) Electron beam seam finding device
JPH0545356B2 (en)
JPS61293690A (en) Method for detecting work distance in electron beam welding
JPS6324535A (en) Electron beam machining device
JPS62151283A (en) Seam tracker for electron beam welding machine
JPH0360879A (en) Electron beam processing machine
JPS62286691A (en) Seam position detecting device in electron beam welding
JPS61293689A (en) Automatic setting method for beam rocking width in electron beam welding
JPH0510192B2 (en)
JPH0357573A (en) Electron beam working machine
JP2587439B2 (en) Fully automatic electron beam welding equipment
JP2836224B2 (en) Focusing method of electron beam
JPH0545355B2 (en)
JPH0422586A (en) Electron beam machine and machining method
JP2005224825A (en) Electron beam welding method
JPH0785828A (en) Electron beam device
GB1604222A (en) Controlling impinge ment of high-energy beam of charged particles on a workpiece
JP2512530B2 (en) Electronic beam exposure apparatus and electronic beam exposure method
JPH0671464A (en) Welding method utilizing electron beam