JPS58179782A - Cold and hot water simultaneous extracting heat pump - Google Patents

Cold and hot water simultaneous extracting heat pump

Info

Publication number
JPS58179782A
JPS58179782A JP6317382A JP6317382A JPS58179782A JP S58179782 A JPS58179782 A JP S58179782A JP 6317382 A JP6317382 A JP 6317382A JP 6317382 A JP6317382 A JP 6317382A JP S58179782 A JPS58179782 A JP S58179782A
Authority
JP
Japan
Prior art keywords
water
cold
heat pump
hot water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6317382A
Other languages
Japanese (ja)
Other versions
JPH0338513B2 (en
Inventor
入江 年優
大森 頼之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Original Assignee
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture filed Critical Osaka Prefecture
Priority to JP6317382A priority Critical patent/JPS58179782A/en
Publication of JPS58179782A publication Critical patent/JPS58179782A/en
Publication of JPH0338513B2 publication Critical patent/JPH0338513B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はヒートポンプを使ってコンデンサー側で高温
の温水を、蒸発器側で低温の冷水を同時に取り出す方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of simultaneously extracting high-temperature hot water from a condenser side and low-temperature cold water from an evaporator side using a heat pump.

これを図面について説明すれば、コンプレッサ−(1)
、コンデンサー(2)、膨張弁(3)、水蒸発gg:4
)よりなるヒートポンプに於て、コンデンサー(71、
)1(蒸発器(4)を双方共能力を増大させ、コンデン
サ−(21、水蒸発i’!Xt’t)双方に水タンク(
61、(6’)を設置し、それぞれ水ボンフ’151.
(5つを介して水パイプ+81. (8′)でコンデン
サー(2)と水タンク(6)、水蒸発器(4)と水タン
ク(6′)を結ぶものである。
To explain this with reference to the drawings, the compressor (1)
, condenser (2), expansion valve (3), water evaporation gg: 4
) in a heat pump consisting of a condenser (71,
) 1 (increase the capacity of both evaporators (4), and install water tanks (21, water evaporation i'!
61, (6') were installed, and water bombs '151.
(5 water pipes +81. (8') connect the condenser (2) and the water tank (6), and the water evaporator (4) and the water tank (6').

次に水タンクt61.(6りに水を入れコンプレッサー
(1)、水ポンプ(5)、(6つを同時に動かす。 こ
れによりコンプレッサー(1)より送られる高7晶、高
圧のガス(冷媒)はコンデンサー(2)に入り、水ポン
プ(6)により水タンク(6)から水パイプ(8)を通
って送られる水と熱交換する。 熱□交換した水は温度
が上って水タンク(6)に戻る。 一方熱交換した高温
、高圧のガスは面化し、膨張弁(3)を通過することに
よりガス化して温度が下り水蒸発器(4)に入る。
Next, water tank t61. (Pour water into the tank and run the compressor (1), water pump (5), (6) at the same time. As a result, the high-7 crystal, high-pressure gas (refrigerant) sent from the compressor (1) is sent to the condenser (2). The water enters and exchanges heat with the water sent from the water tank (6) through the water pipe (8) by the water pump (6). Heat □ The exchanged water returns to the water tank (6) with increased temperature. The heat-exchanged high-temperature, high-pressure gas is converted into a surface, gasified by passing through an expansion valve (3), and then cooled down and enters a water evaporator (4).

水蒸発器(4)に入ったガスは水ポンプ(5′)を介し
て水タンク(6つから水パイプ(8′)を通って送られ
る水と熱交換する。 熱交換した水は温度が下り水タン
ク(6′)に戻る。 水蒸発器(4)で蒸発したガスは
ガスパイプ(7)を通りコンプレッサー(+)に戻る。
The gas entering the water evaporator (4) exchanges heat with the water sent from the water tank (6) through the water pipe (8') via the water pump (5'). Return to the downstream water tank (6').The gas evaporated in the water evaporator (4) returns to the compressor (+) through the gas pipe (7).

この熱サイクルを繰り返すことによりコンデンサー(2
)側の水タンク(6)内の水7品は循環により順次高温
水となり、又水蒸発器(4)側のタンク(6′)内の水
は循環により順次下降し冷水となる。
By repeating this heat cycle, the capacitor (2
The water in the water tank (6) on the ) side becomes high-temperature water one by one through circulation, and the water in the tank (6') on the water evaporator (4) side gradually descends through circulation and becomes cold water.

従来技術てイよ:I−/デ、サー側の熱交換水の温度が
上昇していくと、これに比例して、高温、高圧ガスも一
定の割合で、更に高ン品、高圧となり、通常では、ある
一定(直線」二になると凝縮しなくなる。
Conventional technology: As the temperature of the heat exchange water on the I/D/S side increases, the high temperature and high pressure gas also increases at a constant rate in proportion to this. Normally, it stops condensing when it reaches a certain point (a straight line).

本発明ではコンデンサー能力を高めているため完全凝析
1することが特徴である。
The present invention is characterized by complete coagulation due to the enhanced condenser capacity.

また、 ヒートポンプによる温水、冷水の取出しは水量
を調節することにより行なわれていたが、本発明は水の
循環回数により温水、冷水の取出?都度を定めるもので
ある。
In addition, hot water and cold water were extracted by a heat pump by adjusting the amount of water, but the present invention allows hot and cold water to be extracted by adjusting the number of water circulations. It is determined each time.

次に+発明による試験値を示す。Next, test values according to the + invention are shown.

使用した機器容量はコンプレッサー9,00 ov/h
コンデンサー9.Q Ooti、’hX 2  計1 
a、o o o101/h。
The capacity of the equipment used was a compressor of 9.00 ov/h.
Capacitor 9. Q Ooti, 'hX 2 total 1
a, o o o101/h.

水蒸発器15.0001d/hである。The water evaporator is 15.0001 d/h.

試験力法は水タンク(6)に20.7℃の水、水タンク
(6′)には423℃の温水を双方共1001 投入し
、予じめ水ポンプfril 、 (5′)による循環水
敞を時に稼動させた場合の経」l:’6時間に対する下
記の計/1lll (51ri l」)を行なった。 
各点の温度はcc#! 電対1i情度計、水ポンプによ
る循環水ffl: 、 l[7!出し冷水111.はオ
ーバル流量計、凝縮ガス圧)J、蒸発ガス圧力はブルド
ン管圧力51、コンプレッサーの消費電流値はクランプ
形7If、流計を用いた。
In the test force method, water at 20.7℃ is poured into the water tank (6), and warm water at 423℃ is poured into the water tank (6'), and the water is circulated by the water pump (5') in advance. The following total (51 ri) for 6 hours was carried out when the syringe was operated for a period of time.
The temperature at each point is cc#! Electric couple 1i temperature meter, circulating water by water pump ffl: , l[7! Cold water 111. is an oval flowmeter, condensed gas pressure) J, evaporated gas pressure is Bourdon tube pressure 51, compressor current consumption value is clamp type 7If, and flow meter was used.

表1は経過時間 (分)に対する各計測値を表わす。Table 1 shows each measurement value versus elapsed time (minutes).

C・・コンデンサー叫水タンク内温度(’C)、■・・
・・・水蒸発器側水タンク内湿度(℃)、E・・°・・
コンプレッサー消費電流(l)!1(A)、H・・・・
・冷媒ガス凝縮LF力(Kg/a+I )、L・・・・
・冷媒ガス蒸発圧!(Kg/(Ill)である。
C... Temperature inside the condenser water tank ('C), ■...
...Humidity in the water tank on the water evaporator side (℃), E...°...
Compressor current consumption (l)! 1(A), H...
・Refrigerant gas condensation LF force (Kg/a+I), L...
・Refrigerant gas evaporation pressure! (Kg/(Ill).

尚、冷媒ガスはフレオンR12を使用した。Note that Freon R12 was used as the refrigerant gas.

表  1 表1に示すように、26分後には207℃の水温は67
.3℃となりこれに反比例して42.3℃の水I7請は
8.8℃となっている。26分経過後の加夕(側のl晶
度十、+1は46.6’C(67,3°−207°)と
なり111,753W/hとなる− 又冷却側の/Il
l’l以下降は335 ’C(423°−88°)とな
り?、 7 a o v/hとなる。
Table 1 As shown in Table 1, after 26 minutes, the water temperature of 207℃ is 67℃.
.. 3 degrees Celsius, and inversely proportional to this, the water temperature of 42.3 degrees Celsius becomes 8.8 degrees Celsius. After 26 minutes, the crystallinity 10, +1 on the cooling side becomes 46.6'C (67,3° - 207°), which is 111,753 W/h.
Is the temperature below l'l 335'C (423°-88°)? , 7 aov/h.

四にその4分後には加ρ((tillば702 ’Cと
なったが、冷水側は平均10゛Cの冷水を取出して、市
水を補給した。
Four minutes later, the temperature reached 702'C, but cold water with an average temperature of 10°C was taken out and city water was replenished.

冷水11W 出L hl: it、 129.5 ff
/h テ8.8851cal/hに相当する。 壕だ水
タンク1;) 、 (6つの/A、、水、冷水を取り出
した場合は、水面[91、(9つが下がるので、α子コ
ック+I+)、(11つが作動して、水道管1o) 、
 (I O′)より自動的に水が補給される。
Cold water 11W output L hl: it, 129.5 ff
/h corresponds to 8.8851 cal/h. Water tank 1 ;) , (When 6 /A,, water, cold water are taken out, the water level [91, (9 is lowered, so α water cock + I +), (11 are activated, water pipe 1o ),
Water is automatically replenished from (IO').

以」−詳述したり[1<、夏期においては冷水は冷房用
に、温水は給湯に使用でき、冬期においては冷水は使用
しないので、水蒸発器側に廃熱水を流せば、ヒートポン
プの効率は一段と−にケトシ、高n、111水を得られ
、給湯暖房に41[用できる。
In the summer, cold water can be used for air conditioning and hot water can be used for hot water supply.In the winter, cold water is not used, so if the waste hot water is passed to the water evaporator side, the heat pump can be heated. The efficiency is even higher, and 111% of water can be obtained, and 41% of water can be used for hot water supply and heating.

壕だ食品工業においては、j眸凍用には冷凍機で冷水を
、殺EY1用にはボイラーで温水を作り使用しているが
、本発明の方法によれば、冷温水を和1時に取出せるか
らボイラーの設備費のみでなく、重油等の・飲料削減等
の省エネルギーにつながり、fII用応用顛囲も広く、
その効果は非常にツできいものがある。
At Moida Foods Industry, we use a refrigerator to produce cold water for freezing, and a boiler to produce hot water for sanitary EY1, but according to the method of the present invention, cold and hot water can be obtained at 1:00 am. Since it can be used in a wide range of fII applications, it not only reduces boiler equipment costs, but also saves energy by reducing heavy oil and beverage consumption.
The effect is very powerful and beautiful.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の構成を示した系統図である。 図中、(1)  ・ コンプレッサー、(2)・・・・
コンデンサー、(3)・膨張弁、(4)・・・・蒸発器
、+5+ 、 (5’)水ポンプ、+6+ 、 (6′
)・・・水タンク、+71−−−−・・ガヌパイプ、+
8)、 (8’)−・・水パイプ。
The figure is a system diagram showing the configuration of the present invention. In the diagram, (1) ・ Compressor, (2)...
Condenser, (3)・Expansion valve, (4)... Evaporator, +5+, (5') Water pump, +6+, (6'
)...Water tank, +71-----...Ganu pipe, +
8), (8')--Water pipe.

Claims (1)

【特許請求の範囲】[Claims] コンプレッサー、コンデンサー、mP4gヨ’)なるヒ
ートポンプに於てコンデンサ、−1蒸発器側双方に水タ
ンクを配設し、水ポンプを介してコンデンサーと水タン
ク、蒸発器と水タンクを水パイプで結び、水ポンプでタ
ンク内の水を双方B強制循環するようにした冷温°水量
時取出しヒートポンプ。
In a heat pump consisting of a compressor, condenser, mP4gyo'), a water tank is installed on both the condenser and -1 evaporator sides, and the condenser and water tank, and the evaporator and water tank are connected via a water pump with a water pipe. A heat pump that uses a water pump to forcefully circulate the water in the tank to both cold and hot water levels.
JP6317382A 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump Granted JPS58179782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317382A JPS58179782A (en) 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317382A JPS58179782A (en) 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump

Publications (2)

Publication Number Publication Date
JPS58179782A true JPS58179782A (en) 1983-10-21
JPH0338513B2 JPH0338513B2 (en) 1991-06-10

Family

ID=13221599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317382A Granted JPS58179782A (en) 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump

Country Status (1)

Country Link
JP (1) JPS58179782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4001525A1 (en) * 1989-01-21 1990-08-02 Osaka Prefecture HEAT PUMP FOR THE SAME DELIVERY OF COLD AND HOT FLUIDS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4001525A1 (en) * 1989-01-21 1990-08-02 Osaka Prefecture HEAT PUMP FOR THE SAME DELIVERY OF COLD AND HOT FLUIDS

Also Published As

Publication number Publication date
JPH0338513B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
FI60071C (en) VAERMEANLAEGGNING
JP3120234B2 (en) Heat pump type air conditioner
CN106196344A (en) A kind of energy-saving air handling unit group
KR850004066A (en) Improved air conditioning method and apparatus for mooring aircraft
JPH0425463B2 (en)
CN106052176A (en) Centrifugal steam energy hot pump air conditioning system
US20230056774A1 (en) Sub-cooling a refrigerant in an air conditioning system
JPS58179782A (en) Cold and hot water simultaneous extracting heat pump
CN108105907A (en) A kind of hot water, air-conditioning, heating combined supply system
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
CN207922617U (en) A kind of heat pump system with drip tray ice-melt pipeline
CN206572794U (en) A kind of cold air-cooled screw unit for carrying out cooling and warming of application evaporation
EP0050611A1 (en) Method and apparatus for conserving energy in an air conditioning system
CN205593205U (en) Compressor cooling water and a heat energy coupled system towards white water that freezes
CN110160299A (en) It is a kind of can independent ice making modular artificial ice stadium
CN218154550U (en) Energy-saving constant temperature and humidity air conditioning system
CN102901165B (en) Air treatment equipment water system
CN108224841A (en) A kind of heat pump system with drip tray ice-melt pipeline
CN211011723U (en) Air conditioner and cold liquid integrated system
TWI789604B (en) Condenser and Condenser Efficiency Improvement Method
JPS6113545B2 (en)
JPS581346B2 (en) Heat exchange device for heat pump equipment
KR200362824Y1 (en) boiler useing for condenser and vaporizer
CN105698319A (en) Heat pump air-conditioner for storing heat and cold through off-peak electricity
SU1210018A1 (en) Refrigerating plant