JPH0338513B2 - - Google Patents

Info

Publication number
JPH0338513B2
JPH0338513B2 JP57063173A JP6317382A JPH0338513B2 JP H0338513 B2 JPH0338513 B2 JP H0338513B2 JP 57063173 A JP57063173 A JP 57063173A JP 6317382 A JP6317382 A JP 6317382A JP H0338513 B2 JPH0338513 B2 JP H0338513B2
Authority
JP
Japan
Prior art keywords
water
temperature
condenser
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57063173A
Other languages
Japanese (ja)
Other versions
JPS58179782A (en
Inventor
Toshimasa Irie
Yoryuki Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKAFU
Original Assignee
OOSAKAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKAFU filed Critical OOSAKAFU
Priority to JP6317382A priority Critical patent/JPS58179782A/en
Publication of JPS58179782A publication Critical patent/JPS58179782A/en
Publication of JPH0338513B2 publication Critical patent/JPH0338513B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はヒートポンプに於て、50℃以上の温
水を取り出し、同時に10℃以下の低温水を取り出
しながら運転することを目的としている。 従来のヒートポンプに於る温水、冷水の取出し
温度差は38℃位が限界であつたが、本発明は、こ
の温度差を更に拡げ、10℃以下の冷水と50℃以
上、必要により70℃以上の温水を同時に取り出す
ことを目的とするものである。 従来、ヒートポンプによつて高温水を取り出す
には、冷媒ガスのコンプレツサーからの吐出温度
を高くしなければならず、そのため多段圧縮する
等してコンプレツサーの能力を増大して冷媒ガス
の圧縮を高くして高温ガスを吐出し、コンデンサ
ーで少量の水を一度通水で高温ガスと熱交換し
て、温水を取り出していたのである。 これに反して本発明は、コンプレツサー部の能
力に変更を加えることなく、逆にコンデンサーの
能力を倍増させることによつて、冷媒ガスの凝縮
能力を増大させ、水タンクに貯留された水を水タ
ンクとコンデンサー間を強制循環させ、水温、ガ
ス温共に時間をかけて上昇させていき、必要水温
に上昇した時点で取り出して使用するものであ
る。したがつて、所望の水温になる迄に一定の時
間を要するものである。 本発明を図面について説明するとコンプレツサ
ー1、コンデンサー2、膨張弁3、蒸発器4より
なるヒートポンプに於て、コンデンサー、蒸発器
の能力をコンプレツサーに対し、通常の規格より
増大する。 特にコンデンサーは、コンプレツサー能力に対
して倍増するものである。 これでコンデンサー2側に水タンク6を設置
し、水ポンプ5を介した水パイプ8で、水タンク
6とコンデンサー2間を往復に結び、水タンク6
に貯留された水がコンデンサー2を通つて循環す
るようにする。 同様、蒸発器4側に水タンク6′を設置し、水
ポンプ5′を介した水パイプ8′で水タンク6′と
蒸発器4間を往復に結び、水タンク6′に貯留さ
れた水が蒸発器4を通つて循環するようにするも
のである。 これで水タンク6,6′に水を投入し、コンプ
レツサー1、水ポンプ5,5′を作動させる。 コンプレツサー1で圧縮されて高圧、高温で吐
出された冷媒ガスはコンデンサー2に送られ、水
ポンプ5により送られる水タンク6内の水と熱交
換して凝縮し、膨張弁3を通過する事により圧
力、温度が下がつて蒸発器4に送られ、水ポンプ
5′により送られる水タンク6′内の水と熱交換し
て蒸発しコンプレツサー1に戻る。 コンデンサー2で冷媒ガスと熱交換した水は温
度が上がり水タンク6に戻つて高温で蓄熱され
る。同様に蒸発器4で蒸発ガスと熱交換した水は
温度が下がり水タンク6′に戻つて低温で蓄熱さ
れる。 このようにして時間の経過と共に水タンク内6
の水は順次温度が上昇し、水タンク6′内の水は
順次温度が下降する。ここでコンデンサー能力を
コンプレツサーに対して倍増させたので、水タン
ク内6内の水を高温とし、その結果冷媒ガスが高
温となつても、このコンデンサー内で完全凝縮さ
せることができる。したがつてこのような高温状
態においてもヒートポンプを正常に作動させるこ
とができる。 さらに詳しく説明すると、水温の上つた水タン
ク6内の水がコンデンサー2に入る事によりガス
温度は下らず、従つて圧力も下がりにくくなり、
そこでコンデンサーよりの吐出ガスが加わりガス
圧力、温度も上昇する。 水温の上昇に比例してコンプレツサーよりの吐
出ガス温度が上昇していくのである。 冷媒ガスは高温になるに従つて熱交換が悪くな
り、通常のコンデンサー能力では冷媒ガスは43℃
以上の高温になると完全に凝縮しきれなくなる。
さらに温度が上昇し、水タンク6内の水温が50℃
を上回るようになると、冷媒ガス温度はそれ以上
に上昇するが、本発明ではコンデンサー能力を倍
増させているため、凝縮しきれない冷媒ガスはコ
ンデンサーの能力を増大している部分に送られ、
大量に循環している水により放熱カロリーすべて
を水に吸収され完全凝縮する。本発明のヒートポ
ンプは水タンク6の水が60℃より高温になつても
冷媒ガスは完全に凝縮し、正常な作動が保障され
る。 ここで蒸発器側の動きを説明する。 一般に冷媒ガスの凝縮温度と蒸発温度の差は比
例すると言われている。 高温凝縮した冷媒ガスは高温蒸発するとされて
いたのである。しかしヒートポンプは真空状態の
機器で、パイプの中を冷媒ガスが流れて居り、蒸
発器ではガスの流量で圧力、温度が定まるもので
ある。高温凝縮した冷媒ガスでも膨張弁で流量を
少なくし、膨張弁より蒸発器迄の距離を長くする
か、蒸発器の能力を増大させる事により、ガス温
度も下がり、低温蒸発が可能となる。 このようにコンデンサー側、蒸発器側共にタン
クに貯留された水を強制循環する事により、70℃
を上回る温水と10℃以下の冷水の同時取り出しが
可能となる。 ここでヒートポンプに於る機器容量と冷媒ガス
容量を説明する。ヒートポンプに於るコンプレツ
サー、コンデンサー、蒸発器などの能力規格は定
まつている。 完全凝縮状態になるガス量より余分のガスを入
れ、80%程度の凝縮で運転する方が効率もよく、
多少ガスが抜けても運転に差支えないからであ
る。 従つて、本発明のようにガス量を調整してコン
プレツサー能力に対してコンデンサー能力を倍増
すると云う事はなされなかつたのである。 次に本発明による試験値を示す。 使用した機器容量はコンプレツサー
9000Kcal/hコンデンサー9000cal/h×2 計
18000Kcal/h、水蒸発器15000Kcal/hである。 試験方法は水タンク6に20.7℃の水、水タンク
6′には42.3℃の温水を双方共100投入し、予じ
め水ポンプ5,5′による循環水量を60/min
に定め、ヒートポンプ及び水ポンプを同時に稼動
させた場合の経過時間に対する下記の計測(5項
目)を行つた。各点の温度はc.c.熱電対温度計、水
ポンプによる循環水量、取出し冷水量はオーバル
流量計、凝縮ガス圧力、蒸発ガス圧力はブルドン
管圧力計、コンプレツサーの消費電流値はクラン
プ形電流計を用いた。 表1は経過時間(分)に対する各計測値を表わ
す。C…コンデンサー側水タンク内温度(℃)、
V…水蒸発器側水タンク内温度(℃)、E…コン
プレツサー消費電流値(A)、H…冷媒ガス凝縮
圧力(Kg/cm2)、L…冷媒ガス蒸発圧力(Kg/cm2
である。 尚、冷媒ガスはフレオンR12を使用した。
The purpose of this invention is to operate a heat pump while extracting hot water of 50°C or higher and at the same time extracting low-temperature water of 10°C or lower. In conventional heat pumps, the maximum temperature difference between hot and cold water taken out was around 38°C, but the present invention further widens this temperature difference, allowing cold water of 10°C or lower to 50°C or higher, and if necessary, 70°C or higher. The purpose is to take out hot water at the same time. Conventionally, in order to extract high-temperature water using a heat pump, it was necessary to increase the discharge temperature of the refrigerant gas from the compressor. Therefore, the capacity of the compressor was increased by performing multi-stage compression to increase the compression of the refrigerant gas. A small amount of water was passed through the condenser to exchange heat with the high-temperature gas, and then hot water was extracted. On the contrary, the present invention doubles the capacity of the condenser without changing the capacity of the compressor section, thereby increasing the condensing capacity of refrigerant gas and converting the water stored in the water tank into water. By forcing circulation between the tank and the condenser, both the water and gas temperatures are raised over time, and when the water temperature reaches the required temperature, it is taken out and used. Therefore, it takes a certain amount of time to reach the desired water temperature. The present invention will be explained with reference to the drawings. In a heat pump consisting of a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4, the capacities of the condenser and evaporator are increased compared to the normal specifications for the compressor. In particular, the capacitor doubles the compressor capacity. Now, install the water tank 6 on the condenser 2 side, connect the water tank 6 and the condenser 2 back and forth with the water pipe 8 via the water pump 5, and connect the water tank 6 to the condenser 2.
The water stored in the condenser 2 is circulated through the condenser 2. Similarly, a water tank 6' is installed on the evaporator 4 side, and a water pipe 8' via a water pump 5' connects the water tank 6' and the evaporator 4 back and forth, so that the water stored in the water tank 6' is is circulated through the evaporator 4. Now, water is put into the water tanks 6, 6' and the compressor 1 and water pumps 5, 5' are operated. The refrigerant gas compressed by the compressor 1 and discharged at high pressure and high temperature is sent to the condenser 2, where it exchanges heat with water in the water tank 6 sent by the water pump 5, condenses, and passes through the expansion valve 3. As the pressure and temperature decrease, the water is sent to the evaporator 4, where it exchanges heat with the water in the water tank 6' sent by the water pump 5', evaporates, and returns to the compressor 1. The water that exchanged heat with the refrigerant gas in the condenser 2 rises in temperature and returns to the water tank 6 where it is stored at a high temperature. Similarly, the water that has exchanged heat with the evaporated gas in the evaporator 4 has a lower temperature and returns to the water tank 6' where it is stored at a low temperature. In this way, as time passes, the inside of the water tank 6
The temperature of the water in the water tank 6' gradually increases, and the temperature of the water in the water tank 6' gradually decreases. Here, the condenser capacity is doubled compared to the compressor, so that even if the water in the water tank 6 becomes high temperature and the refrigerant gas becomes high temperature, it can be completely condensed within this condenser. Therefore, the heat pump can operate normally even under such high temperature conditions. To explain in more detail, since the water in the water tank 6 whose water temperature has risen enters the condenser 2, the gas temperature does not drop, and therefore the pressure becomes difficult to drop.
Then, the gas discharged from the condenser is added and the gas pressure and temperature also rise. The temperature of the gas discharged from the compressor rises in proportion to the rise in water temperature. As the temperature of refrigerant gas increases, heat exchange becomes worse, and with normal condenser capacity, refrigerant gas reaches 43℃.
At higher temperatures, it becomes impossible to condense completely.
The temperature further increases, and the water temperature in water tank 6 reaches 50℃.
When the temperature exceeds , the refrigerant gas temperature rises further, but since the condenser capacity is doubled in the present invention, the refrigerant gas that cannot be condensed is sent to the part where the condenser capacity is increased.
Due to the large amount of water being circulated, all of the radiated calories are absorbed by the water and completely condensed. In the heat pump of the present invention, even if the water in the water tank 6 reaches a temperature higher than 60° C., the refrigerant gas is completely condensed and normal operation is guaranteed. Here, the movement on the evaporator side will be explained. It is generally said that the difference between the condensation temperature and evaporation temperature of refrigerant gas is proportional. It was believed that refrigerant gas that was condensed at high temperatures would evaporate at high temperatures. However, a heat pump is a vacuum device in which refrigerant gas flows through pipes, and the pressure and temperature in the evaporator are determined by the flow rate of the gas. Even if the refrigerant gas is condensed at a high temperature, the flow rate is reduced using an expansion valve, the distance from the expansion valve to the evaporator is made longer, or the capacity of the evaporator is increased, thereby lowering the gas temperature and making low-temperature evaporation possible. By forcedly circulating the water stored in the tank on both the condenser and evaporator sides, it is possible to
It is possible to take out hot water above 10°C and cold water below 10°C at the same time. Here, the equipment capacity and refrigerant gas capacity in the heat pump will be explained. Capacity standards for compressors, condensers, evaporators, etc. in heat pumps have been established. It is more efficient to operate at around 80% condensation by adding more gas than the amount required for complete condensation.
This is because even if some gas escapes, there is no problem with driving. Therefore, it was not possible to double the condenser capacity relative to the compressor capacity by adjusting the gas amount as in the present invention. Next, test values according to the present invention are shown. The equipment capacity used is
9000Kcal/h condenser 9000cal/h x 2 total
18000Kcal/h, water evaporator 15000Kcal/h. The test method was to pour 20.7℃ water into the water tank 6 and 42.3℃ hot water into the water tank 6' at 100°C, and to circulate the water by the water pumps 5 and 5' at 60/min in advance.
The following measurements (5 items) were made for the elapsed time when the heat pump and water pump were operated simultaneously. The temperature at each point is measured with a CC thermocouple thermometer, the amount of water circulated by the water pump, the amount of cold water taken out is measured with an oval flowmeter, the condensed gas pressure and evaporated gas pressure are measured with a Bourdon tube pressure gauge, and the current consumption of the compressor is measured with a clamp-type ammeter. there was. Table 1 shows each measurement value versus elapsed time (minutes). C...Temperature inside the water tank on the condenser side (℃),
V... Temperature inside the water tank on the water evaporator side (℃), E... Compressor current consumption value (A), H... Refrigerant gas condensation pressure (Kg/cm 2 ), L... Refrigerant gas evaporation pressure (Kg/cm 2 )
It is. Note that Freon R12 was used as the refrigerant gas.

【表】 表1に示すように、26分後には20.7℃の水温は
67.3℃となり、これに反比例して42.3℃の水温は
8.8℃となつている。26分経過後の加熱側の温度
上昇は46.6℃(67.3℃−20.7℃)となり
10753Kcal/hとなる。又、冷却側の温度下降は
33.5℃(42.3℃−8.8℃)となり7730Kal/hとな
る。更にその4分後には加熱側は70.2℃となつた
が、冷水側は平均10℃の冷水を取出して、市水を
補給した。 冷水取出し量は129.5/hで3.885Kcal/hに
相当する。また水タンク6,6′の温水、冷水を
取り出した場合は、水面9,9′が下がるので、
浮子コツク11,11′が作動して、水道管10,
10′より自動的に水が補給される。 以上詳述した如く、夏期においては冷水は冷房
用に、温水は給湯に使用でき、冬期においては冷
水は使用しないので、水蒸発器側に廃熱水を流せ
ば、ヒートポンプの効率は一段と上昇し、高温水
を得られ、給湯暖房に利用できる。 また食品工業においては、解凍用には冷凍機で
冷水を、殺菌用にはポイラーで温水を作り使用し
ているが、本発明によれば、冷温水を同時に取出
せるから、ボイラーの設備費のみでなく、重油等
の燃料削減等の省エネルギーにつながる。 さらに本発明のヒートポンプは、コンデンサー
能力が通常のものより倍増されているので、コン
デンサーに循環する水が高温になつても正常に運
転される。したがつて、この温水を利用すること
により、特に高温の湯を得ることができ、その効
果は非常に大きいものがある。
[Table] As shown in Table 1, the water temperature is 20.7℃ after 26 minutes.
67.3℃, and inversely proportional to this, the water temperature of 42.3℃ is
The temperature is 8.8℃. After 26 minutes, the temperature rise on the heating side was 46.6℃ (67.3℃−20.7℃).
It becomes 10753Kcal/h. Also, the temperature drop on the cooling side is
It becomes 33.5℃ (42.3℃−8.8℃) and 7730Kal/h. Four minutes later, the temperature on the heating side had reached 70.2°C, but on the cold water side, cold water with an average temperature of 10°C was taken out and city water was replenished. The amount of cold water taken out is 129.5/h, which is equivalent to 3.885 Kcal/h. Also, when hot water and cold water are taken out of the water tanks 6 and 6', the water levels 9 and 9' will drop, so
The floats 11, 11' operate, and the water pipes 10,
Water is automatically replenished from 10'. As detailed above, in the summer, cold water can be used for air conditioning, and hot water can be used for hot water supply, but in the winter, cold water is not used, so if the waste hot water is passed to the water evaporator side, the efficiency of the heat pump will further increase. , high-temperature water can be obtained and used for hot water supply and heating. Furthermore, in the food industry, cold water is produced using a freezer for thawing, and hot water is produced using a boiler for sterilization. However, according to the present invention, since cold and hot water can be extracted at the same time, only boiler equipment costs are required. Instead, it leads to energy savings such as reducing the use of heavy oil and other fuels. Furthermore, since the heat pump of the present invention has a condenser capacity twice that of a conventional heat pump, it can operate normally even when the water circulating in the condenser reaches a high temperature. Therefore, by using this hot water, it is possible to obtain particularly high-temperature hot water, which has a very large effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の構成を示した系統図である。 図中、1…コンプレツサー、2…コンデンサ
ー、3…膨張弁、4…蒸発器、5,5′…水ポン
プ、6,6′…水タンク、7…ガスパイプ、8,
8′…水パイプ。
The figure is a system diagram showing the configuration of the present invention. In the figure, 1... Compressor, 2... Condenser, 3... Expansion valve, 4... Evaporator, 5, 5'... Water pump, 6, 6'... Water tank, 7... Gas pipe, 8,
8'...Water pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 コンプレツサー1、コンデンサー2、蒸発器
4よりなるヒートポンプに於いて、コンプレツサ
ー能力の倍増のコンデンサーを取り付けて凝縮能
力を増大させて、コンデンサー、蒸発器双方共に
水タンクを設置し、水ポンプを介してコンデンサ
ーと水タンク、蒸発器と水タンクを水パイプで結
び、コンプレツサー運転時に水ポンプでタンク内
の水を双方共強制循環するようにした冷温水取出
しヒートポンプ。
1 In a heat pump consisting of a compressor 1, a condenser 2, and an evaporator 4, a condenser with double the compressor capacity is installed to increase the condensing capacity, a water tank is installed for both the condenser and the evaporator, and the A cold/hot water extraction heat pump that connects the condenser and water tank, and the evaporator and water tank with water pipes, and uses a water pump to forcefully circulate water in both tanks when the compressor is operating.
JP6317382A 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump Granted JPS58179782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317382A JPS58179782A (en) 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317382A JPS58179782A (en) 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump

Publications (2)

Publication Number Publication Date
JPS58179782A JPS58179782A (en) 1983-10-21
JPH0338513B2 true JPH0338513B2 (en) 1991-06-10

Family

ID=13221599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317382A Granted JPS58179782A (en) 1982-04-15 1982-04-15 Cold and hot water simultaneous extracting heat pump

Country Status (1)

Country Link
JP (1) JPS58179782A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195130A (en) * 1989-01-21 1990-08-01 Osaka Prefecture Heat pump capable of supplying both cold and hot fluids simultaneously

Also Published As

Publication number Publication date
JPS58179782A (en) 1983-10-21

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
FI60071C (en) VAERMEANLAEGGNING
CN107014076B (en) Three-pressure high-efficiency air-cooled heat pump water heater suitable for high-temperature and low-temperature environments
CN212644788U (en) Emptying device of central air conditioning system and central air conditioning system
CN101191679A (en) Cooling device using non-azeotropic mixed refrigerant
JP3120234B2 (en) Heat pump type air conditioner
CN208832629U (en) A kind of low-temperature cold water unit
JPH02195130A (en) Heat pump capable of supplying both cold and hot fluids simultaneously
CN211552133U (en) High-efficiency energy-saving refrigeration heating temperature control system
CN111895689A (en) Refrigerating system supercooling degree device for improving wide temperature zone application
JPH0338513B2 (en)
CN212619487U (en) Refrigerating system supercooling degree device for improving wide temperature zone application
CN217274955U (en) System and device for energy recovery
JPS6053264B2 (en) Heat saving refrigeration system
KR102110539B1 (en) Air conditioning system
US2117693A (en) Apparatus for refrigerating purposes
WO2019214605A1 (en) Water source heat pump
KR0128821Y1 (en) Water cold typed condensor of room-airconditioner
CN213802997U (en) Solar direct-current water production device driven by compressor
CN220083363U (en) Heat exchange system
CN117469873B (en) Ice making apparatus
CN211552130U (en) Energy-saving reation kettle and refrigeration heating temperature control system for test equipment
CN219141166U (en) Condenser and refrigerating system
CN219243948U (en) Centrifugal water chilling unit
CN217031649U (en) Small-temperature-difference frequency conversion direct expansion drop curtain type cold water system