JPS58179765A - Water heater - Google Patents

Water heater

Info

Publication number
JPS58179765A
JPS58179765A JP6372582A JP6372582A JPS58179765A JP S58179765 A JPS58179765 A JP S58179765A JP 6372582 A JP6372582 A JP 6372582A JP 6372582 A JP6372582 A JP 6372582A JP S58179765 A JPS58179765 A JP S58179765A
Authority
JP
Japan
Prior art keywords
thickness
heat generating
ceramic base
heating element
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6372582A
Other languages
Japanese (ja)
Inventor
Ryoichi Koga
良一 古閑
Yutaka Takahashi
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6372582A priority Critical patent/JPS58179765A/en
Priority to US06/455,244 priority patent/US4563571A/en
Priority to CA000417730A priority patent/CA1205841A/en
Priority to EP82306725A priority patent/EP0082025B1/en
Priority to DE8282306725T priority patent/DE3271699D1/en
Publication of JPS58179765A publication Critical patent/JPS58179765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Abstract

PURPOSE:To make the average temperatures of both of the side surfaces of a heat generating element substantially equal to each other by a method wherein in the water heater provided with the heat generating element comprising a heat generating resistor held between two cermaic members, each of the ceramic members is made to have an optimum thickness. CONSTITUTION:The heat generating element 1 is formed cylindrical by making the heat generating resistor 1 of a linear heat pattern clamped between the heat resistant ceramic plates 2 and 3. A fluid introduced into an inner pipe 5 of the heat generating element 1 from a fluid inlet port 7 provided in an outer casing is passed through a heating passage 9 about the outer periphery of the heat generating element 1 and is discharged from a fluid outlet port 10 to thereby constitute the water heater. In this case, when the temperature (t1) of the ceramic base plate 2 is made to have a predetermined value in consideration of the mechanical strength or thermal distortion, the thickness of the ceramic base plate 3 is made to have an optimum thickness T2c at a point at which the equation of Tso=Tsi is established from the attached graph showing the relationship between the average temperatures Tso and Tsi of the outer and the inner peripheral surface of the heat generating element 1, and the thickness (t2) of the ceramic base plate 3.

Description

【発明の詳細な説明】 本発明は給湯用、暖房用などに用いられる温水加熱装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water heating device used for hot water supply, space heating, etc.

従来の温水加熱装置は第6図および第7図に示すように
、一端を冷水路と接続する流入口21とした円筒状の面
発熱体22と、この円筒状の面発熱体22の外周との間
に加熱流路23を形成する外ケース24とにより構成さ
れている。前記外ケース24には、面発熱体22の流入
口21側に位置して流出路26を設けている。また前記
円筒状2了とで線状のヒータパターンよりなる発熱抵抗
体28を挾持して構成している。そして前記基材A26
は、成形時の歪みを極力小さく押さえ、かつ円筒状の面
発熱体22の機械的強度を保持するだめに、所定の厚み
tl を必要とし、また基材B27は基材A26の外周
にローリングするため、その作業が良好に行なえるよう
に、基材A26の厚みtlに比べ、非常に小さな厚みt
2で構成されている。
As shown in FIGS. 6 and 7, a conventional hot water heating device includes a cylindrical surface heating element 22 whose one end is an inlet 21 connected to a cold waterway, and an outer periphery of this cylindrical surface heating element 22. and an outer case 24 forming a heating flow path 23 therebetween. The outer case 24 is provided with an outlet passage 26 located on the inlet 21 side of the surface heating element 22. Further, a heating resistor 28 made of a linear heater pattern is sandwiched between the cylindrical portion 2 and the cylindrical portion 2. And the base material A26
requires a predetermined thickness tl in order to minimize distortion during molding and maintain the mechanical strength of the cylindrical surface heating element 22, and the base material B27 is rolled around the outer periphery of the base material A26. Therefore, in order to perform this work well, the thickness t is very small compared to the thickness tl of the base material A26.
It consists of 2.

上記従来の構成において、流入口21から流入した冷水
は、円筒状の面発熱体22の内管路22′で加熱されな
がら左端開放部に達し、その後、加熱流路23に流入し
、さらに加熱され、流出路26より温水となって流出す
る。
In the above-mentioned conventional configuration, the cold water flowing in from the inlet 21 reaches the open left end portion while being heated by the inner pipe 22' of the cylindrical surface heating element 22, and then flows into the heating flow path 23 where it is further heated. The hot water flows out from the outflow path 26 as hot water.

上記加熱工程において、円筒状の面発熱体220表面温
度は、セラミック基材A26.B2了の厚み11.12
と前記円筒状の面発熱体22の表面における水への熱伝
達率との関係により決まる。
In the above heating step, the surface temperature of the cylindrical surface heating element 220 is the same as that of the ceramic base material A26. B2 thickness 11.12
It is determined by the relationship between and the heat transfer coefficient to water on the surface of the cylindrical surface heating element 22.

上記従来例においては、円筒状の面発熱体22における
内管路22′の流速は、加熱流路23の流速に比べて速
いため、円筒状の面発熱体22の内周面の水への熱伝達
率は外周面の熱伝達率より犬きくなる。一方、円筒状の
面発熱体22の内周面側基材A26の厚みtlは外周面
側基材B2了の厚みt2に比べて大きい。従って、発熱
抵抗体28から円筒状の面発熱体22の内周面への伝熱
抵抗は外周面への伝熱抵抗より太きい。その結果、円筒
状の面発熱体22の内周面は、水への熱伝達率が大きい
のに対し、発熱抵抗体28からの伝熱抵抗が大きいため
、その表面温度は第8図T8□で示すように低下する。
In the above-mentioned conventional example, the flow velocity in the inner pipe 22' of the cylindrical surface heating element 22 is faster than the flow velocity in the heating channel 23, so that water on the inner peripheral surface of the cylindrical surface heating element 22 is The heat transfer coefficient is higher than that of the outer peripheral surface. On the other hand, the thickness tl of the inner peripheral surface side base material A26 of the cylindrical surface heating element 22 is larger than the thickness t2 of the outer peripheral surface side base material B2. Therefore, the heat transfer resistance from the heating resistor 28 to the inner circumferential surface of the cylindrical surface heating element 22 is greater than the heat transfer resistance to the outer circumferential surface. As a result, the inner circumferential surface of the cylindrical surface heating element 22 has a large heat transfer coefficient to water, while the heat transfer resistance from the heating resistor 28 is large, so that the surface temperature is lower than that shown in FIG. It decreases as shown in .

また円筒状の面発熱体22の外周面は、水への熱伝達率
が小さいのに対し、発熱抵抗体28からの伝熱抵抗が小
さいため、その表面温度は第8図のT8゜で示すように
、高くなる。
In addition, the outer circumferential surface of the cylindrical surface heating element 22 has a low heat transfer coefficient to water, and a low resistance to heat transfer from the heating resistor 28, so its surface temperature is indicated by T8° in FIG. Like, getting higher.

以上のように従来の温水加熱装置においては、円筒状の
面発熱体22の内周面、外周面上での表面温度差が非常
に大きいため、熱交換状態にアンバランスを生じ、その
結果、発熱体の全表面が熱交換に対し有効に生かされず
、熱交換効率が低下する。
As described above, in the conventional hot water heating device, the difference in surface temperature between the inner circumferential surface and the outer circumferential surface of the cylindrical surface heating element 22 is very large, causing an imbalance in the heat exchange state, and as a result, The entire surface of the heating element is not effectively utilized for heat exchange, resulting in a decrease in heat exchange efficiency.

壕だ前記面発熱体22の外周面は高温になり、局部的づ
核沸騰を起こし、スケールの主成分である重炭酸カルシ
ウム、重炭酸々グネシウムの飽和溶解度を示す温度以上
となり、スケールが面発熱体22の表面に析出する。第
9図は重炭酸カルシウムのPHと温度と溶解度の関係を
示したものである。そしてこのスケールは円筒状の面発
熱体22の表面で徐々に厚みを増し、円筒状の面発熱体
22から被加熱流体への熱伝達を悪化させ、熱交換効率
を下げるとともに、発熱抵抗体28の温度を異常に高め
てしまうため、発熱抵抗体28を断線させてしまうとい
う欠点を有していた。
The outer circumferential surface of the surface heating element 22 becomes hot, causing local nucleate boiling, and the temperature exceeds the saturated solubility of calcium bicarbonate and supergnesium bicarbonate, which are the main components of scale, causing the scale to generate surface heat. It precipitates on the surface of the body 22. FIG. 9 shows the relationship between pH, temperature, and solubility of calcium bicarbonate. This scale gradually increases in thickness on the surface of the cylindrical surface heating element 22, worsening the heat transfer from the cylindrical surface heating element 22 to the heated fluid, lowering the heat exchange efficiency, and increasing the thickness of the heating resistor 22. This has the drawback of causing the heat generating resistor 28 to break due to the abnormally high temperature.

また従来の温水加熱装置においては、円筒状の面発熱体
22の外周面の表面温度を低くするだめに、表面積を増
大させる、すなわち面発熱体22の外径を増大させる手
段を施すことにより、スケールの付着や発熱抵抗体28
の異常高温による断線を防止するようにしていたが、こ
れにおいては、上記の条件を満足させるためには、面発
熱体22自体が非常に大きくなるという欠点を有するも
のであった。
In addition, in the conventional hot water heating device, in order to lower the surface temperature of the outer peripheral surface of the cylindrical surface heating element 22, by increasing the surface area, that is, increasing the outer diameter of the surface heating element 22, Adhesion of scale and heating resistor 28
However, in order to satisfy the above conditions, the surface heating element 22 itself has to be extremely large.

本発明は上記従来の欠点に鑑み、発熱素子を構成する発
熱抵抗体から2つのセラミック基材への熱伝達量を配分
して前記発熱素子の両側面表面平均温度が略等しくなる
ように、前記2つのセラミック基材のうち、流体流入口
側のセラミック基材の厚さを一定とした場合、流体流出
口側のセラミック基材の厚さを、最適な厚さに設定する
ことにより、効率的に前記発熱素子の両側面表面平均温
度を、温水加熱装置の使用最低流量まだは設定流量にお
いてスケール生成温度以下に制御して上記従来の欠点を
解消したものである。
In view of the above-mentioned conventional drawbacks, the present invention distributes the amount of heat transferred from the heating resistor constituting the heating element to the two ceramic substrates so that the average temperatures of both side surfaces of the heating element are approximately equal. Of the two ceramic base materials, if the thickness of the ceramic base material on the fluid inlet side is constant, the thickness of the ceramic base material on the fluid outlet side can be set to the optimal thickness. The above-mentioned conventional drawbacks are solved by controlling the average temperature of both side surfaces of the heat generating element to be below the scale formation temperature at the minimum operating flow rate of the hot water heating device or the set flow rate.

以下、本発明の一実施例について、第1図〜第4図にも
とづいて説明する。第1図、第2図において、1は円筒
状に構成された発熱素子で、この発熱素子1は耐熱性を
有するセラミック基材A2とセラミック基材B3とで線
状のヒータパターンよりなる発熱抵抗体4を最適位置に
挾持することにより構成されている。まだこの発熱素子
1は内管路5を有するとともに、一端には、冷水供給管
への接続ねじ6を取付けた流体流入ロアを内管路6と連
通するように設けている。8は外ケースで、この外ケー
ス8は発熱素子1の外周との間に加熱流路9を形成し、
かつ前記発熱素子1の内管路6の他端側を閉塞し、さら
に前記流体流入ロア側に適位置について述べる。まずセ
ラミック基材A2の厚さtlは、発熱素子1の機械的強
度や、焼成時の熱歪などの条件からある一定の厚さ以上
が要求され、一方、熱伝導の面からは薄いほうが良いの
で、この厚さtlばある範囲に限定される。したがって
、発熱素子1の両側面表面平均温度をスケール生成温度
以下に保持するだめの発熱抵抗体4の最適位置は、セラ
ミック基材B3の厚さt2を変えて最適厚さt2cに設
定する必要がある。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 4. In FIGS. 1 and 2, reference numeral 1 denotes a heating element having a cylindrical shape, and this heating element 1 is a heating resistor made of a linear heater pattern made of a heat-resistant ceramic base material A2 and a ceramic base material B3. It is constructed by holding the body 4 in an optimal position. This heat generating element 1 still has an inner pipe line 5, and at one end is provided in communication with the inner pipe line 6 a fluid inlet lower having a connecting screw 6 to a cold water supply pipe attached thereto. 8 is an outer case, and this outer case 8 forms a heating flow path 9 between it and the outer periphery of the heating element 1;
Then, the other end side of the inner pipe 6 of the heating element 1 is closed, and the appropriate position on the fluid inflow lower side will be described. First, the thickness tl of the ceramic base material A2 is required to be at least a certain thickness due to conditions such as the mechanical strength of the heat generating element 1 and thermal strain during firing, but on the other hand, from the standpoint of heat conduction, thinner is better. Therefore, this thickness tl is limited to a certain range. Therefore, the optimal position of the heating resistor 4 to maintain the average temperature of both side surfaces of the heating element 1 below the scale generation temperature needs to be set to the optimal thickness t2c by changing the thickness t2 of the ceramic base material B3. be.

第3図はセラミック基材A2.  セラミック基材B3
の熱伝導条件が、セラミック基材B3の厚さt2の変化
により、どのように変化するかを示した説明図である。
FIG. 3 shows ceramic base material A2. Ceramic base material B3
FIG. 3 is an explanatory diagram showing how the heat conduction conditions of the ceramic substrate B3 change depending on the change in the thickness t2 of the ceramic base material B3.

ここでセラミック基材A2は所要の厚さt2を有し一定
とする。
Here, the ceramic base material A2 has a required thickness t2 and is constant.

この第3図において、セラミック基材B3の厚さt2と
、発熱素子1の外周側の表面平均温度T8゜および発熱
素子1の内周側の表面平均温度”siの最高値は、P1
→P2→P3 のように変化し、22点すなわち T8゜−”si  ・・・・・・・・・(1)となる点
において、同一発熱量に対し発熱素子1の表面平均温度
は最小となるもので、この条件は、スケール付着生成温
度T8p以下に制御すること、および熱交換効率の面か
ら最適な条件となる。
In FIG. 3, the maximum values of the thickness t2 of the ceramic base material B3, the average surface temperature T8° on the outer peripheral side of the heating element 1, and the average surface temperature ``si'' on the inner peripheral side of the heating element 1 are P1
→P2→P3, and at the 22 points, that is, T8゜−”si ...... (1), the surface average temperature of the heating element 1 is the minimum for the same calorific value. These conditions are optimal from the viewpoint of controlling the scale adhesion generation temperature T8p or lower and from the viewpoint of heat exchange efficiency.

第4図は発熱素子1の表面平均温度をスケール生成温度
以下に保持する場合に心裏な発熱素子1の外径D とセ
ラミック基材B3の厚さt2 との関係を示したもので
、所要の条件を満たす発熱素子1の外径D1 の最小値
は、この第4図からも明らかなように、セラミック基材
B3の厚さt2が最適厚さt2cに等しく々っだときで
あり、これは第3図に述べたセラミック基材B3の厚さ
t2の最適条件と一致する。したがって前記(1)式を
満足する発熱素子1は同一発熱量に対して、最も小型で
省資源となるものを作ることができる。そして前記第3
図および第4図に示した関係は、発熱素子1と、内管路
6および加熱流路9を流れる流体との熱伝達率9発熱素
子1の形状5寸法、熱伝達率および発熱抵抗4の発熱量
等を入力して、数値計算を行なうことにより得られる。
Figure 4 shows the relationship between the outer diameter D of the heating element 1 and the thickness t2 of the ceramic base material B3, which is important when maintaining the average surface temperature of the heating element 1 below the scale formation temperature. As is clear from FIG. 4, the minimum value of the outer diameter D1 of the heating element 1 that satisfies the conditions is when the thickness t2 of the ceramic base material B3 is equal to the optimum thickness t2c, and this is This corresponds to the optimum condition for the thickness t2 of the ceramic base material B3 described in FIG. Therefore, the heating element 1 that satisfies the above formula (1) can be made in the smallest size and with the least amount of resources for the same amount of heat generated. and the third
The relationships shown in the figures and FIG. It can be obtained by inputting the calorific value and performing numerical calculations.

上記した本発明の一実施例においては、従来例に比較し
て発熱素子1の表面温度の分布が均一になるため、表面
温度の最高値を低減させることカニできるという効果が
ある。また線状のヒータノくターンよりなる発熱抵抗体
4の加熱は多かれ、少なかれ不均一な加熱条件であり、
局部的に発熱素子1の表面温度が高い場所ができること
は避けられない。この温度分布のノくラツキは発熱抵抗
体4から2つのセラミック基材A2とセラミック基材B
3の表面までの距離に関係し、従来例で示したようにセ
ラミック基材B3の厚さがかなり薄く構成されている場
合は、表面に局部的に温度の高い所が生ずるが、本発明
の一実施例においては、セラミック基材B3の厚さが比
較的厚く構成されているため、従来例に比べて均一な加
熱状態が実現できる・ また本発明の一実施例におけるセラミック基材A2とセ
ラミック基材B3のそれぞれの厚さtl。
In the embodiment of the present invention described above, the distribution of the surface temperature of the heating element 1 becomes more uniform compared to the conventional example, so that there is an effect that the maximum value of the surface temperature can be reduced. In addition, heating of the heating resistor 4 made of linear heater turns is more or less uneven heating conditions,
It is unavoidable that the surface temperature of the heating element 1 is locally high. This unevenness in temperature distribution is caused by the heating resistor 4 being connected to the two ceramic substrates A2 and B.
Regarding the distance to the surface of No. 3, if the thickness of the ceramic base material B3 is quite thin as shown in the conventional example, there will be locally high temperature areas on the surface. In one embodiment, since the thickness of the ceramic base material B3 is relatively thick, a more uniform heating state can be achieved compared to the conventional example. Each thickness tl of the base material B3.

t2は上記したような手順で決定されている。したがっ
て本発明の一実施例においては、発熱素子1は、同一発
熱量に対して表面平均温度が最低となる条件をほぼ満足
するため、表面平均温度がスケール生成温度以下に保持
されることになり、その結果、コンパクトで省資源な温
水加熱装置が実現可能となった。
t2 is determined by the procedure described above. Therefore, in one embodiment of the present invention, the heating element 1 substantially satisfies the condition that the average surface temperature is the lowest for the same amount of heat generation, so the average surface temperature is maintained below the scale formation temperature. As a result, a compact and resource-saving hot water heating device has become possible.

第6図は本発明の他の実施例を示したもので、この実施
例は、上記一実施例におけるセラミック基材B3を、薄
いセラミックテープ材11で多層に構成したものである
。まだこの実施例は、セラミック基材3の最適な厚さt
2cが大きくなった場合に、この厚さを持つセラミック
基材B3をセラミック基材A2に一度に巻いて焼成する
ことが困難である場合、あるいは最適厚さt2cを微妙
にコントロールする必要がある場合に適用するものであ
り、任意の最適厚さt2cに対応したセラミック基材B
3を製造することができる。
FIG. 6 shows another embodiment of the present invention. In this embodiment, the ceramic base material B3 in the above-mentioned embodiment is made up of multiple layers of thin ceramic tape material 11. Still in this example, the optimum thickness t of the ceramic substrate 3
2c becomes large, and it is difficult to wrap ceramic base material B3 with this thickness around ceramic base material A2 at once and fire it, or when it is necessary to delicately control the optimal thickness t2c. Ceramic base material B corresponding to an arbitrary optimum thickness t2c
3 can be manufactured.

以−Lのように本発明の温水加熱装置は、発熱素子を構
成する発熱抵抗体から2つのセラミック基材への熱伝達
量を配分して前記発熱素子の両側面表面平均温度が略等
しくなるように、前記2つのセラミック基材のうち、流
体流入口側のセラミツり基材の厚さを一定とした場合、
流体流出口側のセラミック基材の厚さを、最適な厚さに
設定するようにしているため、発熱素子の両側面表面平
均温度は、流体流入口より供給される使用最低流量また
は設定流量においてスケール生成温度以下に確実に保持
することができ、その結果、信頼性を著しく向−トさせ
ることができ、かつ発熱素子のコンパクト化もはかれる
ものである。
As shown in E-L, the hot water heating device of the present invention distributes the amount of heat transferred from the heating resistor constituting the heating element to the two ceramic substrates, so that the average temperatures of the surfaces of both side surfaces of the heating element are approximately equal. If the thickness of the ceramic base material on the fluid inlet side is constant among the two ceramic base materials,
Since the thickness of the ceramic base material on the fluid outlet side is set to the optimal thickness, the average temperature on both side surfaces of the heating element will be the same at the minimum operating flow rate or set flow rate supplied from the fluid inlet. It is possible to reliably maintain the temperature below the scale formation temperature, and as a result, reliability can be significantly improved, and the heating element can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す温水加熱装置の一部破
断側面図、第2図は第1図のA−A’線断面図、第3図
は同温水加熱装置における発熱素子の表面平均温度T8
とセラミック基材Bの厚さt2との関係を示す説明図、
第4図は同発熱素子の外径とセラミック基材Bの厚さt
2との関係を示す説明図、第5図は本発明の他の実施例
を示す温水加熱装置における発熱素子の要部断面図、第
6図は従来の温水加熱装置の一部破断側面図、第7図は
第6図のB−B’線断面図、第8図は従来の円筒状面発
熱体の表面温度を示す展開グラフ、第9図は重炭酸カル
シウムのPHと温度と溶解度との関係を示すグラフであ
る。 1・・・・・・発熱素子、2,3・・・・・・セラミッ
ク基材、4・・・・・・発熱抵抗体、7・・・・・・流
体流入口、1o・・・・流体流出口、11・・・・・・
セラミックテープ材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@ 
1 図 n 第2図 第 3 図 第4図 15図 3 ε 第7図
Fig. 1 is a partially cutaway side view of a hot water heating device showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the line AA' in Fig. 1, and Fig. 3 is a diagram showing a heating element in the hot water heating device. Surface average temperature T8
An explanatory diagram showing the relationship between and the thickness t2 of the ceramic base material B,
Figure 4 shows the outer diameter of the heating element and the thickness t of the ceramic base material B.
5 is a sectional view of a main part of a heating element in a hot water heating device showing another embodiment of the present invention, and FIG. 6 is a partially cutaway side view of a conventional hot water heating device. Figure 7 is a sectional view taken along the line B-B' in Figure 6, Figure 8 is an expanded graph showing the surface temperature of a conventional cylindrical surface heating element, and Figure 9 is a graph showing the relationship between pH, temperature, and solubility of calcium bicarbonate. It is a graph showing a relationship. 1... Heat generating element, 2, 3... Ceramic base material, 4... Heat generating resistor, 7... Fluid inlet, 1o... Fluid outlet, 11...
Ceramic tape material. Name of agent: Patent attorney Toshio Nakao and 1 other person @
1 Figure n Figure 2 Figure 3 Figure 4 Figure 15 Figure 3 ε Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)2つのセラミック基材で発熱抵抗体を挾持して構
成した発熱素子と、この発熱素子の両側面に設けられ、
i方は流体流入口と連通し、かつ他方は流体流出口と連
通ずる流通路とを備え、前記流体流入口より供給される
使用最低流量捷たは設定流量において、発熱抵抗体から
2つのセラミック基材への熱伝達量を配分して前記発熱
素子の両側面表面平均温度が略等しくなるように、前記
2つのセラミック基材のうち、流体流入口側のセラミン
ク基材の厚さを一定とした場合、流体流出口側のセラミ
ック基材の厚さを、最適な厚さに設定するようにした温
水加熱装置。
(1) A heating element configured by sandwiching a heating resistor between two ceramic base materials, and a heating element provided on both sides of the heating element,
One side has a flow path communicating with a fluid inlet, and the other side has a flow passage communicating with a fluid outlet, and when the lowest flow rate in use or the set flow rate supplied from the fluid inlet, two ceramics are removed from the heating resistor. Of the two ceramic base materials, the thickness of the ceramic base material on the fluid inlet side is kept constant so that the amount of heat transfer to the base materials is distributed so that the average temperature on both side surfaces of the heating element is approximately equal. In this case, the thickness of the ceramic base material on the fluid outlet side is set to the optimal thickness.
(2)前記流体流出口側のセラミック基材を、セラミッ
クテープ材を多層巻きすることにより構成した特許請求
の範囲第1項記載の温水加熱装置。
(2) The hot water heating device according to claim 1, wherein the ceramic base material on the fluid outlet side is constructed by winding a ceramic tape material in multiple layers.
JP6372582A 1981-12-16 1982-04-15 Water heater Pending JPS58179765A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6372582A JPS58179765A (en) 1982-04-15 1982-04-15 Water heater
US06/455,244 US4563571A (en) 1981-12-16 1982-12-10 Electric water heating device with decreased mineral scale deposition
CA000417730A CA1205841A (en) 1981-12-16 1982-12-15 Water heating device
EP82306725A EP0082025B1 (en) 1981-12-16 1982-12-16 Water heating device
DE8282306725T DE3271699D1 (en) 1981-12-16 1982-12-16 Water heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6372582A JPS58179765A (en) 1982-04-15 1982-04-15 Water heater

Publications (1)

Publication Number Publication Date
JPS58179765A true JPS58179765A (en) 1983-10-21

Family

ID=13237658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6372582A Pending JPS58179765A (en) 1981-12-16 1982-04-15 Water heater

Country Status (1)

Country Link
JP (1) JPS58179765A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57245A (en) * 1980-06-02 1982-01-05 Toto Ltd Toilet bowl with washing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57245A (en) * 1980-06-02 1982-01-05 Toto Ltd Toilet bowl with washing apparatus

Similar Documents

Publication Publication Date Title
US4563571A (en) Electric water heating device with decreased mineral scale deposition
KR0160510B1 (en) Multi-zone planar heater assembly and method of operation
EP1122982B1 (en) Heating apparatus
JP4908217B2 (en) Multi-region ceramic heating system and method of manufacturing the same
JPS58120039A (en) Water heater
JPS58179765A (en) Water heater
JPS58103796A (en) Heating element
JPS58120040A (en) Hot-water heater
JPS58106785A (en) Heating element
JPS58103795A (en) Hot water heater
JPS61143652A (en) Electric instantaneous water heater
JPS58106351A (en) Water heater
JPH0533524U (en) Heater for single-wafer CVD equipment
DE102004017021A1 (en) Latent heat store for central heating system has closed jacket with inlet and outlet for fluid, phase change material and matrix through which fluid flows
JPS60152857A (en) Hot water supplying device
KR101686923B1 (en) Low-Power Real-Time Water Heater
JPS58178198A (en) Heat exchanger
JPS5862447A (en) Electric water heater
JPH07109031B2 (en) Substrate heating device
JPWO2022145012A5 (en)
JP2002319473A (en) Heating furnace
JPS58200949A (en) Heater for hot water
JP2021107715A (en) Fluid control device
JPS6314041A (en) Hot water supply device
JPS63297958A (en) Electric instantaneous water heater