JPS58179709A - Combustion method using electric field - Google Patents

Combustion method using electric field

Info

Publication number
JPS58179709A
JPS58179709A JP6225482A JP6225482A JPS58179709A JP S58179709 A JPS58179709 A JP S58179709A JP 6225482 A JP6225482 A JP 6225482A JP 6225482 A JP6225482 A JP 6225482A JP S58179709 A JPS58179709 A JP S58179709A
Authority
JP
Japan
Prior art keywords
oil
oil feed
electric field
feed pipe
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6225482A
Other languages
Japanese (ja)
Inventor
Mitsugi Miura
貢 三浦
Michio Nakanishi
中西 三千男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Engineering International Co Ltd
Original Assignee
Miura Engineering International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Engineering International Co Ltd filed Critical Miura Engineering International Co Ltd
Priority to JP6225482A priority Critical patent/JPS58179709A/en
Publication of JPS58179709A publication Critical patent/JPS58179709A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion

Abstract

PURPOSE:To increase the combustion efficiency of a burner by efficiently performing corona discharge, by spraying fuel from the injection tip at the end of an oil feed pipe, and by burning fuel with corona discharge being taken place between the injection tip and an earthed diffuser. CONSTITUTION:A heavy oil injection valve 14, having an injection tip 15 at its end, and an oil feed pipe 16 are sheathed by an electrically insulated pipe 23. and the oil feed pipe 16 is connected to a current transformer 3. One end 24 of the oil feed pipe 16 is connected to an insulated hose 25 which is connected to an oil feed pump. A swirl vane 18, through which blast is fed from a wind box 17, is provided to the outer side of the insulated pipe 23, and a diffuser 26 is fitted to the swirl vane 18 by the intermediary of a supporting plate 27. Fuel oil from the insulated hose 25 is injected from the injection tip 15, passing through the oil feed pipe 16, mixed with the air being fed into the diffuser 26 from the wind box 17 via the swirl vane, and is burned. At this time, corona discharge is taken place between the injection tip 15 and the diffuser 26, so that the combustion efficiency of a burner can be increased.

Description

【発明の詳細な説明】 本発明は、燃焼効率の向上方法にかかわる。[Detailed description of the invention] The present invention relates to a method for improving combustion efficiency.

工学博士浅用勇吉氏は長年に亘って、燃焼する焔に電場
を与え、噴霧した燃料油の蒸発促進、燃焼促進の研究結
果を発表している。この斬新な研究に対し、多数の大会
社が興味を抱いたが企業化を実行した会社が無い。
For many years, Dr. Yukichi Asayo, a doctor of engineering, has published research results on applying an electric field to a burning flame to accelerate the evaporation and combustion of sprayed fuel oil. Many large companies were interested in this innovative research, but none have commercialized it.

ミウラ・エンジニャリング・インターナショナル株式会
社は、この企業化を目論見、浅用氏との間に技術実施契
約書を結び研究を重ねた。
Miura Engineering International Co., Ltd., with plans to commercialize this project, concluded a technical implementation agreement with Mr. Asayo and conducted extensive research.

焔に電場を与えると珍しい現象が発生する。第1図(−
)及び第1図(b)に示すように金属性灰皿(1)に灯
油と布片を入れて点火すると、電場を与えない第1図体
)では焔が60%位の長さで静かに焔える。
An unusual phenomenon occurs when an electric field is applied to a flame. Figure 1 (-
) and as shown in Fig. 1(b), when kerosene and a piece of cloth are put in a metal ashtray (1) and lit, the flame will be about 60% of the length in the case of Fig. 1 (Fig. 1) where no electric field is applied. I can do it.

灰皿(1)を接地し灯油面の50%上方にパチンコ工大
の球状電極(2)を設け、これiこ変圧器(3)より1
5KVの電場を与えると、瞬時に焔の長さが5〜7倍長
くなり焔が躍り、色も白色を呈する。電場のスイッチを
切ると元の短焔に戻り色も白味倉失なう。
The ashtray (1) is grounded and a Pachinko Institute spherical electrode (2) is installed 50% above the kerosene surface, and this
When an electric field of 5KV is applied, the length of the flame instantly becomes 5 to 7 times longer, the flame jumps, and the color becomes white. When the electric field is switched off, it returns to its original short flame and loses its white color.

この現象は電場を与えることにより油滴の蒸発と燃焼が
促進されだからである。
This phenomenon occurs because the application of an electric field promotes the evaporation and combustion of oil droplets.

さらに第2図の如くビーカー(4)に石油ベンジンを入
れ、ビーカー底の鉄板(5)を接地し、液面50〜に1
5KVの電場放電球(2)を設け、放電球に15Wの電
場を与えると、静置して、いた液面が激しく微振動し、
石油ベンジンの急激蒸発のため蒸発ミストがビーカー壁
に霧状に付着し、液温が2℃低下し、電場を与えない場
合の自然蒸発量の7倍量蒸発する事が確認された。これ
は電場供与になり蒸発が促進されたからである。
Furthermore, as shown in Figure 2, put petroleum benzene in a beaker (4), ground the iron plate (5) at the bottom of the beaker, and lower the liquid level to 50~1.
When a 5KV field discharge lamp (2) was installed and a 15W electric field was applied to the discharge lamp, the liquid surface that was left to stand still vibrated violently.
Due to the rapid evaporation of petroleum benzene, evaporation mist adhered to the beaker wall in the form of mist, the liquid temperature decreased by 2°C, and it was confirmed that the amount of evaporation was seven times the natural evaporation amount when no electric field was applied. This is because an electric field is provided and evaporation is promoted.

以上の電場現象は油燃焼に々んらかの影響を与えるのは
当然である。発明者等は桟用博士の設計指導により第3
図のような内径0.5 III長さimの試験ボイラー
(6)を試作した。ポンプ(7)より3.9−1rの灯
油を送りノズルで噴霧しブロアー(8)より可変量の空
気を送入した。ボイラーの外側に冷却室(9)を設け、
ポンプ(10)で20λ/iの冷却水を加え、加温され
た水を排水管(11)より排出した。さらに変圧器(3
)より導線(12)を通じてノズル噴射嘴(15)に距
離が20%から150〜に可変の電極(2)を設けた。
It is natural that the electric field phenomena described above have various effects on oil combustion. The inventors developed the third design under the design guidance of Dr.
A test boiler (6) with an inner diameter of 0.5 mm and a length of 3 mm as shown in the figure was manufactured as a prototype. Kerosene of 3.9-1 r was sprayed from a pump (7) using a nozzle, and a variable amount of air was introduced from a blower (8). A cooling chamber (9) is provided outside the boiler,
Cooling water of 20λ/i was added using the pump (10), and the heated water was discharged from the drain pipe (11). Furthermore, a transformer (3
), an electrode (2) whose distance was variable from 20% to 150% was provided on the nozzle jet beak (15) through a conductive wire (12).

この試験ボイラーで、バーナーの噴射嘴から50%離れ
た位置の放電極に15KVの電場を与え、電場を与えた
場合と与えない場合のテストを行った。第1図のテスト
では電場を与えると瞬時に焔が躍り狂い焔が白色になる
のに、第3図の場合はその変化が第1回の場合より遥か
に小さい。電極(2)を30%に近付けるとその変化は
若干増加するが逆に120zに遠ざけると殆んど変化が
見られなかった。
In this test boiler, a 15 KV electric field was applied to the discharge electrode located 50% away from the burner injection beak, and tests were conducted with and without an electric field applied. In the test shown in Figure 1, when an electric field is applied, the flame instantly jumps and turns white, but in the case of Figure 3, the change is much smaller than in the first test. When the electrode (2) was moved closer to 30%, the change slightly increased, but when it was moved away from the electrode (2) to 120z, almost no change was observed.

これでは電場効果が殆んど無く、従来浅耕博士の電場技
術がボイラー燃焼に全く利用出来なかった原因だと思考
した。電場効果が出ない原因を調査した。一般の噴霧燃
焼は第5図に示す如く重油噴霧弁(14)の先端の噴射
嘴(15)より油を噴射し、噴射油をウィンドボックス
(17)より旋回翼(18)を通りさらにデフー−ザー
(16)を通った空気で攪拌し、次いで旋回翼からの旋
回空気で燃焼させる。
With this, there was almost no electric field effect, and I thought this was the reason why Dr. Asako's electric field technology could not be used at all for boiler combustion. We investigated the cause of no electric field effect. In general spray combustion, as shown in Fig. 5, oil is injected from the injection beak (15) at the tip of the heavy oil spray valve (14), and the injected oil is passed through the wind box (17), the swirler (18), and then the defu. The mixture is stirred with air passing through the generator (16), and then combusted with swirling air from the swirling vanes.

この原理であるから噴射嘴(15)の前方にデフユーザ
ー(16)があり、噴射嘴(15)の先方に位置する放
電極(2)は遠い位置にある噴射嘴にコロナ放電せず、
近い位置にあるデフユーザー(16)にコロナ放電する
のでないかと思考した。念の為デフユーザーを取外して
スイッチを入れたら、放電極と噴射嘴との間にコロナ放
電が生じ瞬時に焔色が白色に変じた。即ちデフユーザー
を外せば放電極と噴射嘴との間にコロナ放電し油の蒸発
促進燃焼促進効果が得られるが、デフユーザーは噴霧さ
れた油滴と空気との混合を担当しているので、運転にこ
れを取外すことは出来ない。
Because of this principle, the differential user (16) is located in front of the injection beak (15), and the discharge electrode (2) located ahead of the injection beak (15) does not cause corona discharge to the injection beak located far away.
I thought that corona might be discharged to the differential user (16) who was nearby. Just to be sure, I removed the differential user and turned on the switch, and a corona discharge occurred between the discharge electrode and the injection beak, and the flame color instantly changed to white. In other words, if the differential user is removed, a corona discharge occurs between the discharge electrode and the injection beak to promote oil evaporation and combustion, but since the differential user is in charge of mixing the sprayed oil droplets with air, It cannot be removed for driving.

さらに第3図に示す電場供与方法には次の欠点がある。Furthermore, the electric field provision method shown in FIG. 3 has the following drawbacks.

詳細図を第4図に示すが変圧器からの電線(20)を碍
子等の絶縁管(19)で包み、これを缶体内に挿入する
のに複雑な接合器具(21)を必要とする0 さらに缶体内に入った絶縁管(19)と絶縁管相互を連
結した接着剤固化物(22)は常に高温雰囲気にあるた
め破損の危険性がある。第3図の設備に絶縁管として高
純度アルミナを使用したが、高純度アルミナは、耐熱性
絶縁性が優れてはいるが、800℃以上の高温中では絶
縁性が極端魯こ低下し漏電の恐れがある。さらに絶縁管
(19)と接着剤同化物(22)は運転時の高温や休転
時の温度変化の影響を受け、1ケ月の運転期間中に三度
の破損があった0 以上の如く第3図の装置では、放電極と噴射嘴(15)
との間に効率よいコロナ放電が得られないことと及び絶
縁管の頻繁な故障のため正常運転が不可能であり、かつ
燃焼効率の向上が得られなかった。これらの経験より発
明者は下記の技術を開発した。
A detailed view is shown in Figure 4, but a complicated joining device (21) is required to wrap the electric wire (20) from the transformer in an insulating tube (19) such as an insulator and insert it into the can. Furthermore, the insulating tubes (19) inside the can and the solidified adhesive (22) connecting the insulating tubes are always in a high temperature atmosphere, so there is a risk of breakage. High-purity alumina was used as the insulating tube in the equipment shown in Figure 3. Although high-purity alumina has excellent heat-resistant insulation properties, its insulation properties deteriorate drastically in high temperatures of 800°C or higher, causing leakage. There is a fear. Furthermore, the insulating tube (19) and adhesive assimilate (22) are affected by high temperatures during operation and temperature changes during rest, and as described above, they were damaged three times during one month of operation. In the device shown in Figure 3, the discharge electrode and the injection beak (15)
Normal operation was impossible due to the inability to obtain efficient corona discharge between the two and frequent failures of the insulating tubes, and no improvement in combustion efficiency was achieved. Based on these experiences, the inventor developed the following technology.

先端に噴射嘴(15)のある重油噴霧弁(14)と送油
管(16)を絶縁管(23)でおおい、送油管(16)
を変圧器(3)に連結する。送油管の一端(24)は送
油ポンプに連結した合成樹脂、ゴム等の絶縁ホース(2
5)に連結する。絶縁管(23)の外側にウィンドーボ
ックス(17)より送られた風が通過する旋回翼(18
)があり、デフー−ザー(26)は支持具(27)を介
して旋回翼にとりつけられている。絶縁ホース(25)
よりの燃料油は送油管(16)を通り先端の噴出嘴より
噴射され、ウィンドーボックス(17)より入り旋回翼
(18)を経てデフユーザー(26)より入った空気と
混合し、旋回翼よりの二次空気で燃焼する。
Cover the heavy oil spray valve (14) with the injection beak (15) at the tip and the oil feed pipe (16) with an insulating tube (23), and install the oil feed pipe (16).
is connected to the transformer (3). One end of the oil pipe (24) is connected to an insulated synthetic resin, rubber, etc. hose (24) connected to the oil pump.
5) Connect to. A swirler blade (18) through which the wind sent from the window box (17) passes outside the insulating tube (23).
), and the defuser (26) is attached to the swirling wing via a support (27). Insulated hose (25)
The fuel oil passes through the oil pipe (16) and is injected from the jet beak at the tip, enters the window box (17), passes through the swirler (18), mixes with the air that enters from the differential user (26), and then enters the swirler. Burns with more secondary air.

この時送油管(16)は高圧変圧器(3)に連絡されて
おり、送油管が絶縁管に包まれており、後端は送油の絶
縁ホース(25)に結ばれているからコロナ放電し得る
のは噴射嘴に限定される。噴射嘴の先方にデフー−ザー
が存在するから、噴射嘴とデフユーザーの間でコロナ放
電が生ずる。デフユーザーは旋回翼を通じて接地されて
いる。
At this time, the oil pipe (16) is connected to the high voltage transformer (3), and the oil pipe is wrapped in an insulated tube, and the rear end is tied to the oil pipe insulated hose (25), so corona discharge occurs. It is limited to the jet beak. Since there is a defuser at the tip of the spray beak, corona discharge occurs between the spray beak and the defuser. The differential user is grounded through the swing wing.

このバーナーを第3図のボイラーに取付けて運転したと
ころ下記のデーターを得た。
When this burner was installed in the boiler shown in Figure 3 and operated, the following data was obtained.

上述の如く本発明は送油管を絶縁管に納めているから随
所から放電することがなく、放電は噴出嘴に限定される
。噴射嘴が放電源となり、噴射嘴の近くにある接地され
た金属との間にコロナ放電を生ずる。この受電金属は第
3図の場合の如く特別のパチンコ大の金属球を設けても
よいが、噴射嘴前のデフー−ザーを接地すれば噴射嘴と
デフー−ザー間にコロナ放電を生ずるから、受電側には
特別の設備を設ける必要がない。第6図に見る如く絶縁
管は高温の缶内でなく低温部に存在するから温度による
破損や絶縁機能の低下が全くない。
As described above, in the present invention, the oil pipe is housed in an insulated pipe, so there is no discharge from anywhere, and the discharge is limited to the jetting beak. The jet beak acts as a discharge source, creating a corona discharge between it and a grounded metal near the jet beak. This power-receiving metal may be a special pachinko-sized metal ball as shown in Figure 3, but if the defuser in front of the injection beak is grounded, corona discharge will occur between the injection beak and the defuser. There is no need to provide special equipment on the power receiving side. As shown in FIG. 6, since the insulating tube is located in a low-temperature area rather than in a high-temperature can, there is no damage or deterioration of insulation function due to temperature.

第3図の如く缶内に絶縁管で包んだ電導線や電極を挿入
することがないから設備費が安い。デフユーザーが前方
にあるため煤発生があっても噴射嘴の受ける影響は少な
い等多数の優れた特長がある。
As shown in Fig. 3, there is no need to insert conductive wires or electrodes wrapped in insulating tubes into the can, so the equipment cost is low. It has many excellent features, such as the fact that the differential user is located in the front, so even if soot is generated, the jet beak is not affected much.

本発油は単一重油の他に微粉炭との混合油COMの場合
にも適用出来る。
This oil can be applied not only to single heavy oil but also to mixed oil COM with pulverized coal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は灰皿内の灯油燃焼説明図、第2図はビーカー内
の石油ベンジン蒸発説明図、第3図は小型ボイラー図、
第4図は第3図の電極部説明図。 第5図は一般噴霧燃焼器の説明図、第6図は本発明のコ
ロナ放電説明図を示す。 (3)・・・変圧器     (23)・・・絶縁管(
14)・・噴霧弁    (24)・・・送油管端(1
5)・・・噴射嘴     (25)・絶縁ホース(1
6)・・−送伸管     (26)・・・デフー−ザ
ー(17)・・・ウィンドボックス (27)・・支持
具(18)・・旋回翼 出願人  ミウラエンジニャリングインターナショナル
株式会社取締役社長 三 浦  貢
Figure 1 is an illustration of kerosene combustion in an ashtray, Figure 2 is an illustration of petroleum benzene evaporation in a beaker, and Figure 3 is a diagram of a small boiler.
FIG. 4 is an explanatory diagram of the electrode section in FIG. 3. FIG. 5 is an explanatory diagram of a general spray combustor, and FIG. 6 is an explanatory diagram of a corona discharge according to the present invention. (3)...Transformer (23)...Insulation tube (
14)...Spray valve (24)...Oil pipe end (1
5)...Injection beak (25)・Insulation hose (1
6)...-Transmission tube (26)...Defusor (17)...Wind box (27)...Support (18)...Swivel wing applicant President of Miura Engineering International Co., Ltd. Mitsugu Miura

Claims (1)

【特許請求の範囲】[Claims] 本文に詳述した如く、送油用絶縁ホースに連絡し、絶縁
管で囲まれ高圧変圧器に結ばれた送油管先端の噴射嘴よ
り燃料を噴霧し、噴射嘴と接地されたデフユーザーの間
にコロナ放電をさせながら燃焼させることを特長とする
電場利用燃焼方法。
As detailed in the main text, the fuel is connected to the insulated oil supply hose, and the fuel is sprayed from the injection beak at the tip of the oil supply pipe, which is surrounded by an insulated pipe and connected to the high-voltage transformer, and between the injection beak and the grounded differential user. A combustion method using an electric field that is characterized by combustion while causing corona discharge.
JP6225482A 1982-04-14 1982-04-14 Combustion method using electric field Pending JPS58179709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6225482A JPS58179709A (en) 1982-04-14 1982-04-14 Combustion method using electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6225482A JPS58179709A (en) 1982-04-14 1982-04-14 Combustion method using electric field

Publications (1)

Publication Number Publication Date
JPS58179709A true JPS58179709A (en) 1983-10-21

Family

ID=13194819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6225482A Pending JPS58179709A (en) 1982-04-14 1982-04-14 Combustion method using electric field

Country Status (1)

Country Link
JP (1) JPS58179709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238310A (en) * 1987-03-24 1988-10-04 Agency Of Ind Science & Technol Method for burning liquid fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238310A (en) * 1987-03-24 1988-10-04 Agency Of Ind Science & Technol Method for burning liquid fuel
JPH0381042B2 (en) * 1987-03-24 1991-12-26 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
US8597021B2 (en) Furnace using plasma ignition system for hydrocarbon combustion
US6470684B2 (en) Gas turbine engine combustion system
US7435082B2 (en) Furnace using plasma ignition system for hydrocarbon combustion
GB660775A (en) An improved combustion and ignition apparatus for a gas turbine engine
CA1183075A (en) Ignition system for post-mixed burner
US2958196A (en) Flame igniter for gas turbine combustor
JPS5819609A (en) Fuel combustion method
CA1137157A (en) High energy arc ignition of pulverized coal
JPS58179709A (en) Combustion method using electric field
KR101501260B1 (en) Evaporator and burner using the same
US2120626A (en) Apparatus for burning liquid fuels
SU421854A1 (en) MAPS
GB1499959A (en) Oil burner assembly
JPH1068510A (en) Fuel injection gun
CN113623685A (en) Swirler structure for ignition of rotating sliding arc
CN205842732U (en) The anti-interference long-range ignition of the boiler device that a kind of factory is special
US2370933A (en) Liquid fuel burner apparatus
US2136727A (en) Gas-generating oil burner
JPS5593953A (en) Fuel injector for internal combustion engine
CN2684039Y (en) Device for pulverized coal spray combustion using air plasma arc
JPS54134832A (en) Combustor
US1920460A (en) Fluid fuel burner
RU86281U1 (en) BURNER FOR BURNING FUELS WITH NORMAL OR INCREASED VISCOSITY IN THE COMBUSTION CAMERA OF A GAS TURBINE ENGINE
US1813080A (en) Air-directing and ignition-electrode support for oil-burners
CN104456554B (en) Laser ignition fuel liquid combustion machine