JPS58179082A - Color image pickup device - Google Patents

Color image pickup device

Info

Publication number
JPS58179082A
JPS58179082A JP57061899A JP6189982A JPS58179082A JP S58179082 A JPS58179082 A JP S58179082A JP 57061899 A JP57061899 A JP 57061899A JP 6189982 A JP6189982 A JP 6189982A JP S58179082 A JPS58179082 A JP S58179082A
Authority
JP
Japan
Prior art keywords
signal
light
output
signals
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57061899A
Other languages
Japanese (ja)
Inventor
Yoshikuni Tanaka
田中 敬訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57061899A priority Critical patent/JPS58179082A/en
Publication of JPS58179082A publication Critical patent/JPS58179082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/447Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by preserving the colour pattern with or without loss of information

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To obtain a video signal of excellent picture quality, by separating the two output signals of a solid-state image pickup element and the 1H-delay output signal into four signals, limiting each maximum amplitude and obtaining red and blue color signals with a logical operation. CONSTITUTION:The output signal OH of a solid-state image pickup element 15 in which color filters are combined is delayed by a 1H delay line 16 by a time equivalent to a scanning line. The signal OH and a 1H-delayed signal 1H are applied to four gate circuits 17-20, and four signals are separated. In this case, a gate signal 21 is applied to the circuits 17 and 19, and a signal 22 having a 180 deg. phase difference to the signal 21 is applied to the circuits 18 and 20. Thus signals (a), (c), (b) and (d) are separated respectively. Then these signals are applied to limiters 23-26 with limitation given to each maximum amplitude. The output of this limitation is sent to arithmetic circuits 29 and 30. A blue signal is obtained from the circuit 29; while continuous red signals are obtained out of the output of the circuit 30 via an inverting circuit 31. Then a luminance signal Y is obtained from a gain control circuit 33.

Description

【発明の詳細な説明】 本発−は電荷転送撮像素子(以下CCD@儂嵩子と略記
する)を用いたカッ−撮像装置に関する−のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image pickup device using a charge transfer image pickup device (hereinafter abbreviated as CCD).

1個り撮像素子を用いてカラーテレビジ璽ン信号ヲ得る
方法については、透明と黄、透明とシアンよりなる2種
のフィルターを被写体の1111を結ぶ位置におき、赤
信号と青信号を空II羨調して緑信号と周波数多重化し
て撮像素子より1119出す方法が知られ【いる、こO
方法では撮像素子の出力を低域フィルターに通して輝度
信号を得、一方。
Regarding the method of obtaining color television signals using a single image sensor, two types of filters, transparent and yellow, and transparent and cyan, are placed at positions connecting 1111 of the subject, and the red and blue signals are filtered into the sky II. There is a known method of frequency multiplexing the green signal and outputting 1119 from the image sensor.
In the method, the output of the image sensor is passed through a low-pass filter to obtain the luminance signal;

赤信号と青信号は空間変調θ周fIL敏で決まる搬送波
成分(以下変調成分と略記する)として撮像素子の出力
に多重化して含まれているのでこれを帯域フィルターで
抜き出し、こO抜き出した変調成分からさらに赤信号と
青信号な分−して得るようKなされている。
The red signal and the green signal are multiplexed and included in the output of the image sensor as a carrier wave component (hereinafter abbreviated as modulation component) determined by the spatial modulation θ frequency fIL, so they are extracted by a bandpass filter and the extracted modulation component is extracted. It is designed to further increase the red light and green light.

従来変調成分から赤信号と青信号を分離する方法として
、縛り合った2本の走査alK含まれている赤の変調成
分と青の変調成分が周#l数インター菅−ビングの関係
を持つように2種の色フィルタの配列を選び、音域フイ
にターで抜き出した変調成分を1水平走査に相姦する遅
mal(以下IH遅遅延と略記する)で遅延し、2本の
走査線のill成分から周波数インターリ−ピングの関
係な用(・て赤の変調成分と青の変調成分を分拳し、そ
の彼それぞれのR#!4成分を復調して赤信号とiI傷
信号得る方法が知られている。xHj!凰繍は従来ガラ
ス遅延線が一般的に使用されている。ところで、この′
NNラス砥−は入力の電気信号を圧電素子で超音波に変
換し、この超音波なガラスの中を伝播出力側で再び圧電
素子で超音波から電気信号に変換して信号を遅延さ(る
もので、ガラスの中の超音波の伝播時間が一水平産査に
相当する時間になされて〜・る。ガラス遅延線ではこの
超音波がガラスの中を伝播する時に不要な反射を生じて
出力信号の中にこの不要な反射によって生じた信号(ス
プリアス信号)が含まれ、これKより【赤信号と青信号
の画質が低下する欠点があつた。
Conventionally, as a method of separating red and blue signals from modulation components, the red modulation component and the blue modulation component included in two scanned alKs have a frequency intersegmenting relationship. Two types of color filter arrays are selected, and the modulated components extracted by the sound range filter are delayed by a delay mal (hereinafter abbreviated as IH delay) that is incestuous with one horizontal scan, and the ill components of the two scanning lines are Regarding frequency interleaving, there is a known method to separate the red modulation component and the blue modulation component and demodulate their respective R#!4 components to obtain the red signal and the iI signal. xHj! In the past, a glass delay line was generally used.By the way, this '
The NN lath grinder uses a piezoelectric element to convert an input electrical signal into an ultrasonic wave, and the ultrasonic wave propagates through the glass.On the output side, the piezoelectric element converts the ultrasonic wave into an electrical signal again, delaying the signal. In this case, the propagation time of the ultrasonic wave in the glass is the time equivalent to one horizontal line.In the glass delay line, when this ultrasonic wave propagates through the glass, it causes unnecessary reflections and is output. The signal contains a signal (spurious signal) caused by this unnecessary reflection, and this has the disadvantage that the image quality of the red and blue signals is lower than that of K.

また赤信号と青信号は2本の走査線の変調成分から得る
ため1偉の垂直方向で輝度信号との位相が走査線のh本
相蟲分ずれ、この位相のずれた信号で2つの色差信号&
−T信号とB−T信号を形成すると画像の垂直方向のエ
ツジ部分で偽の色差信号が形成されて偽の色が着く現象
と、画像の垂直方相関のない垂直エツジ部分で垂直相関
誤差によって偽の赤信号と青信号が発生する現象との2
つの本質的な欠点をこの方法は持りている。これら2つ
の欠点によって画質が劣化するのを防止するには、色差
信号を形成するための輝度信号の低域成分を2本の走査
線の輝度信号で形成して赤信号と青信号と画像の垂直方
向での位相が−散し九輝度信号の低域成分を得ると同時
に垂直エツジ信号を形成し、この垂直エラ)41号で垂
直相関誤差による偽の赤信号と青信号を抑える必要があ
る。ところが従来は2本の走査線の輝度信号を得るには
別KIH遅延線を用いて輝を信号をIll遅蝿しなけれ
ばならず、これによりて装置が複雑になる欠点があった
In addition, since the red signal and the blue signal are obtained from the modulation components of the two scanning lines, the phase with the luminance signal in the vertical direction is shifted by an amount of h scanning lines, and this phase-shifted signal is used as the two color difference signals. &
- When the T signal and B-T signal are formed, a false color difference signal is formed at the vertical edge portion of the image, resulting in false colors, and a vertical correlation error occurs at the vertical edge portion of the image where there is no vertical correlation. 2. The phenomenon of false red and green lights
This method has two essential drawbacks. In order to prevent the image quality from deteriorating due to these two drawbacks, the low-frequency component of the luminance signal for forming the color difference signal is formed by the luminance signal of two scanning lines, and the red signal, the blue signal, and the vertical It is necessary to obtain the low-frequency component of the luminance signal by obtaining the low-frequency component of the luminance signal by dispersing the phase in the direction, and at the same time form a vertical edge signal, and to suppress false red and green signals due to the vertical correlation error with this vertical error (No. 41). However, in the past, in order to obtain the luminance signals of the two scanning lines, it was necessary to use a separate KIH delay line to delay the luminance signals, which had the disadvantage of complicating the apparatus.

本発明は前記の欠点を無くするためKなされたもので、
その目的は簡単な構成で画質の劣化が無いカラー撮SI
!装置を提供することにある。
The present invention has been made in order to eliminate the above-mentioned drawbacks.
The purpose is color photography SI with a simple configuration and no deterioration in image quality.
! The goal is to provide equipment.

本発明によれば、金色光と緑色光の成分に相当する映像
信号は走査線方向に交互に得られ、シアン色光と黄色光
O成分に@蟲する映像信号は走査一方向に交互に得られ
てかつ金色光と緑色光の成分に相当する映像信号とシア
ン色光と黄色光の成分に相当する映像信号が走査線毎K
li#次に得られるように構成された固体撮像素子と、
固体撮像素子の出力信号を一水平走査allK4tl轟
する時間遅延するIH遅廻線と、遅延しない$11の出
力信号と前記のIHjl鷺線で遅延されたN2の出力信
号との2つの出力信号から、運気しな−・第1の出力信
号からは金色光と緑色光O成分に相当する映像信号がそ
れぞれ分離されている$1の水平走査期間では運気した
112の出力信号からはシアン色光と黄色光の成分に相
当する映像信号をそれぞれ分離し、ip延しないlil
の出力信号からシアン色光と黄色光の成分に相当する映
像信号がそれぞれ分離されているJ12の水平走査期間
では遅延した第2の出力信号からは金色光と緑色光の成
分に相当する映像信号をそれぞれ分離する分−一路と、
分離され死金色党と緑色光のシアン色光と黄色光の成分
に相当する映像信号から赤色光と青色光の成分に相当す
る映fII信号な形成するマトリクス回路とを少なくと
も備えていることを特徴とする力2−撮像装置が得られ
る。
According to the present invention, video signals corresponding to the golden light and green light components are obtained alternately in the scanning line direction, and video signals corresponding to the cyan light and yellow light components are obtained alternately in one scanning direction. A video signal corresponding to the golden light and green light components and a video signal corresponding to the cyan light and yellow light components are transmitted every scanning line.
li # A solid-state image sensor configured to obtain the following,
From the IH delay line that delays the output signal of the solid-state image sensor by one horizontal scan allK4tl, the output signal of $11 that is not delayed, and the output signal of N2 that is delayed by the IHjl Sagi line described above. In the horizontal scanning period of $1, the video signals corresponding to the golden light and green light O components are separated from the first output signal. It separates the video signals corresponding to the light components and prevents IP spread.
In the horizontal scanning period of J12, in which video signals corresponding to cyan light and yellow light components are separated from the output signal of the second output signal, video signals corresponding to gold light and green light components are separated from the delayed second output signal. Each part separates from the other, and
It is characterized by comprising at least a matrix circuit for forming a video fII signal corresponding to the red light and blue light components from the video signal corresponding to the cyan light and yellow light components of the green light and the cyan color light component separated from each other. Force 2 - an imaging device is obtained.

以下本発明について図面を用いて詳述する。The present invention will be explained in detail below using the drawings.

第1図は本発明の1Iii素の配列の一例を示すもので
ある。この画素の配列は、第2図に示すようKj像の垂
直方向に対して走査線ととに位相が180@ずつ変化す
るような角度で傾斜している透#4(ロ)とシアン(c
Jaりなるフィルターで赤信号が空間変調され、同様K
ij像の垂直方向に対して走査線ごとの位相が一定な透
明と黄(Y、)よりなるフィルタで青信号が空間変調さ
れるように構成されている。
FIG. 1 shows an example of the arrangement of 1Iiii elements of the present invention. As shown in Fig. 2, this pixel arrangement consists of transparent #4 (b) and cyan (c) which are inclined at an angle such that the phase changes by 180 @ with respect to the perpendicular direction of the Kj image.
The red signal is spatially modulated by a filter similar to Ja, and similarly K
The blue signal is spatially modulated by a filter made of transparent and yellow (Y, ) whose phase is constant for each scanning line in the vertical direction of the ij image.

ill:1図および第2図で符号11で示される画素は
透明−で符号4の画素はシアン(q)と★曵)が重なり
合ワているので双方のフィルターを通過できる縁日とな
っている。符号口はシアン(CY) 、符号14は黄(
Y、)である。
ill: In Figures 1 and 2, the pixel designated by the symbol 11 is transparent, and the pixel designated by the symbol 4 has cyan (q) and ★曵) overlapping each other, so it is a festival that can pass through both filters. . The code entry is cyan (CY), and the code 14 is yellow (
Y, ).

1111図で、菖真査目(烏コL\翫・・・)の走査線
からはWと縁日が、厘聡+11の走査線からはシアン(
叫)と貢(Y・)が1画素ごとに交互に4られる。第3
図は赤−信号と責@値号の分離方法を図示し友【のであ
る。第1閣と第3図な参照すれば固体撮像素子の出力信
号な一水平走査期間に相当する遅鴬時間を持った11[
jll縁線遅延すると固体撮像素子から嬉m@の出力信
号が得られている時、IHjl鷺纏からは第一−l@の
出力信号が得られている。固体撮像素子からの嬉m(I
Iの出力信号を2つのゲート回路を用いて透明−と縁日
の2つの信号を分離する。同様K 1 [j1風−から
の第a−1@ ()出力信号を2つのゲート開路でシア
ン(CY)と黄α・)の2つの信号に分離する。
In Figure 1111, W and Ennichi appear from the scanning line of Ayame Scanme (Karasuko L\kan...), and cyan (
(Y) and (Y) are alternately added to each pixel. Third
The figure illustrates how to separate the red light and the red flag. Referring to Figure 1 and Figure 3, the output signal of the solid-state image sensor has a delay time corresponding to one horizontal scanning period.
When the jll edge line is delayed, when the output signal of ``m@'' is obtained from the solid-state image sensor, the output signal of 1st -l@ is obtained from the IHjl sagi. Joy m (I) from solid-state image sensor
The output signal of I is separated into two signals, transparent and fair, using two gate circuits. Similarly, the a-1@()-th output signal from K 1 [j1 wind- is separated into two signals of cyan (CY) and yellow α·) by opening two gates.

第3図a S−4にこ04つのゲート回路で分離される
出力信号を表わす。aとbが固体撮像素子の出力信号か
ら分離される信号、Cと−はIHjl凰−〇出力信号か
ら分離される信号な示している。
FIG. 3a S-4 shows the output signals separated by the four gate circuits. A and b indicate signals separated from the output signal of the solid-state image pickup device, and C and - indicate signals separated from the IHjl凰-〇 output signal.

図で符号“″をつけた記号は“″を付けない信号をIB
M駕し九信号であることを表わしている。
In the figure, symbols with a symbol “” indicate signals without a “”.
This indicates that it is M-carrying nine signals.

この4つのダート回路は次の走査期間すなわち固体撮像
素子からJIIl園の第1%+1410出力信号が得ら
れている走査期間では、第S@で透明(wl)の信号を
分離したゲート回路は第5+l@ではシアン(CY)の
信号を分離し、第S@で縁(Gl )の信■ 号を分離したゲート1路は第s+1@では貢(Y町)の
信号を分離する。同様に第S@でIH遥駕線の出力から
シアン(CYI ’)の信号を分離し友ゲート回路は第
n+1@では透明(イy)信号を分離し、第駕掴で黄(
Ye、 )の信号を分離したグー)fl路は第5+1@
では#(GI′)の信号を分離する。以後走査線ごとK
この繰り返しとなる。
These four dirt circuits are used in the next scanning period, that is, in the scanning period in which the 1% + 1410th output signal of JIII garden is obtained from the solid-state image sensor, the gate circuit that separated the transparent (wl) signal at the S@th Gate 1 separates the cyan (CY) signal at 5+l@, and the edge (Gl) signal at S@, and separates the tribute (Y town) signal at S+1@. Similarly, the cyan (CYI') signal is separated from the output of the IH Haruka line at the S@th, and the friend gate circuit separates the transparent (Y) signal at the n+1@th, and the yellow (CYI') signal is separated at the n+1@th.
The 5th+1st @
Now, the #(GI') signal is separated. From then on, each scanning line is K.
This will be repeated.

次KIE3図の4つの信号1〜bを用いて次式の演算を
行う。
The following equation is calculated using the four signals 1 to b shown in the next KIE3 diagram.

(1) −* + c−b−d 情1 ” a 十d −b −t (1)式の演算は菖襲−では、 (1)”W1+Cy@  01−Y*@JII算+l圓
では、 (1)−貼+w、’−y・I  Gl’とfx v テ
第s@、第s+111共Ktll=W+C,−G −T
hとなる。透明−2黄(Ye) 、シアン(CY)はそ
れぞれ W−赤(2)十m四十青− Y@■赤(2)十縁日 CY=縁四縁日(8) であるから(0式の演算は次のよ5になる。
(1) −* + c−b−d 情1 ” a 10d −b −t The calculation of equation (1) is in Iris - (1) “W1 + Cy @ 01 − Y * @ JII calculation + l round, (1) - Paste +w, '-y・I Gl' and fx v te s@, s+111 both Ktll=W+C, -G -T
h. Transparent - 2 yellow (Ye) and cyan (CY) are respectively W - red (2) 10 m 40 blue - Y @ ■ red (2) 10 fair days CY = 4 fair days (8), so (of type 0 The calculation becomes 5 as follows.

+1)ヰW +C,−G −re ヰR+2G+2B−11−2G 21 すなわち(1)式の演算を行えば青信号を得ることがで
きる。同様にして働くでは、 S@では−・・・−13J −W、+ y・、/  c
、  cY6’s+1@では”1神qs 十GI  Y
e1  % ’であるから (2)−2R+2G+l−20−B =2に−−−(%−) (2)=20+B−2R−2G−B =−2に−−(算+1@) すなわち(2)式の演算を行えばRと−R傷信号走査線
ととに交互に得られるから−l信号の極性を反転すれば
連続した赤信号を得ることができる。
+1) ヰW +C, -G -re ヰR+2G+2B-11-2G 21 That is, by performing the calculation of equation (1), a green signal can be obtained. Working in the same way, in S@ -...-13J -W, + y・, / c
, cY6's+1@ is "1 God qs 10GI Y
e1 %', so (2)-2R+2G+l-20-B =2---(%-) (2)=20+B-2R-2G-B =-2---(arithmetic+1@) That is, (2 ) By performing the calculation of the formula, the R and -R flaw signal scanning lines can be obtained alternately, so by reversing the polarity of the -l signal, a continuous red signal can be obtained.

菖4図は本発明のJl[o負流側を示す複式図である0
図においてカラーフィルターを組み合せた固体撮像素子
すの出力(以後OH信号と略記する)はIH遅延線16
で1走査線に和尚する時間遅凰される。OH信号と1)
ijl延され良信号(以後IH信号と略記する)は4つ
のゲートa路17〜20に加えられる。ゲート回路17
〜20は第3図で詳述した通りOH信号とIH傷信号か
ら4つの信号を分離する。すなわち、ゲート回路17は
JI31IIAの信号を分離するようにゲート信号■が
加えられ、ゲート−路19はこのゲート信号ガが同時に
加えられて菖3図Cの信号が分離され、ゲート回路用と
ゲート−路加はゲート信号ガと1800の位相差を持つ
ゲート信号nが加えられてそれぞれtgsriabとd
の信号が分離されて得られる。
Diagram 4 is a double diagram showing the Jl[o negative flow side of the present invention.
In the figure, the output of the solid-state image sensor combined with the color filter (hereinafter abbreviated as OH signal) is the IH delay line 16.
The time delay is reduced to one scanning line. OH signal and 1)
The good signal (hereinafter abbreviated as IH signal) which has been extended by ijl is applied to four gate a-paths 17-20. Gate circuit 17
20 separates four signals from the OH signal and the IH flaw signal as detailed in FIG. That is, the gate signal (2) is applied to the gate circuit 17 so as to separate the signal of JI31IIA, and this gate signal (3) is simultaneously applied to the gate circuit 19, and the signal of the iris 3 (C) is separated. - The gate signal n having a phase difference of 1800 with respect to the gate signal ga is added to the gate signal tgsriab and d, respectively.
The signals are separated and obtained.

分離された4つの信号1〜dは次にリミッタn〜jへ加
えられる。リミッタ23−26はそれぞれ信号a −d
の最大の振幅を制限している。
The separated four signals 1-d are then applied to limiters n-j. The limiters 23-26 have signals a-d, respectively.
limits the maximum amplitude of

第S図(IL+ 、 (e)はリミッタn−あの動作を
15!明するものである。
Figure S (IL+, (e)) explains the operation of the limiter n-.

jls図IJLIは固体撮像素子から得られる透明(ロ
)。
jls Figure IJLI is transparent (b) obtained from a solid-state image sensor.

黄(Ye)、シアン(C,) 、縁日の信号の入射光量
に対する振幅な示している。IIII述したようKW=
R+G 十B = Y*=R+ G # Cr寓G 十
Bであるからそれぞれの振−はW>Y・、CY)Gとな
っている。
The amplitudes of the yellow (Ye), cyan (C,), and Ennichi signals with respect to the amount of incident light are shown. As mentioned in III, KW=
R+G 10B = Y*=R+G #CregG Since there are 10B, each swing is W>Y・,CY)G.

菖5図悸)で固体連像素子は出力の大きさがL点に遍す
ると飽和し以後は入射光量が増加しても出力の大きさは
増加しなくなる。したがって、入射光量が増加するに伴
り【(l)点で出力の大きい透明−がまず飽和し、次に
(2)点で貢(Ye) # 431点でシアン(−)、
(4)点で縁(6)が順次飽和する。ところで、このよ
うに出力の飽和点が4つの出力で全て等しいL点である
鳩舎に入射光量が(1)点を越えると前述の赤信号と青
信号を得るrl>式と(2)式の演算に誤差を生じ、入
射光量が((転)点に達するとw!h−CYmlIGと
なる丸め+1)式とは)式の演算曽果は共に零となる。
When the output of the solid-state continuous image element reaches point L, it becomes saturated, and thereafter the output does not increase even if the amount of incident light increases. Therefore, as the amount of incident light increases, [transparent color with a large output becomes saturated at point (l), then yellow (Ye) at point (2), cyan (-) at point (431),
The edge (6) is sequentially saturated at the point (4). By the way, when the amount of light incident on a pigeon coop where the output saturation point is the same L point for all four outputs exceeds point (1), the above-mentioned red signal and green signal are obtained by calculating the rl> equation and equation (2). An error occurs in the input light amount, and the calculation results of the formula (rounding +1), which becomes w!h-CYmlIG when the (turning) point is reached, are both zero.

すなわち入射光量が(1)点を越えると入射光量が増加
するにもかかわらず赤信号と青信号の大きさは減少し、
入射光量が(4)点板上では赤信号と青信号は全(得ら
れなくなる。リミッタn−墓はこの演算の誤差を防ぐも
ので、第5図(h+に示すように入射光量が(11点に
遍するとそれ以後は4つの信号の大きさが増加しないよ
’5に4〜−の各大きさで4つの信号のIi@を制限し
てしまうようになされ【いる。したがってこの振幅を−
〜14に制限された信号で(1)式と(21式の演算を
行えば入射光量が(1)点板上の時は赤信号と青信号は
−〜−の値で決まる一定の大きさ011号となり、菖5
図tjIJの鳩舎のように零になってしまうような現象
が防がれる。
In other words, when the amount of incident light exceeds point (1), the magnitude of the red and green signals decreases even though the amount of incident light increases.
When the amount of incident light is (4) on the point board, the red and green signals cannot be obtained at all.The limiter n-grave prevents errors in this calculation. , the magnitudes of the four signals do not increase after that.The Ii@ of the four signals is limited by each magnitude from 4 to -.Therefore, this amplitude is -
If you calculate equations (1) and (21) with a signal limited to ~14, the amount of incident light will be (1) When on the dot plate, the red and green signals have a constant magnitude determined by the value of - to -011 The number is iris 5
This prevents the phenomenon of zero, as in the case of the pigeon coop in Figure tjIJ.

1I114図ですξツタn句心は第3閣畠〜dK示すよ
うに咎ゲート1路17〜2gの出力が査線射ごとに異な
るため振幅を制限する大きさを各査1射での信号に一款
さセて変化させる。制御信号rと加はこのための信号で
ある。
Figure 1I114. ξ Tsuta n Kushin is the 3rd Kakubata ~ dK As shown, the output of Togai Gate 1 17 ~ 2g differs for each scan line shot, so the magnitude that limits the amplitude is set to the signal for each scan line shot. Let's make a change. The control signal r and addition are signals for this purpose.

す4ツタn〜あの出力は次に演算1路四と凹に加えられ
る。演算回路四は前述のil1式の演算な行って青信号
を得る。演算回路(資)は同様K(2)式の演算を行い
その出力には鼠と−R信号が交互に、得られるので反転
回路31で−Rを極性反転して連続した赤信号を得る。
That output is then added to the operation 1, 4, and concave. Arithmetic circuit 4 performs the arithmetic operation of the above-mentioned il1 formula to obtain a green signal. The arithmetic circuit (component) similarly performs the calculation of equation K(2), and its output alternately provides the mouse and -R signals.The inverting circuit 31 inverts the polarity of -R to obtain a continuous red signal.

制御信号冨は反転1路31が査線線1本ごとに反転−非
反転となるように制御する。
The control signal strength is controlled so that the inversion 1 path 31 is inverted/non-inverted for each scanning line.

輝度信号Yは―体撮俸嵩子から得られるO)(信号なそ
のまま用いるが第!IIK示したよ5に縁−は黄(Ye
)とシアy (C,)の重ね合わせで作っている場合に
は光の透過率が低下するために第1図の第%閾の平均映
倫レベル(API、)i家路s+1同の平均映倫レベル
より低(なる。菖4図の利得制御回路おはこれを防ぐた
めの−ので製御信号調で緑IG+信号の大きさを制御し
てフィルターの光透過率の低下を補うものである。
The brightness signal Y is yellow (O obtained from the body image) (I use the signal as it is, but the edge as shown in IIK) is yellow (Ye).
) and shear y (C,), the light transmittance decreases, so the average eirin level of the % threshold in Figure 1 (API,) i homeward s + 1 the same average eirin level In order to prevent this, the gain control circuit shown in Figure 4 controls the magnitude of the green IG+ signal using the control signal tone to compensate for the decrease in light transmittance of the filter.

第6図は制御信号誦を示すもので、利得制御回W&おが
第%(6)で緑−信号の振幅だけを制御するよう罠なさ
れている。
FIG. 6 shows the control signal reading, in which the gain control circuits W&O are configured to control only the amplitude of the green signal at %(6).

カフ−エンコーダー墨は輝度信号Yと赤信号2と青信号
Bから複合カフ−映像信号蕊を形成する。
The cuff encoder black forms a composite cuff video signal from the luminance signal Y, the red signal 2, and the blue signal B.

ところで諺lの実施例では輝1信号な査纏射1本の信号
で形成しているため、前述の従来例の説明でも述べたよ
うに偽の色差信号が形成される欠点がある。本発明の第
2の実施例はこの欠点を除くものである。
By the way, in the embodiment described above, since the signal is formed using one signal, which is a single brightness signal, and one beam signal, there is a drawback that a false color difference signal is formed, as described in the explanation of the prior art example. A second embodiment of the invention eliminates this drawback.

jI7図はJI2の実施例を示す模式図である。Figure jI7 is a schematic diagram showing an example of JI2.

図において符号b〜諺で示す構成畳重はj14図におい
て記述し友ものと同じ構成要素であるので説明を省略す
る。
The structural overlaps indicated by symbols b to proverbs in the figure are the same constituent elements as those described in the diagram j14, and therefore their explanation will be omitted.

OH信号から分離された2つの信号1信号とb信号は加
算回路rで加え合わされて狭帯域の輝度信号−信号を形
成する。b信号はJII3図に示したように1に画信号
と黄(Y・)信号の繰り返しであるから嬉4図の第1の
実施例の場合と同41に録画信号の振幅を利得制御回路
蕊で制御する。制御信号瀬は第1の実施例の場合と異な
り査−射毎に利得を制御する信号となる。
The two signals separated from the OH signal, the 1 signal and the b signal, are added together in an adder r to form a narrowband luminance signal. Since the b signal is a repetition of the image signal and the yellow (Y) signal as shown in Figure JII 3, the amplitude of the recording signal is adjusted to 41 by the gain control circuit in the same way as in the first embodiment shown in Figure 4. Control with. The control signal S is a signal for controlling the gain for each scanning, unlike in the first embodiment.

OH信号とIH傷信号加算回絡初で加え金わされ広帯域
の輝度値号釦を形成する。
The OH signal and IH flaw signal are added together at the beginning to form a wideband brightness value button.

カラーエンコーダー社は赤信号、青信号、狭帯域の**
信号ち、広帯域の輝度信号Y、から複合カラー映像信号
社を形成する。
Color Encoder provides red light, green light, and narrowband**
A composite color video signal is formed from the signal Y and the broadband luminance signal Y.

gs図はカラーエンコーダー社の信号処理な示す模式図
である。広帯域輝度信号Y−12つのp−バスフィルタ
祁、44を通ス、−一バスフィルタ0は固体撮會素子の
ナイキスト周波数を遮断周波数トスる一一バスフィルタ
、−−パスフィルタ伺はp−バスフィルタ45 、46
 、47と同じ遮断周波数を持ち色差信号を形成するた
めの輝度信号の低域成分−を作る。この低域成分Y1か
ら狭帝域輝fg1号YIを減算すると1次微分形の垂直
エツジ信号が得られる。広帯域輝度信号Y、から低域成
分YLを減算すると鐸ta号の^械威分Y、が得られる
。高域成分Y1と垂直エツジ信号は加え合わされた後、
もとの低域成分YLと青信号および赤信号に加える。こ
のとき加える信号の大きさをYL(Y、とすると水平方
−に2機微分形の輪郭強調を行えるので加え合わせる^
城成分Y、および垂直エッジ信号は水平。
The gs diagram is a schematic diagram showing Color Encoder's signal processing. Broadband luminance signal Y-1 passes through two p-bus filters, 44; Filters 45 and 46
, 47, and generates a low-frequency component of a luminance signal for forming a color difference signal. By subtracting the narrow band brightness fg1 YI from this low frequency component Y1, a first-order differential vertical edge signal is obtained. By subtracting the low frequency component YL from the wideband luminance signal Y, the mechanical power Y of Takuta is obtained. After the high frequency component Y1 and the vertical edge signal are added,
Add to the original low frequency component YL, green signal and red signal. If the magnitude of the signal to be added at this time is YL (Y), it is possible to emphasize the outline of two machine differential types in the horizontal direction, so they are added together.
Castle component Y and vertical edge signal are horizontal.

垂直双方向に最適の輪郭強調が行われるようKそれぞれ
の大きさを調整する。
The size of each K is adjusted so that optimal contour enhancement is performed in both vertical directions.

輝度信号と赤信号および青信号は次にブーセス囲路48
 、49 、50でそれぞれガンマ補正、白クリップ、
黒クリップ、ブランキング混合の処理を受ける。マトリ
クス回路51と52は輝度信号と赤信号および青信号か
ら2つの色差信号R−Y信号とB−Y信号を形成する。
The brightness signal, red light, and green light are then routed to Busses Enclosure 48.
, 49 and 50 respectively for gamma correction, white clip,
Processed with black clip and blanking mixture. Matrix circuits 51 and 52 form two color difference signals, RY signal and BY signal, from the luminance signal, red signal, and blue signal.

このとき輝度信号の低域成分YLは2本の査査朦の信号
から作った広帯域輝度信号から形成しているのでii像
の垂直方向における位相が赤および青信号と一致してい
るので偽の色差信号が形成されることがない。色差信号
は変調!163で変調されて搬送色信号を作る。利得制
御(ロ)路8は垂直エツジ信号で搬送色信号の大きさを
抑える。m述した通り、垂直相関の無い垂直エツジ部分
では赤および青信号Kfi直相関誤差による偽信号が生
じるので搬送色信号に4この偽信号が含まれている。利
得制御回路8で垂直エツジ部分の搬送色信号を抑えるこ
とでこの垂直相関誤差による偽信号を抑えている。
At this time, the low-frequency component YL of the luminance signal is formed from a wideband luminance signal created from the two scanning signals, so the vertical phase of image ii matches the red and blue signals, so it is a false color difference signal. is never formed. Color difference signals are modulated! 163 to produce a carrier color signal. Gain control (b) path 8 suppresses the magnitude of the carrier color signal with a vertical edge signal. As mentioned above, in the vertical edge portions where there is no vertical correlation, false signals are generated due to the correlation error of the red and blue signals Kfi, so the carrier color signal contains these false signals. The gain control circuit 8 suppresses the carrier color signal in the vertical edge portion, thereby suppressing false signals caused by this vertical correlation error.

次に1輝度信号にこの搬送色信号と同期信号5を加えて
複合力2−映II償号社を形成する。
Next, this carrier chrominance signal and the synchronization signal 5 are added to the 1 luminance signal to form a composite signal.

なお、以上の説明では菖2図のように黄α嗜)フィルタ
ーが縦、シアン(Cy)yイルターが斜めに配置されて
いたが、これは黄(Y・)とシアン(cY)′4I:入
れ替えてシアン(CY)フィルターが縦、黄(h)フィ
ルターが斜めKll置され友場合も全く同様でありこの
場合は第4図の演算回路島からは赤信号が、反転回路3
1からは青信号が得られる。
In addition, in the above explanation, as shown in Diagram 2, the yellow (α) filter was arranged vertically and the cyan (Cy) filter was arranged diagonally, but this is because yellow (Y・) and cyan (cY) '4I: It is exactly the same when the cyan (CY) filter is placed vertically and the yellow (h) filter is placed diagonally.
1 gives a green light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2@は本発明Oカラー撮像装置に用いる力2
−フィルターの配列を示す模式図、第3図は本発明の動
作原思を説−するための模式図、$I4図、第5図四p
 (”) #第6図、菖7図および第8図は本発明の実
施例をWIL明するための模式図である。図において、
Uは透明−フィルタ、臣は緑向フィルタ、13はシアン
(4)フィルタ、 14は黄(Ye)フィルタ、15は
固体撮像素子、 16はIH;!延線、17 、18 
、19 、20はゲート−路、21.22はゲート信号
、詔、24,25,26はリミッタ、n、28は制御信
号、6,30は演算(9)路、31は反転gi#l!、
諺は制御1号、北は利得制御−路、λは制御信号、あは
カラーエンコーダー、あは複合力2−映像信号、nは加
算回路、あは利得制御回路、菖は制御信号、槌は加算回
路、41は力2−エンコーダー、42は複合カラー映倫
信号、葛、 44 、45 、46 、47は−−バス
フィルター、砺、 49 、50はプルセス1li1.
51゜社はマトリクス副路、詔は変調器、箕は利得制御
回路、55は同期信号である。 ′¥、1図 纂Z図 第3図 2Lユ1」12に−Jd 今   牛   ヰ   争 ノア(H) ノフナ/(14)ηす2(H)  nす3
(H)第5図 一人J!を把量 一人獣光童 第ら図 !
Figures 1 and 2 show the force 2 used in the O color imaging device of the present invention.
- Schematic diagram showing the arrangement of filters, Figure 3 is a schematic diagram to explain the principle of operation of the present invention, $I4 Figure, Figure 5 4p
('') #Figures 6, 7 and 8 are schematic diagrams for explaining the embodiments of the present invention. In the figures,
U is a transparent filter, Omi is a green filter, 13 is a cyan (4) filter, 14 is a yellow (Ye) filter, 15 is a solid-state image sensor, 16 is an IH;! Line extension, 17, 18
, 19, 20 are gate paths, 21.22 is a gate signal, 24, 25, 26 are limiters, n, 28 are control signals, 6, 30 are operation (9) paths, 31 is an inversion gi#l! ,
The proverb is control number 1, north is gain control - path, λ is control signal, a is color encoder, a is composite power 2 - video signal, n is adder circuit, a is gain control circuit, iris is control signal, mallet is Addition circuit, 41 is a force 2-encoder, 42 is a composite color video signal, 44, 45, 46, 47 is a bass filter, 49, 50 is a purcess 1li1.
51 is a matrix subpath, 1 is a modulator, 2 is a gain control circuit, and 55 is a synchronizing signal. '\, 1 Figure Z Figure 3 Figure 2 L Yu 1'' 12 - Jd Now Ushi ヰ War Noah (H) Nofuna / (14) ηsu 2 (H) nsu 3
(H) Figure 5 Alone J! The figure of one person, Kodou Dai, et al.

Claims (1)

【特許請求の範囲】 1、金色光と緑色光の成分に相当する映像信号は走査線
方向に交互に41Iられ、シアン色光と黄色光の成分に
相当する映像信号は走査線方向に交互に得られて、かつ
金色光と緑色光の成分に相当する映像信号とシアン色光
と黄色光り酸分Ig当する映像信号が走査線毎に一履次
に得られるように構成され友固体操像素子と、四体録像
素子の出力信号七−水平走査一に相当する時闘遅駕する
IH遅延線と、遅蔦しない第1の出力信号と前記のIH
jl凰細で遅鴬され−kllN2の出力信号との2つの
出力信号から、遥延しないJIlの出力信号からは金色
光と緑色光の成分に相当する映倫信号がそれぞれ分−さ
れていゐillの水平走査期間では遅鷺した篇20出力
信号からシアン色光と黄色光の成分に相当する峡*a号
をそれぞれ分離し、遅凰しない菖1の出力信号からシア
ン色光と黄色光の成分に@幽する映II&信号がそれぞ
れ分離されてい!j12の水平走査期間では遅蔦した菖
2の出力信号からは金色光と黄色光oitt*に相当す
る映像信号をそれぞれ分離する分離回路と、分−された
金色光と緑色光とシアン色光と黄色光の成分に相当する
映**号から赤色光と青色光の成分にb とを少なくとも備えていることを臀黴とするカラー撮像
装置。 z jl鴬しない第1の出力信号に含まれる金色光と緑
色光とシアン色光と黄色光O成分に#A轟す映映像値号
のうちで緑色光の成分K[iする映像信号の1111m
を御制するようK1画嵩毎かつ滝査線毎Km作する制御
in鯵と、この制御回路の出力から広帯域の輝度信号を
形成し、この広帯域の輝度信号から色差信号′に形成す
るための輝度信号の低域成分を作る映像信号回路な備え
た轡許#I求のm5311項紀叡の力2−撮像装置。 1 遅延しない第1の出力信号と遅延した菖2の出力信
号を加え金ぜて広帯域の輝度信号を形威しこの広帯域の
輝度信号から色差信号を形成するための輝度信号の低域
成分を作る映像信号回路を備えた特許請求の範囲第2項
記載のカラー撮像装置。 (遅延しない菖1の出力信号とj1凰した第2の出力信
号のいずれか画室の信号から分離した2つの映像信号の
うちで緑色t、0成分に相当する映像信号の!IIII
′に1illi御するように走査線毎に動作する制御回
路と、こO制御回路の出力と、前記いずれか一方の信号
から分麟し九他の映像信号とt加え金わぜ【狭帯域の輝
度信号を形成する映像信号回路とを備えた特許請求の範
囲第2項記載のカラー撮像装置。 1 全色光と緑色光とシアン色光と黄色光O成分Km轟
する映**号から形成する赤色光と青色光の成分に相姦
する映像信号が嗣体撮II!素子の出力が飽和状11に
おいても得られるように全色光と緑色光とシアン色光と
黄色光の成分に相当する映像信号のそれぞれの1rRI
Il′に制隈するりキッタ回路を備えている特許請求の
1lIiIl!l第1項記載のカラー撮像装置。
[Claims] 1. Video signals corresponding to golden light and green light components are obtained alternately in the scanning line direction, and video signals corresponding to cyan light and yellow light components are obtained alternately in the scanning line direction. and a video signal corresponding to the golden light and green light components and a video signal corresponding to the cyan light and yellow light acid component Ig are obtained one after another for each scanning line. , an IH delay line that lags in time corresponding to the output signal 7-horizontal scanning 1 of the four-body recording element, a first output signal that does not lag, and the above-mentioned IH.
From the two output signals of JIl and the delayed output signal of KLLN2, which are slow and slow, the eirin signal corresponding to the golden light and green light components are separated from the output signal of JIl, which does not delay. During the horizontal scanning period, the irises *a corresponding to the cyan and yellow light components are separated from the delayed 20 output signal, and the cyan and yellow light components are separated from the non-delayed irises 1 output signal. The video II and signal are separated! During the horizontal scanning period of j12, a separation circuit separates video signals corresponding to the golden light and yellow light oitt* from the delayed output signal of the irises 2, and separates the separated golden light, green light, cyan light, and yellow. A color imaging device having at least b in the red light and blue light components from the image corresponding to the light component. z jlThe golden light, green light, cyan light, and yellow light included in the first output signal are
A control circuit is used to generate a wideband luminance signal from the output of this control circuit, and to form a color difference signal from this broadband luminance signal. 2 - Imaging device according to Section M5311 of the Permit #I request, which is equipped with a video signal circuit that generates a low-frequency component of a luminance signal. 1 Add and combine the non-delayed first output signal and the delayed output signal of the irises 2 to form a broadband luminance signal, and create a low-frequency component of the luminance signal for forming a color difference signal from this broadband luminance signal. A color imaging device according to claim 2, comprising a video signal circuit. (Which of the video signals corresponding to the green t and 0 components of the two video signals separated from the signal of the compartment, the undelayed output signal of irises 1 and the second output signal with j1 reduction)
A control circuit operates for each scanning line so as to control the output of the control circuit, and the output of the control circuit is separated from one of the signals and added to the other video signal. 3. The color imaging device according to claim 2, further comprising a video signal circuit that forms a luminance signal. 1 The video signal that is incestuous with the red light and blue light components formed from the full color light, green light, cyan light, and yellow light O component Km roaring video is the successor to the video signal II! 1rRI of each of the video signals corresponding to all color light, green light, cyan light, and yellow light components so that the output of the element can be obtained even in a saturated state of 11.
1lIiIl of the patent claim, which is equipped with a circuit that limits Il'! 1. The color imaging device according to item 1.
JP57061899A 1982-04-14 1982-04-14 Color image pickup device Pending JPS58179082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061899A JPS58179082A (en) 1982-04-14 1982-04-14 Color image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061899A JPS58179082A (en) 1982-04-14 1982-04-14 Color image pickup device

Publications (1)

Publication Number Publication Date
JPS58179082A true JPS58179082A (en) 1983-10-20

Family

ID=13184448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061899A Pending JPS58179082A (en) 1982-04-14 1982-04-14 Color image pickup device

Country Status (1)

Country Link
JP (1) JPS58179082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697208A (en) * 1985-06-13 1987-09-29 Olympus Optical Co., Ltd. Color image pickup device with complementary color type mosaic filter and gamma compensation means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697208A (en) * 1985-06-13 1987-09-29 Olympus Optical Co., Ltd. Color image pickup device with complementary color type mosaic filter and gamma compensation means

Similar Documents

Publication Publication Date Title
EP0272634B1 (en) Video signal generating device
US3798353A (en) Correcting vertical resolution in television color images
US4282547A (en) Color image pick-up apparatus
US4157566A (en) Single tube color television camera with color correction
JPS58179082A (en) Color image pickup device
CA1136265A (en) Luminance circuit for color television camera
JPH0415669B2 (en)
JPS58179085A (en) Color image pickup device
JP2624646B2 (en) Color video camera
JPS58179087A (en) Method of enhancing resolution of television camera
JPS5945792A (en) Solid-state color image pickup device
KR790001240B1 (en) Color analysing filter for color photographing
JPS6342995B2 (en)
JP3515585B2 (en) Two-chip imaging device
JPS59168790A (en) Color image pickup device
JPS60263592A (en) Solid-state image pickup device
JPS6246113B2 (en)
JPS61187484A (en) Solid-state color image pickup device
JP2019075703A (en) Polarization imaging apparatus
JPH01114287A (en) Chroma signal processor of veneer color camera
JPS61280188A (en) Solid-state image pick up device
JPS5834069B2 (en) Single-tube frequency-separated color television camera
JPS58195390A (en) Color television camera
JPH0156593B2 (en)
JPH11136690A (en) Color image pickup device and recording medium