JPH01114287A - Chroma signal processor of veneer color camera - Google Patents

Chroma signal processor of veneer color camera

Info

Publication number
JPH01114287A
JPH01114287A JP62270159A JP27015987A JPH01114287A JP H01114287 A JPH01114287 A JP H01114287A JP 62270159 A JP62270159 A JP 62270159A JP 27015987 A JP27015987 A JP 27015987A JP H01114287 A JPH01114287 A JP H01114287A
Authority
JP
Japan
Prior art keywords
circuit
output signal
signal
pixel
pixel group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62270159A
Other languages
Japanese (ja)
Inventor
Naoki Ozawa
直樹 小沢
Kenji Takahashi
健二 高橋
Toshiyuki Akiyama
俊之 秋山
Itaru Mimura
三村 到
Takahiro Nakano
孝洋 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62270159A priority Critical patent/JPH01114287A/en
Publication of JPH01114287A publication Critical patent/JPH01114287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the mixture of other chrominance components and the occurrence of line crawl by obtaining the R, G and B signals of straight polarity in chroma signal demodulation circuits of same constitution. CONSTITUTION:Subtraction circuits 141 and 142 which obtain the difference signals between the output signals of separation circuits 121-128 which execute separation for respective picture element signals and the output signals of amplifier circuits 131-138, delay circuits 161-163 which delay the outputs for one horizontal scan period, and addition circuits 191-193 which add the output signals of the subtraction circuits and those of the delay circuits are provided. One chroma signal demodulation circuit is constituted by a pulse generation circuit 18 generating a pulse signal for controlling the separation circuits 121-128 in such a way that the objective picture element signal is added to the input side of the subtraction signals of the subtraction circuits 141 and 142 and the input side of signals to be subtracted, and the chroma signal decodemodulation circuits are provided for the number of the chroma signals to be demodulated. Thus, other chrominance components are impervious to be mixed and the occurrence of line crawl can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は単板カラーカメラに係り、特に回路が簡単で、
画素の実効的な開口率が色フィルタの種類によって異な
る撮像素子を用いた場合にも良好なりロマ信号を得るこ
とができる単板カラーカメラの信号処理装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a single-chip color camera, and in particular has a simple circuit.
The present invention relates to a signal processing device for a single-chip color camera that can obtain a good ROMA signal even when using an image sensor whose pixel's effective aperture ratio differs depending on the type of color filter.

〔従来の技術〕[Conventional technology]

近年の家庭用ビデオカメラは、固体撮像素子を用いるこ
とによって小型軽量化、高信頼性化、高生産性化を実現
している。特にモザイク状の色フィルタを組み合わせた
撮像素子をひとつだけ用いる単板カラーカメラは低価格
化にも有効な構成である。
In recent years, home video cameras have achieved smaller size, lighter weight, higher reliability, and higher productivity by using solid-state image sensors. In particular, a single-chip color camera that uses only one image sensor combined with a mosaic color filter is an effective configuration for reducing costs.

単板カラーカメラでは1つの撮像素子から輝度信号とク
ロマ信号を同時に得なければならないので、特に解像度
、色再現性等の画質が低下しやすい。単板カラーカメラ
で高品位なカラーのビデオ信号を得るために種々の色フ
ィルタあるいは信号処理方法が提案されている。
Since a single-chip color camera must simultaneously obtain a luminance signal and a chroma signal from one image sensor, image quality, particularly resolution and color reproducibility, tends to deteriorate. Various color filters or signal processing methods have been proposed to obtain high-quality color video signals with single-chip color cameras.

従来の単板カラーカメラの一例が特開昭58−1989
79で提案されている。上記従来例で提案されている単
板カラーカメラの色フィルタと信号処理回路をそれぞれ
第2図、第3図に示す。図に示す従来の単板カラーカメ
ラの動作は特開昭58−198979号明細書で詳しく
述べられているが、以下に簡単に説明する。
An example of a conventional single-chip color camera is JP-A-58-1989.
It has been proposed in 79. The color filter and signal processing circuit of the single-chip color camera proposed in the conventional example are shown in FIGS. 2 and 3, respectively. The operation of the conventional single-chip color camera shown in the figure is described in detail in Japanese Patent Laid-Open No. 198979/1982, but will be briefly explained below.

第2図に示す色フィルタはye(黄色透過)およびcy
(シアン透過)が繰り返される水平方向画素列Qlと、
G(緑色透過)およびW(全色透過)が繰り返される水
平方向画素列Q2が1列おきに交互に配置され、それら
の間にYeおよびWが繰り返される水平方向画素列り、
s、 Q4が配置されている。ここで色フィルタに対応
させる撮像素子が隣接する2列の画素信号を混合して読
み出す動作を行なうと、N番目の水平走査期間にはYa
およびCyの繰り返される画素列gzの画素信号とYe
およびWの繰り返される画素列Q8の画素信号が混合し
て取り出される。同様にn+1番目の水平走査期間には
GおよびWの繰り返される画素列Q2の画素信号と、Y
eとWの繰り返される画素列Q4の画素信号が混合して
取り出される。この結果n番目およびn+1番目の水平
走査期間に得られる信号S n HS n”1は次式で
表わされる。
The color filters shown in Figure 2 are ye (yellow transmission) and cy
A horizontal pixel row Ql in which (cyan transmission) is repeated;
Horizontal pixel rows Q2 in which G (green transmission) and W (all color transmission) are repeated are arranged alternately every other row, and horizontal pixel rows Q2 in which Ye and W are repeated between them,
s, Q4 are placed. Here, when the image sensor corresponding to the color filter mixes and reads out the pixel signals of two adjacent columns, in the Nth horizontal scanning period, Ya
and the pixel signal of repeated pixel column gz of Cy and Ye
The pixel signals of the pixel column Q8 in which the pixel rows Q8 and W are repeated are mixed and extracted. Similarly, during the (n+1)th horizontal scanning period, the pixel signals of the pixel column Q2, in which G and W are repeated, and the Y
The pixel signals of the pixel column Q4 in which e and W are repeated are mixed and extracted. As a result, the signal S n HS n''1 obtained in the n-th and n+1-th horizontal scanning periods is expressed by the following equation.

S n = 2 ・Ye+Cy+W+K”(2・Ye 
 Cy W)CO3ωt=2−Ye+Cy+W+K・(
R−2B)−CO5ωt   −C1)Sn+z=Ye
+2・W+G+K(G+Ye  2W)CO5c、+t
=Ye+2’W十G  K(R+2B)・COS ωt
、   +++ (2)ただしKは定数 Sn、Sn+1より変調成分Mn(=K・(R−2B)
・C08c、+t)。
S n = 2 ・Ye+Cy+W+K”(2・Ye
Cy W) CO3ωt=2-Ye+Cy+W+K・(
R-2B)-CO5ωt-C1)Sn+z=Ye
+2・W+G+K(G+Ye 2W)CO5c,+t
=Ye+2'W 10G K(R+2B)・COS ωt
, +++ (2) However, K is a constant Sn, and from Sn+1, the modulation component Mn (=K・(R-2B)
・C08c, +t).

Mn”1.(=−K ・ (R+2B)  ・CO8ω
t)を取り出し、加減算を行えば加算信号An+t、減
算信号D n + 1は次式であるのでB、Hのクロマ
信号を得ることができる。
Mn”1.(=-K ・(R+2B) ・CO8ω
t) and performs addition and subtraction, the addition signal An+t and the subtraction signal D n + 1 are expressed by the following equations, so B and H chroma signals can be obtained.

A n+ s ”” M n + M n+ 1=−4
B −K−CO3ωt      ・・・(3)D n
+1 == M n −M n+1=2・R−に−CO
3ωt      ・・・(4)すなわち第3図に示す
信号処理回路において、撮像素子2から1水平走査期間
ごとに交互に得られる信号Sn、Sn+1を増幅器3で
増幅した後、帯域ろ波器4に加えて変調成分Mnあるい
はMn+tを取り出す。取り出した変調成分Mnあるい
はM n + 1を]Hデイレイ回路5によって1水平
走査期間遅延させる。帯域ろ波器4とIHデイレイ回路
5から同時に得られる2つの変調成分MnとM n +
 1 をそれぞれ加算器6と減算器7に加え、加算信号
A n ” + と減算信号D n+1 を得る。こう
して得られた加算信号An+1 、減算信号D n ”
 1を復調回il!81.82に加えて低域信号に変換
すればB信号、R信号が得られる。
A n+ s ”” M n + M n+ 1=-4
B -K-CO3ωt...(3)D n
+1 == M n -M n+1=2・R- to -CO
3ωt (4) That is, in the signal processing circuit shown in FIG. In addition, modulation component Mn or Mn+t is extracted. The extracted modulation component Mn or Mn+1 is delayed by one horizontal scanning period by the H delay circuit 5. Two modulation components Mn and M n + obtained simultaneously from the bandpass filter 4 and the IH delay circuit 5
1 to the adder 6 and the subtractor 7, respectively, to obtain an addition signal A n '' + and a subtraction signal D n+1.The addition signal An+1 and the subtraction signal D n '' thus obtained are
Demodulate 1! In addition to 81.82, by converting to a low frequency signal, a B signal and an R signal can be obtained.

一方、輝度信号は撮像素子から得られる信号Sn。On the other hand, the brightness signal is a signal Sn obtained from an image sensor.

Sn”1を低域ろ波器9に加え、変調成分を取り除くこ
とによって得られる。また撮像素子から得られる信号を
低域ろ波器10に加えて変調成分のない低域信号に変換
した後、引算回路]1に加えて復調回路s1,82で得
たB信号、R信号を減ずればG信号が得られる。
It is obtained by applying Sn"1 to a low-pass filter 9 to remove modulation components. Also, after adding the signal obtained from the image sensor to a low-pass filter 10 and converting it into a low-frequency signal without modulation components. , subtraction circuit] 1, and by subtracting the B signal and R signal obtained by the demodulation circuits s1 and 82, the G signal can be obtained.

以上述べたように第2図に示す色フィルタを組み合わせ
たときに第3図に示す信号処理回路を用いれば、輝度信
号、R信号、B信号等を同時化して得ることができる。
As described above, when the color filters shown in FIG. 2 are combined and the signal processing circuit shown in FIG. 3 is used, the luminance signal, R signal, B signal, etc. can be obtained simultaneously.

これらをエンコーダ回路17に加えてカラーのビデオ信
号を得る。
These are added to the encoder circuit 17 to obtain a color video signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで撮像素子の各画素の上に直接色フィルタ片を形
成するオンチップ素子では、色フィルタ片が周辺はど薄
い凸レンズ状になることから集光効果が発生することが
知られている。凸レンズ状に形成された色フィルタ片に
対応した画素では集光効果により実効的な開口面積が増
大する。
By the way, it is known that in an on-chip device in which a color filter piece is formed directly on each pixel of an image sensor, a light condensing effect occurs because the color filter piece has a thin convex lens shape at the periphery. In a pixel corresponding to a color filter piece formed in the shape of a convex lens, the effective aperture area increases due to the light condensing effect.

ここでたとえばGフィルタをY。フィルタとCyフィル
タの重ね合すせで実現し、かつ、Y、3 フィルタが凸
レンズ状に形成された場合を仮定すると、Ye フィル
タとGフィルタに対応した画素の実効的開口率がCy 
フィルタとWフィルタに対応した画素の実効的開口率よ
りも大きくなる。この結果(1)、(2)式で示した撮
像素子の出力信号SnおよびS0+1は次のようになる
Here, for example, change the G filter to Y. Assuming that this is realized by overlapping the filter and the Cy filter, and the Y,3 filter is formed in the shape of a convex lens, the effective aperture ratio of the pixel corresponding to the Ye filter and the G filter is Cy
It becomes larger than the effective aperture ratio of the pixel corresponding to the filter and the W filter. As a result, the output signals Sn and S0+1 of the image sensor expressed by equations (1) and (2) are as follows.

S’ n=2’Ye+Cy+W+2・α・Ye十K・(
R−28) CO3ωt+K・2α(G+R)CO3ω
t=S n +2 α・(G+R)+K・2 α(G+
R)CO3c、+t −(5)・・・(6) ただしO〈α〈1 この結果、変調成分の加減算によって得られる信号A’
H+工t D’ n”lは次式となる。
S'n=2'Ye+Cy+W+2・α・Ye1K・(
R-28) CO3ωt+K・2α(G+R)CO3ω
t=S n +2 α・(G+R)+K・2 α(G+
R) CO3c, +t −(5)...(6) where O〈α〈1 As a result, the signal A' obtained by adding and subtracting the modulation components
H + t D'n"l is expressed as the following formula.

A′ 。+ヱ= −4・B −K−CO3ωtD ’ 
n + x = K−R・(2+ a戸CO5(、+ 
t    −(8)(7)、(8)式から明らかなよう
にA′。+1から復調回路で復調したB信号には他の色
信号成分が混入するという、第1の問題点が発生する。
A'. +ヱ= -4・B -K-CO3ωtD'
n + x = K-R・(2+ a-door CO5(, +
t - (8) As is clear from equations (7) and (8), A'. The first problem occurs in that other color signal components are mixed into the B signal demodulated from +1 by the demodulation circuit.

またこれに加えて、減算器7の減算入力側に加わる信号
と被減算入力側に加わる信号とはl水平走査期間ごとに
色フィルタの種類が入れかわるので、n+2番目の水平
走査期間に得られる減算信号D′。+2は次式となる。
In addition, since the type of color filter is switched every horizontal scanning period, the signal applied to the subtraction input side of the subtractor 7 and the signal applied to the subtracted input side are obtained in the n+2th horizontal scanning period. Subtraction signal D'. +2 becomes the following formula.

D’ n+x=−に−R・(2+ α)・CO3ωt 
  −(9)これは(8)式に示したn+1番目の水平
走査期間に得られる減算信号D′□十工とは極性が反転
している。そこでR信号を得るには復調回路82で低域
に変換した信号の極性を1水平走査期間ごとに反転させ
る操作が必要であり、一般にこうした操作では直流分の
変化をおさえることに注意を要する。したがって従来の
信号処理方法で復調したR信号には1水平走査期間ごと
の直流分変化によるラインクロールが発生しやすいとい
う、第2の問題点が生じる。
D' n+x=- to -R・(2+ α)・CO3ωt
-(9) This has a polarity inverted from that of the subtraction signal D'□10 obtained in the (n+1)th horizontal scanning period shown in equation (8). Therefore, in order to obtain the R signal, it is necessary to invert the polarity of the signal converted to a low frequency by the demodulation circuit 82 every horizontal scanning period, and in general, care must be taken to suppress changes in the DC component in such an operation. Therefore, a second problem arises in that the R signal demodulated by the conventional signal processing method is likely to cause line crawl due to changes in the DC component for each horizontal scanning period.

また、G信号は前述のように撮像素子の出力信号を低域
ろ波器]−〇で帯域制限して得た信号と、撮像素子の出
力信号を帯域ろ波器4と通常復調回路81.82に含ま
れる低域ろ波器で帯域制限して得た信号との減算で得て
いる。ここで一般に低域ろ波器の周波数特性と帯域ろ波
器を通して低域信号に変換する際の周波数特性を一致さ
せることはむずかしい。この結果特に被写体の境界部で
は低域ろ波器10から得られる撮像素子の出力信号のR
成分、B成分を復調回路81.82で得られる信号で完
全には除去しきれず、境界部のG信号には他の色信号成
分が混入しやすいという、第3の問題点が発生する。
Further, the G signal is a signal obtained by band-limiting the output signal of the image sensor with the low-pass filter ]-0 as described above, and a signal obtained by band-limiting the output signal of the image sensor with the band filter 4 and the normal demodulation circuit 81. It is obtained by subtracting the signal obtained by band-limiting with a low-pass filter included in 82. Generally, it is difficult to match the frequency characteristics of a low-pass filter with the frequency characteristics when converting into a low-pass signal through a bandpass filter. As a result, especially at the boundary of the object, the R of the output signal of the image sensor obtained from the low-pass filter 10 is
A third problem occurs in that the G signal and the B component cannot be completely removed by the signals obtained by the demodulation circuits 81 and 82, and other color signal components are likely to be mixed into the G signal at the boundary.

以上述べたように、従来の信号処理回路によると色フィ
ルタ片の集光効果に起因して画素の実効的開口率に差異
が発生すると、復調したR信号、B信号に他の色信号成
分が混入するという欠点、あるいはR信号にラインクロ
ールが発生しやすいという欠点、また低域ろ波器で得た
信号の周波数特性と帯域ろ波器で得た信号の周波数特性
が異なる場合には被写体境界部のG信号に他の色信号成
分が混入しやすいという欠点があった。
As described above, according to conventional signal processing circuits, when a difference occurs in the effective aperture ratio of pixels due to the light-condensing effect of color filter pieces, other color signal components are added to the demodulated R and B signals. The disadvantage is that line crawl is likely to occur in the R signal, and if the frequency characteristics of the signal obtained by the low-pass filter and the signal obtained by the bandpass filter are different, the subject boundary may occur. There is a drawback that other color signal components are likely to be mixed into the G signal of the area.

本発明の目的は画素の実効的開口率に差異が発生したと
きにもB信号、R信号に他の色信号成分が混入せず、被
写体境界部のG信号にも他の色信号成分が混入しにくく
、ラインクロールも発生しない信号処理装置を提供する
ことである。
The purpose of the present invention is to prevent other color signal components from being mixed into the B and R signals even when a difference occurs in the effective aperture ratio of pixels, and to prevent other color signal components from being mixed into the G signal at the object boundary. It is an object of the present invention to provide a signal processing device that is difficult to control and does not cause line crawl.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は撮像素子から得られる出力信号を画素信号ご
とに分離する分離回路と、各分離回路の出力信号を増幅
する増幅回路と、各増幅回路の出力信号の差信号を得る
減算回路と、減算回路の出力を1水平走査期間遅延する
遅延回路と、減算回路の出力信号と遅延回路の出力信号
を加算する加算回路と、減算回路の減算信号入力側およ
び被減算信号入力側に目的の画素信号が加わるよう分離
回路を制御するためのパルス信号を発生するパルス発生
回路とでひとつのクロマ信号復調回路を構成し、復調す
るクロマ信号の数だけクロマ信号復調回路を設けること
によって達成される。
The above purpose is to provide a separation circuit that separates the output signal obtained from the image sensor into each pixel signal, an amplifier circuit that amplifies the output signal of each separation circuit, a subtraction circuit that obtains a difference signal between the output signals of each amplifier circuit, and a subtraction circuit that obtains a difference signal between the output signals of each amplifier circuit. A delay circuit that delays the output of the circuit by one horizontal scanning period, an addition circuit that adds the output signal of the subtraction circuit and the output signal of the delay circuit, and a target pixel signal on the subtraction signal input side and subtracted signal input side of the subtraction circuit. This is achieved by constructing one chroma signal demodulation circuit with a pulse generation circuit that generates a pulse signal for controlling the separation circuit so that chroma signals are added, and providing as many chroma signal demodulation circuits as there are chroma signals to be demodulated.

〔作用〕[Effect]

本発明において、分離回路の出力信号を増幅する増幅回
路は各画素の実効的な開口率を等しくするよう動作する
のでR信号、B信号に混入する他の色信号成分を軽減す
ることができる。またG信号をB信号、R信号と同じ構
成のクロマ信号復調回路で復調するので、G信号の周波
数特性をB信号、R信号と等しくできる。これによって
被写体境界部でのにせの色付きを防ぐことができる。ま
タハルス発生回路で発生するパルスはクロマ信号復調回
路における減算回路の出力信号が常に正極性となるよう
入力の分離回路を制御する。この結果上水平走査期間毎
に出力の極性を切りかえることによって発生しやすいラ
インクロールを防止できる。
In the present invention, since the amplifier circuit that amplifies the output signal of the separation circuit operates to equalize the effective aperture ratio of each pixel, it is possible to reduce other color signal components mixed into the R signal and the B signal. Furthermore, since the G signal is demodulated by a chroma signal demodulation circuit having the same configuration as the B and R signals, the frequency characteristics of the G signal can be made equal to those of the B and R signals. This can prevent false coloration at the subject boundary. The pulses generated by the Matahals generation circuit control the input separation circuit so that the output signal of the subtraction circuit in the chroma signal demodulation circuit always has positive polarity. As a result, by switching the output polarity every horizontal scanning period, it is possible to prevent line crawling, which is likely to occur.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図を用いて説明する。第1
図においては従来例と同様、撮像素子2に第2図に示す
色フィルタが組み合わされており、隣接する2列の画素
信号を混合して読み出す動作を行うものとする。また第
2図に示す色フィルタではYe、Gの画素の実効的な開
口率が他のものの(1−十α)倍であるものとする。
Embodiments of the present invention will be described below with reference to FIG. 1st
In the figure, as in the conventional example, the color filter shown in FIG. 2 is combined with the image sensor 2, and the pixel signals of two adjacent columns are mixed and read out. Further, in the color filter shown in FIG. 2, it is assumed that the effective aperture ratio of the Ye and G pixels is (1-10α) times that of the other pixels.

このときn番目の水平走査期間には画素列Ω工の信号と
画素列Ω8の信号が混合して読み出されるので、撮像素
子2から得られる信号は第4図(a)に示すように(Y
e十Ye)と(Cy+W)が交互に繰り返されるものと
なる。またn+1番目の水平走査期間には画素列Q2の
信号と画素列Q4の信号が混合されて読み出されるので
、撮像素子2から得られる信号は第4図(b)に示すよ
うに(G + Y e )と(W+W)が交互に繰り返
されるものとなる。そこで撮像素子2から得られる信号
を増幅器3で増幅した後、分離回路121〜12Bに加
える。分離回路12zにはパルス発生回路18から得ら
れる第4図(C)に示す位相のサンプリングパルスを加
え、n番目の水平走査期間には(Ye+Ye)の画素信
号を、n+1番目の水平走査期間には(G+Ye)の画
素信号を分離する。−方分離回路122には第4図(d
)に示す位相のサンプリングパルスを加え、n番目の水
平走査期間には(W + Cy)の画素信号を、n+1
番目の水平走査期間には(W+W)の画素信号を分離す
る。
At this time, during the n-th horizontal scanning period, the signals of the pixel column Ω and the signals of the pixel column Ω8 are mixed and read out, so the signal obtained from the image sensor 2 is as shown in FIG. 4(a).
e+Ye) and (Cy+W) are repeated alternately. Also, during the (n+1)th horizontal scanning period, the signal of pixel column Q2 and the signal of pixel column Q4 are mixed and read out, so the signal obtained from image sensor 2 is (G + Y) as shown in FIG. 4(b). e) and (W+W) are repeated alternately. Therefore, after the signal obtained from the image sensor 2 is amplified by the amplifier 3, it is applied to the separation circuits 121 to 12B. A sampling pulse of the phase shown in FIG. 4(C) obtained from the pulse generating circuit 18 is added to the separation circuit 12z, and a pixel signal of (Ye+Ye) is applied to the n-th horizontal scanning period, and a pixel signal of (Ye+Ye) is applied to the n+1-th horizontal scanning period. separates (G+Ye) pixel signals. - direction separation circuit 122 is shown in FIG.
), and in the n-th horizontal scanning period, the pixel signal of (W + Cy) is added to the pixel signal of n+1
During the th horizontal scanning period, (W+W) pixel signals are separated.

ここで分離回路12g122の出力信号をそれぞれ増幅
回路131,132に加え、たとえば増幅器路131の
増幅率を□倍に、増幅回路132の1 +α 増幅率を11倍に設定し、画素の実効的な開口率の違い
を補正する。さらに増幅回路131,132の出力信号
をそれぞれ減算回路141の減算信号入力側、被減算信
号入力側に加え、得られた減算回路14工の出力信号を
低域ろ波器151で帯域制限した後IHデイレイ回路1
6zで1水平走査期間遅延させる。この結果、低域ろ波
器1−51の出力信号とIHデイレイ回路16zの出力
信号を加算回路19工に加えて得られる信号S1は次の
とおりであり、他の色信号の混入がないB信号が得られ
る。
Here, the output signals of the separation circuits 12g122 are applied to the amplifier circuits 131 and 132, respectively, and the amplification factor of the amplifier circuit 131 is set to □ times, and the amplification factor of the amplifier circuit 132 is set to 11 times, so that the effective pixel Correct the difference in aperture ratio. Furthermore, the output signals of the amplifier circuits 131 and 132 are respectively added to the subtraction signal input side and the subtracted signal input side of the subtraction circuit 141, and the resulting output signal of the subtraction circuit 14 is band-limited by a low-pass filter 151. IH delay circuit 1
6z to delay one horizontal scanning period. As a result, the signal S1 obtained by adding the output signal of the low-pass filter 1-51 and the output signal of the IH delay circuit 16z to the adder circuit 19 is as follows, and the signal S1 obtained by adding the output signal of the low-pass filter 1-51 and the output signal of the IH delay circuit 16z is as follows. I get a signal.

=4・B               ・・・(10
)また、分離回路128に第4図(e)に示す位相のサ
ンプリングパルスを加え、n番目の水平走査期間には(
Y e + Y e )の画素信号を、n+1番目の水
平走査期間には(W+W)の画素信号を分離する。一方
分離回路1.24に第4図(f)に示すサンプリングパ
ルスを加え、n番目の水平走査期間には(Cy + W
 )の画素信号を、n+1番目の水平走査期間には(G
 十Y e)の画素信号を分離する。
=4・B...(10
) Also, a sampling pulse with the phase shown in FIG. 4(e) is applied to the separation circuit 128, and in the n-th horizontal scanning period (
The pixel signals of Y e + Y e ) are separated, and the pixel signals of (W+W) are separated in the n+1-th horizontal scanning period. On the other hand, the sampling pulse shown in FIG. 4(f) is applied to the separation circuit 1.24, and (Cy + W
), the pixel signal of (G
10 Y e) pixel signals are separated.

こうして得た分離回路128,1.24の出力信号を増
幅回路13a、i3aに加えて増幅する。ここでG、Y
e画素にのみ実効的な開口率の増加が発生(J7) しているときには(8)式よりR信号に他の色信号成分
が混入することはないので増幅回路138゜134の増
幅率はともに1倍で良い。増幅回路138゜134の出
力信号をそれぞれ減算回路142の被減算信号入力側お
よび減算信号入力側に加える。減算回路142の出力信
号を低域ろ波器152で帯域制限した後、1Hデイレイ
回路162で1水平走査期間遅延させる。低域ろ波器1
52の出力信号とIHデイレイ回路162の出力信号を
加算回路192に加えて得られる信号S2.は次式のと
おりであり、常に正極性のR信号を得ることができる。
The output signals of the separation circuits 128, 1.24 thus obtained are added to the amplifier circuits 13a, i3a and amplified. Here G, Y
When the effective aperture ratio increases only in the e pixel (J7), other color signal components will not be mixed into the R signal from equation (8), so the amplification factors of the amplifier circuits 138 and 134 are both 1x is fine. The output signals of the amplifier circuits 138 and 134 are applied to the subtracted signal input side and the subtracted signal input side of the subtraction circuit 142, respectively. After the output signal of the subtraction circuit 142 is band-limited by a low-pass filter 152, it is delayed by one horizontal scanning period by a 1H delay circuit 162. Low pass filter 1
52 and the output signal of the IH delay circuit 162 to an adder circuit 192, a signal S2. is as shown in the following equation, and a positive R signal can always be obtained.

52=((1,+ α)(Ye+Ye))  (Cy+
W)((1+ α)(G+Ye))+(W+W)=(2
+α)・R・・・(IJ) 一方、2水平走査期間に得られる画素信号の加算信号S
aは次のような割合でR,G、B成分を含んでいる。
52=((1,+ α)(Ye+Ye)) (Cy+
W) ((1+α)(G+Ye))+(W+W)=(2
+α)・R...(IJ) On the other hand, the addition signal S of pixel signals obtained during two horizontal scanning periods
a contains R, G, and B components in the following proportions.

5a=((1+α)(Ye+Ye))+(cy+w)十
((1+ α)(G+’Ye))+ (W+W)=(8
+4・α)・G+(6+3・α)・Ri・B  ・・・
(]2)(10)、(11)、(12)式の関係より2
水平走査期間に得られる画素信号の加算信号Saから加
算回路19x、192の出力信号S 1182をそれぞ
れ1倍あるいは3倍に増幅して減ずればG信号を得るこ
とができる。この関係を画素信号にまで分離して整理す
ると次のとおりである。
5a=((1+α)(Ye+Ye))+(cy+w)ten((1+α)(G+'Ye))+(W+W)=(8
+4・α)・G+(6+3・α)・Ri・B...
(]2) From the relationship of equations (10), (11), and (12), 2
The G signal can be obtained by amplifying and subtracting the output signal S1182 of the adder circuits 19x and 192 by a factor of 1 or 3 from the addition signal Sa of pixel signals obtained during the horizontal scanning period. This relationship can be separated into pixel signals and summarized as follows.

5s=Sa  Sニー3・S2 ・・(13) そこで分離回路125に第4図(g)に示すサンプリン
グパルスを加えてn番目の水平走査期間に(Y e +
 Y e )の画素信号を分離する。これを増幅加減算
回路]7の減算信号入力側に加える。同様に分離回路1
26〜128に第4図(h)〜(、j)に示すサンプリ
ングパルスを加えて分離した(Cy+W)、(G+Ye
)、(W+W)の画素信号をそれぞれ増幅回路]−38
〜13δに加えて3倍、1、36.1.37の出力信号
は加減算回路20の被減算信号入力側に加え、増幅回路
138の出力信号は加減算回路20の減算信号入力側に
加える。さらに加減算回路20の出力信号を低域ろ波器
153で帯域制限した後、IHデイレイ回路]63で遅
延させる。こうして得られた1Hデイレイ回路168の
出力信号と低域ろ波器153の出力信号を加算回路19
8に加えれば(]3)式が満たされるのでG信号を得る
ことができる。
5s=Sa S knee 3・S2 (13) Therefore, the sampling pulse shown in FIG. 4(g) is added to the separation circuit 125, and (Y e +
Separate the pixel signals of Y e ). This is added to the subtraction signal input side of the amplification addition/subtraction circuit]7. Similarly, separation circuit 1
(Cy+W), (G+Ye) were separated by applying the sampling pulses shown in FIG.
), (W+W) pixel signals respectively]-38
In addition to ~13δ, the output signal of 3 times 1, 36.1.37 is added to the subtracted signal input side of the addition/subtraction circuit 20, and the output signal of the amplifier circuit 138 is applied to the subtraction signal input side of the addition/subtraction circuit 20. Further, the output signal of the adder/subtracter circuit 20 is band-limited by a low-pass filter 153 and then delayed by an IH delay circuit 63. The output signal of the 1H delay circuit 168 obtained in this way and the output signal of the low-pass filter 153 are added to an adder circuit 19.
8, the equation (]3) is satisfied and a G signal can be obtained.

また、第4図(C)と(g)、に)との比較から分離回
路121の出力信号は分離回路12Bの出力信号と分離
回路127の出力信号との加算信号である。同様に分離
回路122の出力信号は分離回路126の出力信号と分
離回路128の出力信号との加算信号であり、分離回路
123の出力信号は分離回路125の出力信号と分離回
路128の出力信号との加算信号、分離回路124の出
力信号は分離回路126の出力信号と分離回路127の
出力信号と加算信号である。したがって分離回路125
〜128の出力信号を加算回路211〜214で合成す
ることによって分離回路121〜コ、24を省略する第
5図に示す他の実施例によっても、第1図の実施例と同
様の効果が得られる。
Further, from a comparison with FIGS. 4(C), (g), and 4), the output signal of the separation circuit 121 is a sum signal of the output signal of the separation circuit 12B and the output signal of the separation circuit 127. Similarly, the output signal of the separation circuit 122 is the sum of the output signal of the separation circuit 126 and the output signal of the separation circuit 128, and the output signal of the separation circuit 123 is the sum of the output signal of the separation circuit 125 and the output signal of the separation circuit 128. The addition signal and the output signal of the separation circuit 124 are the output signal of the separation circuit 126, the output signal of the separation circuit 127, and the addition signal. Therefore, the separation circuit 125
Another embodiment shown in FIG. 5 in which the separation circuits 121 to 24 are omitted by combining the output signals of the circuits 121 to 128 with adder circuits 211 to 214 can also provide the same effect as the embodiment shown in FIG. It will be done.

また第1図に示す実施例はR,G、B信号を復調してか
らコンコーダ回路17に加えて信号処理を例にとって説
明したが、G信号を復調する代わりに輝度信号を用いる
簡易的な信号処理が可能である。この場合の実施例は第
6図に示すように、G信号の復調に用いていた分離回路
125〜]28、増幅回路135〜138および加減算
回路20を除去し、増幅器3の出力信号を直接低域ろ波
器153に加えた後IHデイレイ回路163、加算回路
198を用いてR信号、B信号と同じ帯域の輝度信号を
得ればよい。
Furthermore, the embodiment shown in FIG. 1 has been explained by taking as an example the signal processing in which the R, G, and B signals are demodulated and then added to the concoder circuit 17, but a simple signal processing method using a luminance signal instead of demodulating the G signal Processing is possible. The embodiment in this case, as shown in FIG. After adding it to the bandpass filter 153, the IH delay circuit 163 and addition circuit 198 may be used to obtain a luminance signal in the same band as the R signal and the B signal.

また本発明の従来例および実施例では撮像素子2に第2
図に示す色フィルタを組み合わせ、2列の画素列の信号
を混合して読み出す動作を行なう場合を例にとって説明
した。しかし実施例の説明で明らかなようにn番目の水
平走査期間で2種の信号sa、 st、が得られ、n+
1番目の水平走査期間で別の2種の信号Sc、Sbが得
られ、次の関係で2種のクロマ信号Ca 、 Cbが得
られる場合には同様に本発明が適用可能である。
Further, in the conventional example and the embodiment of the present invention, the image sensor 2 has a second
An example has been described in which the color filters shown in the figure are combined and signals from two pixel columns are mixed and read out. However, as is clear from the description of the embodiment, two types of signals sa and st are obtained in the n-th horizontal scanning period, and n+
The present invention is similarly applicable to the case where two other types of signals Sc and Sb are obtained in the first horizontal scanning period and two types of chroma signals Ca and Cb are obtained according to the following relationship.

Ca=(Sa  Sb)十(Sc+5d)Cb=(Sa
  Sb)+(Sd−8c)これはたとえば、第7図に
示す色フィルタを用い、撮像素子で各水平走査期間に1
列の画素列の信号のみを読み出す動作を行なう場合にあ
たる。
Ca=(Sa Sb) 10(Sc+5d)Cb=(Sa
Sb) + (Sd-8c) This can be done, for example, by using the color filter shown in FIG.
This corresponds to the case where an operation is performed to read out only the signal of the pixel column.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば同じ構成の復調回路で
常に正極性のR,G、B信号が得られるので、他の色信
号成分の混入がないクロマ信号を得ることができる。
As described above, according to the present invention, R, G, and B signals of positive polarity can always be obtained with a demodulation circuit having the same configuration, so that a chroma signal without any other color signal components mixed in can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第5図、第6図は本発明による単板カラー
ラメラの信号処理装置の一実施例を示す構成図、第2図
および第7図は本発明が適用可能な単板カラーカメラの
色フィルタ構成の一例を示す図、第3図は従来例で示さ
れている単板カラーカメラの信号処理装置の構成図、第
4図は実施例において撮像素子から得られる画素信号と
信号分離に用いるサンプリングパルスの位相関係を示す
図である。 2・・・撮像素子、12・・・分離回路、13・・・増
幅回路、]、4・・・減算回路、コ、6・・・IHデイ
レイ回路、]8・・・パルス発生回路、19・・・加算
回路、20・・・加減算回路。
FIGS. 1, 5, and 6 are block diagrams showing an embodiment of a single-plate color lamella signal processing device according to the present invention, and FIGS. 2 and 7 show a single-plate color camera to which the present invention can be applied. Fig. 3 is a block diagram of a signal processing device for a single-chip color camera shown in a conventional example, and Fig. 4 shows a pixel signal obtained from an image sensor and signal separation in an embodiment. FIG. 3 is a diagram showing the phase relationship of sampling pulses used in FIG. 2...Image sensor, 12...Separation circuit, 13...Amplification circuit, ], 4...Subtraction circuit, 6...IH delay circuit, ]8...Pulse generation circuit, 19 ...addition circuit, 20...addition/subtraction circuit.

Claims (1)

【特許請求の範囲】 1、二次元状に配列された光電変換機能をもつ複数の画
素群と、上記複数の画素群のうち1列あるいは隣接する
2列で構成される第1の水平方向画素列上の第1の画素
群に対応した第1の色フィルタ群と、上記第1の水平方
向画素列上の上記第1の画素群の間に位置する第2の画
素群に対応した第2の色フィルタ群と、上記複数の画素
群のうち、上記第1の水平方向画素列の間に位置する1
列あるいは隣接する2列で構成される第2の水平方向画
素列上の第3の画素群に対応し透過光が上記第1の色フ
ィルタ群より任意に定めた第1の色成分だけ少なくかつ
上記第2の色フィルタ群より任意に定めた第2の色成分
だけ多い第3の色フィルタ群と、上記第2の水平方向画
素列上の上記第3の画素群の間に位置する第4の画素群
に対応し透過光が上記第1の色フィルタ群より上記第2
の色成分だけ少なくかつ上記第2の色フィルタ群より上
記第1の色成分だけ多い第4の色フィルタ群と、上記第
1の水平方向画素列の出力信号と上記第2の水平方向画
素列の出力信号を水平走査期間おきに交互に取り出す駆
動回路とをそなえた撮像素子を用い、少なくとも、上記
第1の画素群の出力信号および上記第3の画素群の出力
信号と上記第2の画素群の出力信号および上記第4の画
素群の出力信号との差信号を得る第1の減算回路と、上
記第1の減算回路の出力信号を1水平走査期間遅延させ
る第1の遅延回路と、上記第1の減算回路の出力信号と
上記第1の遅延回路の出力信号とを加算する第1の加算
回路と、上記第1の画素群の出力信号および上記第4の
画素群の出力信号と上記第2の画素群の出力信号および
上記第3の画素群の出力信号との差信号を得る第2の減
算回路と、上記第2の減算回路の出力信号を1水平走査
期間遅延させる第2の遅延回路と、上記第2の減算回路
の出力信号と上記第2の遅延回路の出力信号とを加算す
る第2の加算回路とをそなえたことを特徴とする単板カ
ラーカメラのクロマ信号処理装置。 2、上記第1の減算回路が、上記第1の画素群の出力信
号と上記第3の画素群の出力信号を抽出する第1の分離
回路と、上記第1の分離回路の出力信号を増幅する第1
の増幅回路と、上記第2の画素群の出力信号と上記第4
の画素群の出力信号を抽出する第2の分離回路と、上記
第2の分離回路の出力信号を増幅する第2の増幅回路と
、上記第1の増幅回路の出力信号と上記第2の増幅回路
の出力信号とを引算する第1の引算回路で構成され、上
記第2の減算回路が、上記第1の画素群の出力信号と上
記第4の画素群の出力信号を抽出する第3の分離回路と
、上記第3の分離回路の出力信号を増幅する第3の増幅
回路と、上記第2の画素群の出力信号と上記第3の画素
群の出力信号を抽出する第4の分離回路と、上記第4の
分離回路の出力信号を増幅する第4の増幅回路と、上記
第3の増幅回路の出力信号と上記第4の増幅回路の出力
信号とを引算する第2の引算回路で構成されることを特
徴とする特許請求の範囲第1項記載の単板カラーカメラ
のクロマ信号処理装置。 3、上記第1の減算回路および上記第2の減算回路が、
上記第1の画素群の出力信号を抽出する第5の分離回路
と、上記第2の画素群の出力信号を抽出する第6の分離
回路と、上記第3の画素群の出力信号を抽出する第7の
分離回路と、上記第4の画素群の出力信号を抽出する第
8の分離回路と、上記第5の分離回路の出力信号を増幅
する第5の増幅回路と、上記第6の分離回路の出力信号
を増幅する第6の増幅回路と、上記第7の分離回路の出
力信号を増幅する第7の増幅回路と、上記第8の分離回
路の出力信号を増幅する第8の増幅回路と、上記第5の
増幅回路の出力信号と上記第7の増幅回路の出力信号と
を加算する第3の加算回路と、上記第6の増幅回路の出
力信号と上記第8の増幅回路の出力信号とを加算する第
4の加算回路と、上記第3の加算回路の出力信号と上記
第4の加算回路の出力信号とを引算する第3の引算回路
と、上記第5の増幅回路の出力信号と上記第8の増幅回
路の出力信号とを加算する第5の加算回路と、上記第6
の増幅回路の出力信号と上記第7の増幅回路の出力信号
とを加算する第6の加算回路と、上記第5の加算回路の
出力信号と上記第6の加算回路の出力信号とを引算する
第4の引算回路とで構成されていることを特徴とする特
許請求の範囲第1項記載の単板カラーカメラのクロマ信
号処理装置。
[Claims] 1. A first horizontal pixel consisting of a plurality of two-dimensionally arranged pixel groups having a photoelectric conversion function, and one column or two adjacent columns among the plurality of pixel groups. a first color filter group corresponding to the first pixel group on the column; and a second color filter group corresponding to the second pixel group located between the first pixel group on the first horizontal pixel column. and one color filter group located between the first horizontal pixel column among the plurality of pixel groups.
Corresponding to a third pixel group on a second horizontal pixel column consisting of a column or two adjacent columns, the transmitted light is smaller by an arbitrarily determined first color component than the first color filter group, and A third color filter group having an arbitrarily determined second color component larger than the second color filter group, and a fourth color filter group located between the third pixel group on the second horizontal pixel column. corresponding to the pixel group, the transmitted light is transmitted from the first color filter group to the second color filter group.
a fourth color filter group that has fewer color components than the second color filter group and has more color components than the second color filter group, an output signal of the first horizontal pixel column, and the second horizontal pixel column. using an image sensor equipped with a drive circuit that alternately takes out output signals of the first pixel group and the output signals of the third pixel group at every horizontal scanning period, a first subtraction circuit that obtains a difference signal between the output signal of the group and the output signal of the fourth pixel group; a first delay circuit that delays the output signal of the first subtraction circuit by one horizontal scanning period; a first addition circuit that adds an output signal of the first subtraction circuit and an output signal of the first delay circuit; an output signal of the first pixel group and an output signal of the fourth pixel group; a second subtraction circuit that obtains a difference signal between the output signal of the second pixel group and the output signal of the third pixel group; and a second subtraction circuit that delays the output signal of the second subtraction circuit by one horizontal scanning period. Chroma signal processing for a single-chip color camera, characterized in that it comprises a delay circuit, and a second addition circuit that adds the output signal of the second subtraction circuit and the output signal of the second delay circuit. Device. 2. The first subtraction circuit amplifies the output signal of the first separation circuit that extracts the output signal of the first pixel group and the output signal of the third pixel group, and the first separation circuit. First thing to do
an amplifier circuit, an output signal of the second pixel group, and the fourth pixel group.
a second separation circuit that extracts the output signal of the pixel group; a second amplification circuit that amplifies the output signal of the second separation circuit; and an output signal of the first amplification circuit and the second amplification circuit. The second subtraction circuit is configured with a first subtraction circuit that subtracts the output signal of the circuit, and the second subtraction circuit extracts the output signal of the first pixel group and the output signal of the fourth pixel group. a third amplification circuit that amplifies the output signal of the third separation circuit; and a fourth separation circuit that extracts the output signal of the second pixel group and the output signal of the third pixel group. a separation circuit, a fourth amplifier circuit that amplifies the output signal of the fourth separation circuit, and a second amplifier circuit that subtracts the output signal of the third amplifier circuit and the output signal of the fourth amplifier circuit. 2. A chroma signal processing device for a single-chip color camera according to claim 1, characterized in that it is constituted by a subtraction circuit. 3. The first subtraction circuit and the second subtraction circuit are
a fifth separation circuit that extracts the output signal of the first pixel group; a sixth separation circuit that extracts the output signal of the second pixel group; and a sixth separation circuit that extracts the output signal of the third pixel group. a seventh separation circuit; an eighth separation circuit that extracts the output signal of the fourth pixel group; a fifth amplification circuit that amplifies the output signal of the fifth separation circuit; a sixth amplifier circuit that amplifies the output signal of the circuit; a seventh amplifier circuit that amplifies the output signal of the seventh separation circuit; and an eighth amplifier circuit that amplifies the output signal of the eighth separation circuit. and a third addition circuit that adds the output signal of the fifth amplifier circuit and the output signal of the seventh amplifier circuit, and the output signal of the sixth amplifier circuit and the output of the eighth amplifier circuit. a fourth addition circuit that adds the signals; a third subtraction circuit that subtracts the output signal of the third addition circuit and the output signal of the fourth addition circuit; and the fifth amplifier circuit. a fifth addition circuit for adding the output signal of the eighth amplifier circuit and the output signal of the eighth amplifier circuit;
a sixth addition circuit that adds the output signal of the amplifier circuit and the output signal of the seventh amplifier circuit; and subtracts the output signal of the fifth addition circuit and the output signal of the sixth addition circuit. 2. A chroma signal processing device for a single-chip color camera according to claim 1, further comprising a fourth subtraction circuit.
JP62270159A 1987-10-28 1987-10-28 Chroma signal processor of veneer color camera Pending JPH01114287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270159A JPH01114287A (en) 1987-10-28 1987-10-28 Chroma signal processor of veneer color camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270159A JPH01114287A (en) 1987-10-28 1987-10-28 Chroma signal processor of veneer color camera

Publications (1)

Publication Number Publication Date
JPH01114287A true JPH01114287A (en) 1989-05-02

Family

ID=17482362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270159A Pending JPH01114287A (en) 1987-10-28 1987-10-28 Chroma signal processor of veneer color camera

Country Status (1)

Country Link
JP (1) JPH01114287A (en)

Similar Documents

Publication Publication Date Title
US4245241A (en) Solid-state color imaging device
JPH0459832B2 (en)
JPH01114287A (en) Chroma signal processor of veneer color camera
JP3576600B2 (en) Color imaging device
JP2624657B2 (en) Solid color camera
JPS62190993A (en) Solid-state image pickup device
US5387931A (en) Carrier level balancing circuit for color camera
JPS60254977A (en) Color solid-state image pickup device
JP2538867B2 (en) Single-plate solid-state imaging device
JPH0488782A (en) Image pickup device
JP2936827B2 (en) Two-chip imaging device
JPS58143675A (en) Solid-state image pickup device
JP2632797B2 (en) Color solid-state imaging device
JP2776849B2 (en) Solid color camera
JPS6276884A (en) Solid-state image pickup device
JPS61296876A (en) Solid-state image pickup device
JP2585461B2 (en) Solid color camera
JPH0197088A (en) Chroma signal processor for veneer color camera
JP3422027B2 (en) Luminance balance circuit in color camera and signal processing circuit thereof
KR820001596B1 (en) Solid-state color imaging device
JP2655436B2 (en) Color solid-state imaging device
JPH089395A (en) Color image pickup device
CA2054055A1 (en) Solid-state image pickup device having a color filter
JPS6079890A (en) Color solid-state image pickup device
JPH0832052B2 (en) Color solid-state imaging device