JPS59168790A - Color image pickup device - Google Patents

Color image pickup device

Info

Publication number
JPS59168790A
JPS59168790A JP58042563A JP4256383A JPS59168790A JP S59168790 A JPS59168790 A JP S59168790A JP 58042563 A JP58042563 A JP 58042563A JP 4256383 A JP4256383 A JP 4256383A JP S59168790 A JPS59168790 A JP S59168790A
Authority
JP
Japan
Prior art keywords
signal
light
video signals
color
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58042563A
Other languages
Japanese (ja)
Inventor
Yoshikuni Tanaka
田中 敬訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58042563A priority Critical patent/JPS59168790A/en
Publication of JPS59168790A publication Critical patent/JPS59168790A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals

Abstract

PURPOSE:To obtain a solid-state image pickup device having excellent picture quality and less generation of a chrominance signal because of the error of vertical correlation by using a video signal comprising three scanning lines so as to obtain a red signal, a blue signal and a luminance signal. CONSTITUTION:A transparent signal W and a green signal G are obtained from the n-th scanning line of a solid-state image pickup element and a cyan CY and a yellow signal Ye are obtained alternately from the (n+1)-th scanning line at each other picture element. In applying 1H delay and 2H delay to the output signal of the solid-state image pickup element by using two 1H delay lines, when the [n+1(H)]th output signal is obtained, the signal of the n(H)- the [n-(H)] is obtained. In forming an average value by adding respectively the [n-1(H)] and the [n+1(H)] CY signals by 1/2 each, the signal is formed by interpolating the CY signal of the W signal at the n(H) being a reference. Further, the red R signal is obtained by operating the CY signal and the W signal thus obtained.

Description

【発明の詳細な説明】 本発明は電荷転送撮像素子(以下CCD撮像素子と略記
する。)を用いたカラー撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color imaging device using a charge transfer imaging device (hereinafter abbreviated as CCD imaging device).

1個の撮像素子を用いてカラーテレビジョン信号を得る
方法ζこついては、透明と黄、透明とシアンよりなる2
種のフィルターを被写体の実像を結ぶ位置におき赤信号
と青信号を空間変調して緑信号と周波数多重化して撮像
素子より取り出す方法が知られている。この方法では撮
像素子の出力を低域フィルターに通して輝度信号を得、
−万、赤信号と青信号は空間変調の周波数で決まる搬送
波成分(以下変調成分と略記する。)として撮像素子の
出力に多重化して含まれているのでこれを帯域フィルタ
ーで抜き出し、この抜き出した変調成分からさらに赤信
号と青信号を分離して得るようになされている。
The trick is to obtain a color television signal using one image sensor.
A known method is to place a filter at a position that connects the real image of the subject, spatially modulate the red and blue signals, frequency multiplex them with the green signal, and extract them from the image sensor. In this method, the output of the image sensor is passed through a low-pass filter to obtain a luminance signal.
- Since the red signal and the blue signal are multiplexed and included in the output of the image sensor as a carrier wave component (hereinafter abbreviated as modulation component) determined by the frequency of spatial modulation, they are extracted using a bandpass filter, and the extracted modulation A red signal and a green signal are further separated from the components and obtained.

従来変調成分から赤信号と青信号を分離する方法として
、隣り合った2本の走査線に含まれている赤の変調成分
と青の変調成分が周波数インターリ−ピングの関係を持
つように2種の色フィルターの配列を選び、帯域フィル
ターで抜き出した変調成分を1水平走査に相当する遅延
線(以下IH遅延線と略記する。)で遅延し、2本の走
査線の変調成分から周波数インターリ−ピングの関係を
用いて赤の変調成分と背の変調成分を分離し、その後そ
れぞれの変′調成分を&Hして赤信号と青信号を得る方
法が知られている。IH遅延線は従来ガラス遅延線が一
般的に使用されている。ところでこのガラス遅延線は入
力の電気信号を圧電素子で超音波に変換し、この超音波
をガラスの中を伝播させ、出力側で再び圧電素子で超音
波から電気信号に変換して信号を遅延させるもので、ガ
ラスの中の超音波の伝播時間が一水平疋査に相当する時
間になされている。ガラス遅延線ではこの超音波がガラ
スの中を伝播する時に不要な反射を生じて出力信号の中
にこの不要な反射によって生じた信号(スプリアス信号
)が含まれ、これによって赤信号と青信号の画質が低下
する欠点があった。
Conventionally, as a method for separating red and blue signals from modulation components, two kinds of methods are used to separate red and blue signals from two adjacent scanning lines so that the red modulation components and blue modulation components contained in two adjacent scanning lines have a frequency interleaving relationship. An array of color filters is selected, and the modulation components extracted by the bandpass filter are delayed by a delay line corresponding to one horizontal scan (hereinafter abbreviated as IH delay line), and frequency interleaving is performed from the modulation components of the two scanning lines. A method is known in which the red modulation component and the back modulation component are separated using the following relationship, and then each modulation component is subjected to &H to obtain a red signal and a blue signal. Conventionally, a glass delay line is generally used as an IH delay line. By the way, this glass delay line converts the input electrical signal into an ultrasonic wave using a piezoelectric element, propagates this ultrasonic wave through the glass, and then converts the ultrasonic wave into an electrical signal again using a piezoelectric element on the output side to delay the signal. The propagation time of the ultrasonic waves in the glass is set to the time equivalent to one horizontal scan. In a glass delay line, when this ultrasonic wave propagates through the glass, it causes unnecessary reflections, and the output signal includes signals (spurious signals) caused by this unnecessary reflection, which affects the image quality of the red and blue signals. There was a drawback that the value decreased.

また赤信号と青信号は2本の走査線の変調成分から得る
ため画像の垂直方向で輝度信号との位相が走査線のV2
本相当分ずれ、この位相のすれた信号で2つの色差信号
、R−Y信号とB−Y信号を形成すると画像の垂直方向
の輪郭部分で偽の色差信号が形成されて偽の色が着く現
象と、画像の垂直相関の無い垂直輪郭部分で垂直相関誤
差によって偽の赤信号と青イキ号が発生する現象との2
つの本質的な欠点をこの方法は持っている。これら2つ
の欠点によって画質が劣化するのを防止するには、色差
信号を形成するための輝度信号の低域成分を2本の走査
線の輝度信号で形成して赤信号と青信号と画像の垂直方
向での位相が一致した輝度信号の低域成分を得るき同時
に垂直輪郭信号を形成し、この垂直輪郭信号で垂直相関
誤差による偽の赤信号と青信号を抑える必要がある。と
ころが従来は2本の走査線の輝度信号を得るには別にI
H遅延線を用いて輝度信号をIH遅延しなければならず
、これによって装置が複雑になる欠点があった。
In addition, since the red signal and the blue signal are obtained from the modulation components of two scanning lines, the phase with the luminance signal in the vertical direction of the image is V2 of the scanning line.
If two color difference signals, R-Y signal and B-Y signal, are formed with this out-of-phase signal, a false color difference signal will be formed in the vertical contour of the image, resulting in false colors. and a phenomenon in which false red signals and blue signals occur due to vertical correlation errors in vertical contour areas with no vertical correlation in the image.
This method has two essential drawbacks. In order to prevent the image quality from deteriorating due to these two drawbacks, the low-frequency component of the luminance signal for forming the color difference signal is formed by the luminance signal of two scanning lines, and the red signal, the blue signal, and the vertical It is necessary to obtain the low-frequency components of the luminance signal whose phases match in the direction, and at the same time form a vertical contour signal, and use this vertical contour signal to suppress false red and blue signals caused by vertical correlation errors. However, conventionally, to obtain the luminance signals of two scanning lines, separate I
The luminance signal must be delayed by IH using an H delay line, which has the disadvantage of complicating the device.

このような従来の欠点を解決するために、本願と同一出
願人は特願昭57−61904号にて全色光と緑色光の
成分に相当する映像信号が走査線方向に交互に得られ、
シアン色光と黄色光の成分に相当する映像信号が走査線
方向に交互に得られてかつ全色光と緑色光の成分に相当
する映像信号とシアン色光と黄色光の成分に相当する映
像信号が走査線毎に緋順次に得られるように構成された
固体撮像素子と、前記固体撮像素子の出力信号を一水平
走査線に相当する時間遅延するIH遅延線と、遅延しな
い第1の出力信号と前記のIH遅延線で遅延された第2
の出力信号との2つ出力信号を走査線毎に切りかえて連
続した全色光と緑色光の成分に相当する映像信号と連続
したシアン色光と黄色光の成分に相当する映像信号とを
作る切り換え回路と、前記の連続した2つの映像信号か
ら全色光と緑色光とシアン色光と黄色光の成分に相当す
る4つの映像信号をそれぞ°れ分離する分離回路と、分
離された前記の全色光と緑色光とシアン色光と黄色光の
成分に相当する4つの映像信号から赤色光と青色光の成
分に相当する映像信号を形成するマトリクス回路とを少
なくとも備えているカラー撮像装置を提案した。ところ
がこの既提案のカラー撮像装置では垂直相関誤差によっ
て大きな偽の赤信号と青信号が生ずる欠点が明らかとな
り、垂直輪郭信号でこの偽の赤信号と青信号を抑える必
要があった。また、輝度信号は8/Nの良好な信号が得
られるものの赤信号と青信号についてはS/′へか悪く
、こイ1、が画質を劣化させ、さらに−次微分形の垂直
輪郭信号しか得られないために低域の輝度信号と垂直方
向でV2走査線相当の位相ずれを生ずるために不自然な
輪郭強調となるため解像度を高くすることができない婢
の問題が明らかとなった。
In order to solve these conventional drawbacks, the same applicant as the present application proposed in Japanese Patent Application No. 57-61904 that video signals corresponding to all color light and green light components are obtained alternately in the scanning line direction.
Video signals corresponding to cyan light and yellow light components are obtained alternately in the scanning line direction, and video signals corresponding to all color light and green light components and video signals corresponding to cyan light and yellow light components are scanned. a solid-state image sensor configured to obtain a signal sequentially for each line; an IH delay line that delays the output signal of the solid-state image sensor by a time corresponding to one horizontal scanning line; a first output signal that is not delayed; The second delayed by the IH delay line of
A switching circuit that switches two output signals for each scanning line to create a video signal corresponding to continuous all-color light and green light components and a video signal corresponding to continuous cyan light and yellow light components. and a separation circuit that separates four video signals corresponding to components of all-color light, green light, cyan light, and yellow light from the two consecutive video signals, and a separation circuit that separates the separated all-color light and A color imaging device has been proposed that includes at least a matrix circuit that forms video signals corresponding to red light and blue light components from four video signals corresponding to green light, cyan light, and yellow light components. However, it became clear that this previously proposed color imaging device had a drawback in that large false red and green signals were generated due to vertical correlation errors, and it was necessary to suppress these false red and green signals using vertical contour signals. In addition, although a good luminance signal of 8/N can be obtained, the red and blue signals are poor at S/', which deteriorates the image quality, and furthermore, only a -th order differential type vertical contour signal can be obtained. The problem has become clear that it is not possible to increase the resolution because this causes a phase shift equivalent to the V2 scanning line in the vertical direction with the low-frequency luminance signal, resulting in unnatural edge enhancement.

本発明の目的は前記の欠点を無くシ、簡単な構成で画質
の劣化がない改善されたカラー撮像装置を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an improved color imaging device with a simple configuration and no deterioration in image quality.

本発明によれは、全色光と緑色光の成分に相当する映像
信号が走査線方向に交互に得られ、シアン色光と黄色光
の成分に相当する映像信号が走査線方向に交互に得られ
てかつ全色光と緑色光の成分に相当する映像信号とジア
ジ色光と黄色光の成分に相当する映像信号が走査線毎に
線順次に得られるように構成された固体撮像素子と、前
記固体撮像素子の出力信号を一水平走査期間に相当する
時間遅延する第1の遅延線と二水平走査期間に相当する
時間遅延する第2の遅延線とを備え、遅延しない第1の
出力信号と前記の第2の遅延線で遅延された第3の出力
信号とを加え合せた信号と前記の第1の遅延線で遅延さ
れた第2の出力信号を走査線毎に切りかえて連続した全
色光と緑色光の成分1こ相当する映像信号と連続したシ
アン色光と黄色光の成分に相当する映像信号を作り、こ
の連続した2つの映像信号から全色光と緑色光とシアン
色光と黄色光の成分に相当する4つの映像信号をそれぞ
れ分離する分離回路と、分離された前記の4つの映像信
号から赤色光と青色光の成分に相当する映像信号を形成
するマl−IJクス回路とを少なくとも備えていること
を特徴とするカラー撮像装置が得られる。
According to the present invention, video signals corresponding to all color light and green light components are obtained alternately in the scanning line direction, and video signals corresponding to cyan color light and yellow light components are obtained alternately in the scanning line direction. and a solid-state imaging device configured to obtain a video signal corresponding to all color light and green light components and a video signal corresponding to diagonal color light and yellow light components line-sequentially for each scanning line, and the solid-state imaging device a first delay line that delays the output signal of the output signal by a time corresponding to one horizontal scanning period; and a second delay line that delays the output signal of the output signal by a time corresponding to two horizontal scanning periods; The signal obtained by adding the third output signal delayed by the second delay line and the second output signal delayed by the first delay line are switched for each scanning line to produce continuous full-color light and green light. Create a video signal corresponding to one component of , and a video signal corresponding to continuous cyan light and yellow light components, and from these two continuous video signals, create a video signal corresponding to all color light, green light, cyan light, and yellow light components. At least a separation circuit that separates each of the four video signals, and a multiplex circuit that forms video signals corresponding to red light and blue light components from the four separated video signals. A color imaging device is obtained.

以下本発明について図面を用いて詳述する。The present invention will be explained in detail below using the drawings.

第1図は本発明の画素の配列の一例を示すものである。FIG. 1 shows an example of a pixel arrangement according to the present invention.

この画素の配列は、第2図に示すように画像の垂直方向
に対して走査線ごとに位相が180゜ずつ変化するよう
な角度で傾斜している透明(5)とシアン(Cy)より
なるフィルターで赤信号が空間変調され、同様に画像の
垂直方向に対して走査線ごとの位相が一定な透明と黄(
Ye)よりなるフィルターで青信号が空間変調されるよ
うに構成されている。第1図および第2図で符号11で
示される画素は透明(W)で、符号12の画素はシアン
(Cy)と黄(Ye)が重なりあっているので双方のフ
ィルターを通過できる線(G)となっている。符号13
はシアン(Cy)、符号14は黄(ye )である。
As shown in Figure 2, this pixel array consists of transparent (5) and cyan (Cy) pixels that are tilted at an angle such that the phase changes by 180° for each scanning line with respect to the vertical direction of the image. The red signal is spatially modulated by the filter, and similarly transparent and yellow (
The blue signal is spatially modulated by a filter consisting of the following: (Ye). In Figures 1 and 2, the pixel 11 is transparent (W), and the pixel 12 has cyan (Cy) and yellow (Ye) overlapping each other, so the line that can pass through both filters (G) ). code 13
is cyan (Cy), and code 14 is yellow (ye).

第1図で第n番目(n:1,3,5・・・)の走査線か
らは透明(9)と緑CG)が、第n+1番目の走査線か
らはシアン(Cy)と黄(Ye)  が1画素おきに交
互に得られる。
In Figure 1, from the n-th (n: 1, 3, 5...) scanning line, transparent (9) and green CG) are shown, and from the n+1-th scanning line, cyan (Cy) and yellow (Ye) are shown. ) are obtained alternately for every other pixel.

前述した特願昭57−061904号で提案したカラー
撮像装置では固体撮像素子の出力信号を一水平走査期間
に相当する遅延時間を持ったIH遅延線で遅延して固体
撮像素子から第n (H)の出力信号が得られている時
、IH遅延線から第n−1(H)の出力信号を得て、こ
の2つの出力信号を走査線□ ごとに切りかえて連続したWおよび緑(G)の信号とシ
アン(Cy)および黄(Ye)の信号を作り、次にこの
2つの信号を4つのゲート回路を用いてWと緑(G)と
シアン(Cy)と黄(Ye)の4つの信号に分離した後
マl−IJクス回路を用いてこの4つの信号から赤(B
)と青(B)の映像信号を分離している。
In the color imaging device proposed in the above-mentioned Japanese Patent Application No. 57-061904, the output signal of the solid-state imaging device is delayed by an IH delay line having a delay time equivalent to one horizontal scanning period, and the nth (H ) is obtained, the n-1st (H) output signal is obtained from the IH delay line, and these two output signals are switched every scanning line □ to produce continuous W and green (G) signals. A signal of W, green (G), cyan (Cy), and yellow (Ye) is generated using four gate circuits. After separating the signals, red (B) is extracted from these four signals using a multiplex circuit.
) and blue (B) video signals are separated.

以上のような赤(R)と青(B)の映像信号の分離方式
では固体撮像素子の第n (H)と第n−1(H)の2
つの信号を用いていることから2つの信号に垂直方向で
相関があることが必要である。すなわち第1図において
赤(R)と青(B)の映像信号を分離するために必要な
W1緑(G)、シアン(CY)、黄(Ye)の4つの信
号のうちWと緑(G)の2色が基準となる第n (H)
の走査線から得られる場合について考慮すると他のシア
ン(Cy)と黄(Ye)の2色はIH前の第n−1(H
)  の走査線から得られる信号を用いることになる。
In the separation method of red (R) and blue (B) video signals as described above, the second (nth) (H) and n-1st (H)
Since two signals are used, it is necessary that the two signals have a correlation in the vertical direction. In other words, in Fig. 1, W1 and green (G) of the four signals W1, green (G), cyan (CY), and yellow (Ye) necessary to separate red (R) and blue (B) video signals. ) is the standard for the nth (H)
Considering the case where the other two colors, cyan (Cy) and yellow (Ye) are obtained from the scanning line of
) will be used.

したがってこのシアン(Cy)と黄(Ye)の2つの出
方信号は基準となる第n (H)の走査線の位置におけ
るシアン(Cy)と黄(Ye)の成分に相当する映像信
号とは同一ではない。このため第n (H)の走査線と
第n−1(H)の走査線の位置で輝度、色相、彩度が異
なる場合には赤(R)と青(B)の映像信号に垂直相関
誤差による偽の色信号が生ずる。従来のカラー撮像装置
ではこの偽信号は垂直方向のわずかな輝度や色相、彩度
の変化に対しても大きく発生するため垂直輪郭信号を用
いて色信号を抑制して目立たなくする手法や垂直方向に
被写体像を光学的にぼかして偽信号を抑制する手法を用
いさるを得ない。
Therefore, these two output signals of cyan (Cy) and yellow (Ye) are the video signals corresponding to the cyan (Cy) and yellow (Ye) components at the position of the reference nth (H) scanning line. Not the same. Therefore, if the brightness, hue, and saturation differ between the positions of the nth (H) scanning line and the n-1st (H) scanning line, there is a vertical correlation between the red (R) and blue (B) video signals. A false color signal is generated due to the error. In conventional color imaging devices, this false signal occurs significantly even with slight changes in brightness, hue, and saturation in the vertical direction. Therefore, it is necessary to use a method to suppress false signals by optically blurring the subject image.

このように同一の色光成分に相当する映像信号が走査線
の奇数番目のみあるいは偶数番目のみのよ−うに間欠的
にしか得ることができない点が従来のカラー撮像装置の
欠点の原因であった。
The drawback of conventional color imaging devices is that video signals corresponding to the same color light component can only be obtained intermittently, such as only in odd-numbered or even-numbered scanning lines.

このように同一の色光成分に相当する映像信号が走査線
の奇数番のみあるいは偶数番のみのように一本おきに間
欠的に発生する場合には例えば特開昭57−11119
3号に述べられているように欠落した走査線に隣接する
二つの信号を加算して用いる方法が知られているが、本
発明のような補色のカラーフィルターを用いた撮像装置
では分離して得ようとする赤(R)と青(B)の映像信
号は各走査線にすべて周波数多重化されて含まれており
、単純に映像信号を遅延して平均するだけでは赤(R)
と青(B)の映像信号を得ることができない。
In this way, when video signals corresponding to the same color light component are generated intermittently every other scanning line, such as only in odd numbered or even numbered scanning lines, for example, Japanese Patent Laid-Open No. 57-11119
As described in No. 3, there is a known method of adding and using two signals adjacent to the missing scanning line, but in an imaging device using a complementary color filter like the present invention, the signals are separated and used. The red (R) and blue (B) video signals that you are trying to obtain are all frequency-multiplexed and included in each scanning line, so simply delaying and averaging the video signals will not produce the red (R)
and blue (B) video signals cannot be obtained.

次に第3図は以上の従来の欠点を無くした本発明による
カラー撮像装置の原理を示す模式図である。第3図(a
)と(b)は赤(R)信号の分離方式、第3図(C)と
(d)は青(B)信号の分離方式を示す。図において固
体撮像素子の出力信号をIH遅延線を2個用いてIH遅
延と2H遅延を行なうと固体撮像素子から第n +l 
(H)の出力信号が得られている時、IH遅延した信号
は第n(H)、2H遅延した信号は第n −l (H)
の信号が得られている。第3図(a)を例にとると、第
n−1(H)のシアン(cy ’)信号と第n+1(H
)のシアン(Cy)信号をそれぞれ1/2ずつ加え合わ
せて平均値を作ると基準となる第n (H)におけるW
信号の位置のシアン(Cy’)信号を補間して得ること
ができる。
Next, FIG. 3 is a schematic diagram showing the principle of a color imaging device according to the present invention, which eliminates the above-mentioned conventional drawbacks. Figure 3 (a
) and (b) show the red (R) signal separation method, and FIGS. 3(C) and (d) show the blue (B) signal separation method. In the figure, when the output signal of the solid-state image sensor is subjected to IH delay and 2H delay using two IH delay lines, the output signal from the solid-state image sensor is
(H) output signal is obtained, the IH-delayed signal is the n-th (H), and the 2H-delayed signal is the n-l (H).
signal is obtained. Taking FIG. 3(a) as an example, the (n-1)th (H) cyan (cy') signal and the (n+1)th (H)
) of cyan (Cy) signals by 1/2 each to create an average value, W at the n-th (H) which becomes the reference
It can be obtained by interpolating the cyan (Cy') signal at the signal position.

この補間して得たシアン(Cy’)信号は第n −i(
■1)と第n + 1 ()リ の平均値であるから垂
直方向をこおいて被写体の輝度、色相、彩度がゆるやか
に変化するような垂直相関がかなり強い場合には第n 
(H)でのシアン(Cy) +i号とほとんど等しい値
が得られる。得られたシアン(Cy’)信号とW信号を
演算すれば赤(R)信号を得ることができる。第3図(
b)〜(d)についても動作は全く同一である。
The cyan (Cy') signal obtained by this interpolation is the n-i (
■It is the average value of 1) and the nth
A value almost equal to cyan (Cy) + i in (H) is obtained. A red (R) signal can be obtained by calculating the obtained cyan (Cy') signal and the W signal. Figure 3 (
The operations are exactly the same for b) to (d).

以上に述べた本発明のカラー撮像装置の色信号分離の方
式によれは垂直相関がかなり強い場合【こは垂直相関誤
差による偽の色信号はほとんど発生しない。また垂直相
関が全く無い場合においても2本の走査線の信号を平均
していることから垂直相関誤差はいに軽減される。周知
のとおり一般的な被写体では垂直相関がかなり強いので
本発明の色信号分離方式によれは従来の方式に比較して
大幅に偽の色信号が低減され従来のカラー撮像装置で必
要であった垂直輪郭信号で偽の色信号を抑制するような
手法を用いることな〈従来よりも良好な画質を得ること
ができる。
According to the color signal separation method of the color imaging device of the present invention described above, when the vertical correlation is quite strong, false color signals due to vertical correlation errors are hardly generated. Further, even when there is no vertical correlation at all, since the signals of the two scanning lines are averaged, the vertical correlation error is greatly reduced. As is well known, the vertical correlation is quite strong in common subjects, so the color signal separation method of the present invention significantly reduces false color signals compared to the conventional method, which is necessary in conventional color imaging devices. Better image quality than before can be obtained without using a method of suppressing false color signals using vertical contour signals.

また以上の説明から明らかなように走査線3本分の映像
信号から赤(R)信号と青(B)信号を分離するので得
られた色信号のいが従来よりも改善され、これによって
画質はさらに良好となる。
Furthermore, as is clear from the above explanation, since the red (R) signal and blue (B) signal are separated from the video signal for three scanning lines, the intensity of the obtained color signal is improved compared to the conventional method, and this improves the image quality. becomes even better.

第4図は本発明の実施例を示す模式図である。FIG. 4 is a schematic diagram showing an embodiment of the present invention.

図においてカラーフィルターを組合せた固体撮像素子1
5の出力(以下OH信号と略記する。)はIH遅延線]
6で1走査線に相当する時間遅延される。
In the figure, a solid-state image sensor 1 combined with a color filter
5 output (hereinafter abbreviated as OH signal) is an IH delay line]
6, the time corresponding to one scanning line is delayed.

IH遅延された信号(以後IH倍信号略記する。)OH
信号とIH倍信号よび2H信号は、前述したとおりIH
倍信号基準となる信号とし、この基準信号ζこ対して上
下方向で隣接しているO H信号と2H信号から基準信
号の走査線位置で欠落している映像信号を補間する。す
なわち第4図においてOH信号と2H信号は加算回路1
8で72 (OH信号) + 1.’2 (2H信号)
なる加算を行なわれ欠落している走査線位置の補間信号
を得る。
IH delayed signal (hereinafter abbreviated as IH multiplied signal) OH
As mentioned above, the signal, IH double signal, and 2H signal are
The multiplied signal is used as a reference signal, and the missing video signal at the scanning line position of the reference signal is interpolated from the OH signal and 2H signal that are vertically adjacent to this reference signal ζ. In other words, in FIG. 4, the OH signal and the 2H signal
8 = 72 (OH signal) + 1. '2 (2H signal)
Then, an interpolated signal for the missing scanning line position is obtained.

次にIH倍信号前述の補間信号は走査線毎にスイッチ1
9と20で切り換えられろ。スイッチ19の出力はIH
1信号→補間信号→IH信号→・・・、スイッチ20の
出力は補間信号→1)(信号→補間信号→・・・、とな
る。第1図において基準となる走査線はn (H)であ
ったからスイッチ19の出力は走査線ごとに連続したW
と緑(G)の信号、同様にスイッチ20の出力は連続し
たシアン(CY)と黄(’Ye)  の信号となる。こ
の2つの信号は4つのゲート回路21〜24に□加えら
れる。グー1−回路21と24はケート信号25が印加
されケート回路2]ではW信号、ゲート回路24ではシ
アン(Cy)信号が分離される。同様にゲート回路22
と23はケート信号26が印加されゲート回路22では
緑(G)信号、ゲート回路nでは黄(Ye )信号が分
離される。
Next, the IH multiplication signal and the interpolation signal mentioned above are converted to the switch 1 for each scanning line.
You can switch between 9 and 20. The output of switch 19 is IH
1 signal → interpolation signal → IH signal → ..., the output of the switch 20 is interpolation signal → 1) (signal → interpolation signal → ..., etc. In FIG. 1, the reference scanning line is n (H) Therefore, the output of switch 19 is continuous W for each scanning line.
Similarly, the output of the switch 20 becomes a continuous cyan (CY) and yellow ('Ye) signal. These two signals are applied to four gate circuits 21-24. A gate signal 25 is applied to gate circuits 21 and 24, a W signal is separated in gate circuit 2, and a cyan (Cy) signal is separated in gate circuit 24. Similarly, gate circuit 22
and 23 are applied with a gate signal 26, and the gate circuit 22 separates a green (G) signal, and the gate circuit n separates a yellow (Ye) signal.

分離された4つの信号は次の2つの式で示される演算を
行なって赤(R)信号と青(B)信号を分離される。
The four separated signals are subjected to calculations expressed by the following two equations to separate a red (R) signal and a blue (B) signal.

R=W十Ye−o−Cy  −(1) B =W+Cy−G−Ye  −(2)なお(1)式と
(2)式の演算を行なうための演算回路に送られる4つ
の信号は演算回路に加える前にリミッタ27〜30にお
いて振幅を制限する処理を受ける。
R = W + Ye-o-Cy - (1) B = W + Cy-G-Ye - (2) Note that the four signals sent to the arithmetic circuit for calculating equations (1) and (2) are Before being added to the circuit, the signal is subjected to amplitude limiting processing in limiters 27 to 30.

リミッタ27 z 30は前述の特願昭57−0619
04号にも述べられているが固体撮像素子15の出力が
飽和した状態においても赤(R)信号と青(B)信号が
零とならないようにこの4つの信号の最大の振幅を制限
している。すなわち赤(R)信号と青(B)信号を得る
(1)式と(2)式において固体撮像素子15の出力が
飽和状態となり、W二G:Ye:’CYとなると(1)
式と(2)式の演算結果は共に零となるように演算の誤
差を生ずるがリミッタ27〜30はこの演算の誤差を防
ぐものでW > Ye 、 Cy ) G  となるよ
うに4つの信号の振幅を制限して固体撮像素子15の出
力が飽和状態でも赤(R)信号と青(B)信号が零とな
らないように働いている。
Limiter 27z 30 is based on the aforementioned patent application No. 57-0619.
As stated in No. 04, the maximum amplitude of these four signals is limited so that the red (R) signal and blue (B) signal do not become zero even when the output of the solid-state image sensor 15 is saturated. There is. That is, in equations (1) and (2) for obtaining the red (R) signal and the blue (B) signal, when the output of the solid-state image sensor 15 reaches a saturated state and becomes W2G:Ye:'CY, (1)
An error occurs in the calculation so that both the calculation results of the equation and the equation (2) become zero, but the limiters 27 to 30 prevent this error in the calculation, and the four signals are adjusted so that W > Ye, Cy)G. The amplitude is limited so that the red (R) signal and the blue (B) signal do not become zero even when the output of the solid-state image sensor 15 is saturated.

リミッタ27〜30の出力は次に演算回路31と32に
加えられ前述の(1)式と(2)式の演算を行なって赤
(R)信号と青(B)信号を得る。なお、この演算回路
では(1)式と(2)式の4つの信号に係数を掛けて次
式の演算を行なわせることによって、色再現性を最適化
することが可能であり、このような係数操作を行なうこ
とができない従来の撮像管を用いた周波数分離方式のカ
ラー像像装置に比較して非常に優れた色再現性を得るこ
とができる。
The outputs of the limiters 27 to 30 are then applied to arithmetic circuits 31 and 32, and the above-mentioned equations (1) and (2) are calculated to obtain a red (R) signal and a blue (B) signal. Note that this calculation circuit can optimize color reproducibility by multiplying the four signals of equations (1) and (2) by coefficients to perform the calculation of the following equation. Extremely superior color reproducibility can be obtained compared to a frequency separation type color imaging device using a conventional image pickup tube in which coefficient manipulation cannot be performed.

R=W+aYe −bG −cCy   −(3iB 
=W+dCy−eG−fYe−(4)各係数は固体撮像
素子15の撮像特性とカラーフィルターの分光特性から
色再現性を最適となす値に決定される。
R=W+aYe −bG −cCy −(3iB
=W+dCy-eG-fYe-(4) Each coefficient is determined to a value that optimizes color reproducibility based on the imaging characteristics of the solid-state image sensor 15 and the spectral characteristics of the color filter.

赤(助信号と青(B)信号は次にローパスフィルタ33
と34で色差信号を形成するに必要な帯域に制限される
The red (auxiliary signal and blue (B) signal are then passed through a low-pass filter 33.
and 34 are limited to the band necessary to form a color difference signal.

一方OH信号とIH倍信号2H信号はそれぞれローパス
フィルタ35〜37に印加されてクロック成分と変調成
分を除去した輝度信号を得る。得られたOHの輝度信号
(Y(oii)信号)とIHの輝度信号(Y(IH)信
号)と2Hの輝度信号(Y(2M)信号)は赤(R)信
号および青(B)信号と共にプロセス・エンコーダ回路
側に加えられる。
On the other hand, the OH signal and the IH multiplied signal 2H signal are applied to low-pass filters 35 to 37, respectively, to obtain a luminance signal from which the clock component and modulation component have been removed. The obtained OH luminance signal (Y (oii) signal), IH luminance signal (Y (IH) signal), and 2H luminance signal (Y (2M) signal) are the red (R) signal and blue (B) signal. It is also added to the process encoder circuit side.

プロセス・エンコーダ回路38ではこのY(0)1)信
号とY(IH)信号およびY(2H)信号を用いて周知
の2H型の輪郭補正信号を形成する。すなわちY(OH
)信号とY(IH)信号とY(2H)信号を次式の比率
で加え合わせれば赤(R)信号および青(B)信号と垂
直方向の位相が一致した広帯域の輝度信号(Y(W)信
号ンが形成される。
The process encoder circuit 38 uses the Y(0)1) signal, the Y(IH) signal, and the Y(2H) signal to form a well-known 2H type contour correction signal. That is, Y(OH
) signal, Y (IH) signal, and Y (2H) signal in the ratio of the following formula, a broadband luminance signal (Y (W ) signal is formed.

Y(W)信号二%(Y(OH)信号)十%(Y(H()
信号)+3(Y(2H)信号) このY(W)信号を水平方向で2次微分して水平輪郭補
正信号を得る。−万Y(OH)信号とY(IH)信号と
y(2H)信号を次式の比率で加減算すれば垂直方向の
垂直輪郭信号を得ることができる。
Y(W) signal 2% (Y(OH) signal) 10% (Y(H()
signal)+3(Y(2H) signal) This Y(W) signal is second-order differentiated in the horizontal direction to obtain a horizontal contour correction signal. A vertical contour signal in the vertical direction can be obtained by adding and subtracting the Y(OH) signal, the Y(IH) signal, and the y(2H) signal at the ratio of the following equation.

垂直輪郭信号” −3A(Y(OH)信号)+Y(11
()信号3A (Y(2H)信号) この垂直輪郭信号は走査線3本の輝度信号を用いて形成
された2次微分形の輪郭信号であるから自然な輪郭強制
を行なうことができ、従来のカラー撮像装置に比較して
解像度か改善される。この2つの輪郭信号は周知の方法
で水平および垂直の輪郭強調を行なって解像度を改善さ
せる。
Vertical contour signal” -3A (Y(OH) signal) + Y(11
() signal 3A (Y(2H) signal) Since this vertical contour signal is a quadratic differential contour signal formed using the luminance signals of three scanning lines, it is possible to perform natural contour forcing, and The resolution is improved compared to color imaging devices. These two contour signals are subjected to horizontal and vertical contour enhancement in a known manner to improve resolution.

次にY(W)信号はその低域成分を色差信号を形成する
ための狭帯域の輝度信号(Y(L)信号)として用いる
。前述したとおりY(W)信号と赤(R)信号および青
(B)信号は垂直方向の位相が一致しているから垂直輪
郭部で偽の色差信号が形成されることがない。
Next, the low frequency component of the Y(W) signal is used as a narrowband luminance signal (Y(L) signal) for forming a color difference signal. As described above, since the Y (W) signal, the red (R) signal, and the blue (B) signal have the same phase in the vertical direction, false color difference signals are not generated at the vertical contour portion.

プロセス・エンコーダ回路38は以上に述べた赤(1%
)信号、青(B)信号、Y(■・)信号、Y(L)信号
、水平および垂直輪郭信号をそれぞれ周知のカンマ補正
、白クリ、ブ、黒クリップ、フランキング混合などの処
理を行なった後複合カラー映像信号を形成する。
Process encoder circuit 38 is red (1%) as described above.
) signal, blue (B) signal, Y (■・) signal, Y (L) signal, horizontal and vertical contour signals, respectively, and undergoes processing such as comma correction, white clipping, blanking, black clipping, flanking mixing, etc. After that, a composite color video signal is formed.

以上図面を用いて説明したよう(こ本発明は走査線3本
の映像信号を用いて赤(R)信号と青(B)信号および
輝度信号を得るもので、本発明によれば垂直相関誤差に
よる嫡の色信号の発生か極めて少なく、画質の非常に良
好な固体撮像装置が実現できる。
As explained above with reference to the drawings (this invention uses video signals of three scanning lines to obtain a red (R) signal, a blue (B) signal, and a luminance signal, according to the invention, vertical correlation error Therefore, it is possible to realize a solid-state imaging device with extremely good image quality, in which the generation of formal color signals is extremely small.

なお、以上の説明では第2図のように黄(Ye)フィル
タが縦、シアン(Cy)フィルタが斜めに配置されてい
たが、これは黄(Ye)フィルタとシアン(Cy)フィ
ルタを逆に入れかえても全く同様である。
In the above explanation, the yellow (Ye) filter was arranged vertically and the cyan (Cy) filter was arranged diagonally as shown in Figure 2, but this is because the yellow (Ye) filter and cyan (Cy) filter are arranged in reverse. Even if they are replaced, it is exactly the same.

【図面の簡単な説明】 第1図と第2図は本発明のカラー撮像装置に用いるカラ
ーフィルターの配列を示す模式図、第3図は本発明の原
理を示す模式図、第4図は本発明の実施例を示す模式図
である。図ζこおいて、11は透明Gηフィルタ、12
は緑(G)フィルタ、13はシアン(Cy ) フィル
タ、14は黄(Ye)フィルタ、15は固体撮像素子、
16と17はIH遅延線、18は加算回路、19と20
はスイッチ、21〜24はゲート回路、5と26はゲー
ト信号、27〜30はリミッタ、31と32はツ戸回路
、33〜37はローパスフッルア738はプロセス・エ
ンコーダ回路である。 代理人り1遡上 内 原   背、 第1 図 第2図
[Brief Description of the Drawings] Figs. 1 and 2 are schematic diagrams showing the arrangement of color filters used in the color imaging device of the present invention, Fig. 3 is a schematic diagram showing the principle of the present invention, and Fig. 4 is a schematic diagram showing the arrangement of color filters used in the color imaging device of the present invention. FIG. 1 is a schematic diagram showing an embodiment of the invention. In the figure ζ, 11 is a transparent Gη filter, 12
is a green (G) filter, 13 is a cyan (Cy) filter, 14 is a yellow (Ye) filter, 15 is a solid-state image sensor,
16 and 17 are IH delay lines, 18 is an adder circuit, 19 and 20
21 to 24 are switches, 21 to 24 are gate circuits, 5 and 26 are gate signals, 27 to 30 are limiters, 31 and 32 are two-way circuits, and 33 to 37 are low-pass fluorescent circuits 738 are process encoder circuits. The agent's 1st run upstream, Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 全色光と緑色光の成分に相当する映像信号が走査線方向
に交互に得られ、シアン色光と黄色光の成分に相当する
映像信号が走査線方向に交互lこ得られてかつ全色光と
緑色光の成分に相当する映像信号とシアン色光と黄色光
の成分に相当する映像信号が走査線毎に線順次に得られ
るように構成された固体撮像素子と、前記固体撮像素子
の出力信号を一水平走査期間に相当する時間遅延する第
1の遅延線と三水半走査期間に相当する時間遅延する第
2の遅延線とを備え、遅延しない第1の出力信号と前記
の第2の遅延線で遅延された第3の出力信号とを加え合
せた信号と前記の第1の遅延線で遅延された第2の出力
信号を走査線毎に切りかえて連続した全色光と緑色光の
成分に相当する映像信号と連続したシアン色光と黄色光
の成分に相当する映像信号とを作り、この連続した2つ
の映像信号から全色光と緑色光とシアン色光と黄色光の
成分に相当する4つの映像信号をそれぞれ分離する分離
回路と、分離された前記の4つの映像信号から赤色光と
青色光の成分に相当する映像信号を形成するマトリクス
回路と、前記の固体撮像素子の出力が飽和状態lこおい
ても前記の赤色光と青色光の成分に相当する映像信号が
得られるように前記の分離された全色光と緑色光とシア
ン色光と黄色光の成分に相当する映像信号のそれぞnの
振幅を制限するリミッタ回路と、前記の第1の出力信号
と第2の出力信号と第3の出力信号を加え合わせて広帯
域の輝度信号を形成し、この広帯域輝度信号から色差信
号を形成するための輝度信号の低域成分を作る映像信号
回路と、前記の広帯域輝度信号から水平輪郭信号を形成
する水平輪郭形成回路と、前記の第1の出力信号と第2
の出力信号と第3の出力信号から2次微分形の垂直輪郭
信号を形感する垂直輪郭形成回路とを少なくとも備えて
いることを特徴とするカラー撮像装置。
Video signals corresponding to all color light and green light components are obtained alternately in the scanning line direction, video signals corresponding to cyan light and yellow light components are obtained alternately in the scanning line direction, and all color light and green light components are obtained alternately in the scanning line direction. A solid-state image sensor configured to obtain a video signal corresponding to a light component and a video signal corresponding to cyan light and yellow light components line-sequentially for each scanning line, and an output signal of the solid-state image sensor are integrated. a first delay line with a time delay corresponding to a horizontal scanning period and a second delay line with a time delay corresponding to a three-half scanning period, the first output signal not being delayed and the second delay line; The signal obtained by adding the third output signal delayed by the first delay line and the second output signal delayed by the first delay line are switched for each scanning line to correspond to continuous all-color light and green light components. A video signal corresponding to continuous cyan light and yellow light components is generated, and from these two continuous video signals, four video signals corresponding to all color light, green light, cyan light, and yellow light components are generated. a separation circuit that separates the four video signals, a matrix circuit that forms video signals corresponding to red light and blue light components from the four video signals separated, and a matrix circuit that separates the four video signals into video signals corresponding to the red light and blue light components. The amplitudes of the video signals corresponding to the separated all-color light, green light, cyan light, and yellow light components are adjusted so that video signals corresponding to the red light and blue light components can be obtained even if and a limiter circuit for adding the first output signal, the second output signal, and the third output signal to form a wideband luminance signal, and forming a color difference signal from the broadband luminance signal. a video signal circuit that generates a low-frequency component of a luminance signal; a horizontal contour forming circuit that generates a horizontal contour signal from the broadband luminance signal;
1. A color imaging device comprising at least a vertical contour forming circuit that senses a second-order differential vertical contour signal from the output signal and the third output signal.
JP58042563A 1983-03-15 1983-03-15 Color image pickup device Pending JPS59168790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042563A JPS59168790A (en) 1983-03-15 1983-03-15 Color image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042563A JPS59168790A (en) 1983-03-15 1983-03-15 Color image pickup device

Publications (1)

Publication Number Publication Date
JPS59168790A true JPS59168790A (en) 1984-09-22

Family

ID=12639512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042563A Pending JPS59168790A (en) 1983-03-15 1983-03-15 Color image pickup device

Country Status (1)

Country Link
JP (1) JPS59168790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024880A1 (en) * 1995-12-29 1997-07-10 Intel Corporation Color video data reduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024880A1 (en) * 1995-12-29 1997-07-10 Intel Corporation Color video data reduction

Similar Documents

Publication Publication Date Title
JPS6129196B2 (en)
JPS6118912B2 (en)
US7688362B2 (en) Single sensor processing to obtain high resolution color component signals
JPH0459832B2 (en)
JPH02122786A (en) Color separating device
JPS6118913B2 (en)
JPS58100590A (en) Synthesis method for sampling output
JP3576600B2 (en) Color imaging device
JPS59168790A (en) Color image pickup device
JPH10108208A (en) Method for enhancing contour of image pickup output of solid-state image pickup element
JPH02108390A (en) Luminance signal and chrominance signal separating circuit for pal color television signal
JP3126860B2 (en) Video signal processing device
JP2846317B2 (en) Color imaging device
JP3452712B2 (en) Single color video camera
JP3126857B2 (en) Video signal processing device
JPH04304089A (en) Signal interpolation device
JPS59154891A (en) Single board color image pickup device
JP2655436B2 (en) Color solid-state imaging device
JP2562287B2 (en) Solid-state imaging device
JP3422027B2 (en) Luminance balance circuit in color camera and signal processing circuit thereof
JP3024815B2 (en) Color erasure method for highlights in color cameras
JPS5962285A (en) Solid-state color image pickup device
JPH04315392A (en) Vertical false signal suppression system in color camera
JPS58195390A (en) Color television camera
JPH089395A (en) Color image pickup device