JPS58179025A - Inverting circuit - Google Patents

Inverting circuit

Info

Publication number
JPS58179025A
JPS58179025A JP57061893A JP6189382A JPS58179025A JP S58179025 A JPS58179025 A JP S58179025A JP 57061893 A JP57061893 A JP 57061893A JP 6189382 A JP6189382 A JP 6189382A JP S58179025 A JPS58179025 A JP S58179025A
Authority
JP
Japan
Prior art keywords
circuit
voltage
level
threshold value
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57061893A
Other languages
Japanese (ja)
Inventor
Akira Yazawa
矢沢 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57061893A priority Critical patent/JPS58179025A/en
Publication of JPS58179025A publication Critical patent/JPS58179025A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits

Abstract

PURPOSE:To control the threshold value from outside, by varying the supply voltage of the inverting part of an input signal by the control voltage and furthermore shifting the output level of said inverting part up to the level of the power supply voltage. CONSTITUTION:A P channel enhancement type FETQ1 and Q6 decide the voltage at a point A by means of an FET which varies the threshold value of circuit and the currents flowing to the FETQ1 and Q6 themselves. The P channel FETQ2 and Q5 have the threshold value respectively. If the potential of the power supply VDD side which is higher than the threshold value of circuit is applied to an input VIN, the FETQ2 is turned on. However the potential of a point B does not reach that of a power supply VSS and then floats up. This floating potential is compensated by FETQ3 and Q4, and a level near VSS is delivered to the output VOUT.

Description

【発明の詳細な説明】 本発明は特にエンハンスメント型電界効来トランジスタ
全ドライバとし、ティプレ,シ.ン型竃界効果トランジ
スタを負荷とする反転回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is particularly directed to an enhancement-type field effect transistor total driver, and is directed to a full driver of enhancement type field effect transistors. The present invention relates to an inverting circuit whose load is a field-effect transistor.

エンハンスメント型電界効果トランジスタ(以後竃界効
釆トランジスタ’t−FETと呼ぶ)をドライバとし、
ディプレ,シ,ン型FETk負荷とする従来の反転tg
I絡を纂1図にボす0すなわち.1がエンハンスメント
型FETで入力信号vINがそのゲートに供81れ,こ
のドレインはティプレッション型FET.’に介してv
DDl[諌に嵌絖されると共に出力電圧V。UT がと
9出される。この回路の回路−1一竃圧vTCは一般的
に次式で表わせるOv,、=v?Iー,,Il/βlI
TTOここでTh  V7mはエンハンスメンF1FE
T+の#am1111圧S v?Dはティ7L’ w 
V m 7型F E Tlの一値竃出,β1はエンハン
スメン}WFWTIのチャンネルコンダクタンスβ1と
ディプレ,シ。
An enhancement type field effect transistor (hereinafter referred to as field effect transistor 't-FET) is used as a driver,
Conventional inverting tg with depre, syn type FET k load
The I connection is drawn in Figure 1.0, that is. 1 is an enhancement type FET, the input signal vIN is applied to its gate 81, and this drain is an enhancement type FET. 'through v
DDl [output voltage V as it is fitted into the shaft. UT is given 9. The circuit-1 voltage vTC of this circuit can generally be expressed by the following equation: Ov,,=v? I-,,Il/βlI
TTO here Th V7m is Enhancement Men F1FE
T+ #am1111 pressure S v? D is tee 7L' w
V m 7 type F E Tl single value output, β1 is the enhancement member} WFWTI channel conductance β1 and depression, shi.

ンffi F jE T *のチャンネルコンダクタン
スβ,の比で次わされ。
is the ratio of the channel conductance β of the channel ffi F jE T *.

β1=β,/β,でおる。また、チャンネルコンダクタ
ンスβはよく知られ友トランジスタの集積回路装置等(
以後ICと呼ぷO)に於て。
β1=β, /β. In addition, the channel conductance β is well-known in transistor integrated circuit devices (
Hereafter referred to as IC (O).

数々の反転装置l1tl−使用して回路t−構成する場
合、’is成する場合、あるいはアナログ−デジタル変
換器t″?S成する一合尋である。従来、このよりなV
Tc′fr他の反転回路と異なるようにするにはβ1と
β!の比丁なわちβ8を震1しさせて”TCC金兄てい
た。
When constructing a circuit t using a number of inverting devices, it is possible to construct a circuit t, or to construct an analog-to-digital converter t″?S. Conventionally, this type of V
Tc′frTo be different from other inverting circuits, β1 and β! The hito, which is β8, was shaken by 1 and it was ``TCC gold brother''.

このようにβ1を震えた場合の第1図の従来例の入出力
特注例t−第2図に示す。第2図の特性は、VDD=−
17V *  Vals=Ov* V、、=−2,3¥
bそしてV、D=−4−6,9Vとし次場合のものであ
る。
FIG. 2 shows an input/output custom-made example t of the conventional example in FIG. 1 when β1 is varied in this way. The characteristics in Figure 2 are VDD=-
17V *Vals=Ov*V,,=-2,3¥
b and V, D=-4-6,9V, and the following case.

これから明らかなように、βBk小さくすると、エンハ
ンスメント型FET、のβt とディブレ。
As is clear from this, when βBk is made smaller, the βt of the enhancement type FET becomes unstable.

シ田ンff1FETlのβ、が同程鍵となってしまうた
め、出力の電位がV□側からvDD@に、逆にvDf、
側からvas側に移る堰移領域が幅広くなってしまう。
Since β of Shindanff1FETl is equally important, the output potential changes from V□ side to vDD@, and conversely, vDf,
The weir transition area that moves from the side to the vas side becomes wide.

また、エンハンスメント型FETがオンしても、β息が
β重 と1川根匿まで小さくなっていると、出力電位に
はV0レベルが表われず、VニレベルからvDDレベル
側によってしまう。このため雑音に対する余裕が小さく
なってしまい論理回路に使えなくなる。逆にβ8を大き
くしても、そのためのv、cの変化はそれほど大きくな
く、このため、βlを大きくとるためのトランジスター
を大きくすることに対する見返9は非常に小さい。
Furthermore, even if the enhancement type FET is turned on, if the β-breathing is reduced to a level equal to the β weight, the V0 level will not appear in the output potential, but will shift from the V2 level to the vDD level. Therefore, the margin against noise becomes small, making it impossible to use it for logic circuits. On the other hand, even if β8 is increased, the changes in v and c are not so large, and therefore the reward for increasing the size of the transistor in order to increase βl is very small.

しかも、このβ1を涙化させる方法の最大の欠点は、β
凰はICが製作される段階で作υ込まれるため、−に出
来上がってしまうともう”tc”1flll整すること
ができないということでありた。このようにβ i&え
てv、、eK化させるには僚々な凰 欠点が生じ、この欠点による制約の中で設計しなくては
ならなかった。
Moreover, the biggest drawback of this method of turning β1 into tears is that
Since the 凰 is created at the stage when the IC is manufactured, once it is completed in -, it is no longer possible to adjust the ``tc'' completely. In this way, converting β i & v to eK resulted in numerous drawbacks, and design had to be done within the constraints of these drawbacks.

本発明は上記欠点を解消し回路w4値を外部からのコン
トロール電圧によシ自由に′#!4Ii可能で、かつ出
力レベルはvIs、レベル付近までスイングできる反転
回路を提供しようとするものである。
The present invention solves the above drawbacks and allows the circuit w4 value to be freely controlled by an external control voltage. 4Ii, and the output level can swing up to around vIs level.

以下1本発明を用い九@3図の一実施例について詳#K
152明する。
Below is a detailed explanation of an embodiment using the present invention in Figure 9 #K
152 will be revealed.

纂3図の反転回路は5つの電界効果トランジスと1つの
負荷FETを有し九反転回路である。ここでh Qt 
 ・Qt  ・QlおよびQ4はPチャンネルエンハン
スメント型FET、Q、および。、ハPチャンネルディ
グレ、シ、ン型FETでめる。
The inverting circuit in Figure 3 has five field effect transistors and one load FET, and is a nine inverting circuit. Here h Qt
・Qt ・Ql and Q4 are P-channel enhancement type FETs, Q, and. , P-channel degradation, can be achieved using a single-type FET.

FETQt とQs の7 −”l’jm膚の @V 
 へ。
FET Qt and Qs 7-”l'jm @V
fart.

8 FETQ、、Ql のドレインおよびFkTQ、のドレ
インはNI#の洩る一端VD、へそれぞれ接続されてい
る。FETQ、のゲート、ドレイン、FkT−Qlのゲ
ート、FETQ、のソース及びF E T Q。
The drains of 8 FETQ, , Ql and FkTQ, are connected to one leaky end of NI#, VD, respectively. Gate and drain of FETQ, gate of FkT-Ql, source of FETQ, and FETQ.

のソースは互いに接続され、F E T Q 4のゲー
ト。
The sources of FETQ4 are connected together and the gates of FETQ4.

FETQ、のドレイン及びFETQ、のゲート。Drain of FETQ, and gate of FETQ.

ソースは互いKW続されている・さらKFETQsのド
レインとFETQ、のソースtJt−mK接続し。
The sources are connected to each other by KW, and the drain of KFETQs and the source of FETQ are connected by tJt-mK.

これを出力端子とする・また、FETQ、のゲートを入
力端子%FETQ、のゲートをコントロール端子として
構成されたものである。
This is used as an output terminal, and the gate of FETQ is used as an input terminal.The gate of FETQ is used as a control terminal.

次に第3図の動作について説明する・入力電圧v4に対
するA、B点の電圧、出方電圧V。UT1反転回路のt
iI4値電圧を第4図に示す。
Next, the operation of FIG. 3 will be explained. Voltages at points A and B and output voltage V with respect to input voltage v4. t of UT1 inversion circuit
The iI four-value voltage is shown in FIG.

pg’rQ1 eQaは回路閾僅電圧會変えるために使
用されるFITでs Qt  e Qsに流れる電流て
いるため、A点の電圧vTC1はvcONTにより変化
させることができる。1+%F FJT Qs  −Q
sFiQ、のソース電位が異なるものの従来例と1司等
の構成を有するものでQ、のソース電位を基準とすれば
同じように回路−gILvTct壱する。すな! わち%第3図ではQ、のソースはV からvTCIm 疋けvDD[Kナクテイルノテ亀源電aE (VDD−
V。
Since pg'rQ1 eQa is a current flowing through s Qt e Qs in the FIT used to slightly change the circuit threshold voltage, the voltage vTC1 at point A can be changed by vcONT. 1+%F FJT Qs -Q
Although the source potential of sFiQ is different, it has the same structure as the conventional example, and if the source potential of Q is used as a reference, the circuit -gILvTct1 is the same. sand! In other words, in Figure 3, the source of Q is V to vTCIm.
V.

−Vtc、)とし次ときの回路−値電圧をV?Cと鵞 すると、纂21WノIDIj3J値電EV、。はv?C
= ’?C。
-Vtc, ), then the circuit value voltage is V? If you add C, it will be 21W IDIj3J EV. Ha v? C
='? C.

+ V?c、となる。+ V? c.

このような電位配付をもつ第3図の実梅例に於て、入力
V□、に回路−値v、cを越えてvl)D@の電位が加
わったとするとQ、はオンするが、B点にはvoの電位
とはならずvTclだけ浮いた形となる・これを補償す
るためにFETQA  、Q4が使われる・FETQ、
とQ、はゲート共通の恵めQllQ#に流れる電流値は
同一となる。よってh QsにQmのオンによシミ流が
よシ多く流れるとQlの電流も増大する@このため%Q
mとQ4によってB点のvssからvTCだけ浮いた分
が1’l[され。
In the example of Fig. 3 with such a potential distribution, if a potential of vl)D@ is applied to the input V□, exceeding the circuit value v, c, then Q is turned on, but B At the point, the potential is not vo, but it is floating by vTcl. To compensate for this, FETQA and Q4 are used.FETQ,
and Q have the same current value flowing through the common gate QllQ#. Therefore, if more stain current flows in Qs due to Qm being turned on, the current in Ql will also increase @For this reason, %Q
By m and Q4, the amount floating by vTC from vss at point B is 1'l[.

v18側の電位が加わったとすると、出力にはvDDか
らFETQ、の閾値電圧V□分だけ引かれた電位が表わ
れる。
If the potential on the v18 side is added, a potential obtained by subtracting the threshold voltage V□ of FETQ from vDD appears at the output.

このように第3の反転回路によればVCONTの電圧に
より回路−値v、、t−y14整でき、かつ出方ハイレ
ベルはV レベル付近、出力ローレベルはvDDS からv?l  引かれたレベルとなる。ここで、出方0
−レベルがvDDtで下がらないことが気になるが、こ
の実施例の出力が一般のPチャンネル形論理回路に接続
されるならば一般のPチャンネル型論理回路はv8mを
基準として動作するのでさして重大な欠点とはならない
@また。FETQ、はここではエンハンスメント型であ
ったがディブレ。
As described above, according to the third inverting circuit, the circuit value v,, ty14 can be adjusted by the voltage of VCONT, and the output high level is near the V level, and the output low level is from vDDS to v? l It becomes the drawn level. Here, the way of coming out is 0
-It is a concern that the level does not drop at vDDt, but if the output of this embodiment is connected to a general P-channel logic circuit, it is not a serious problem since the general P-channel logic circuit operates based on v8m. It's not a disadvantage @Also. FETQ was an enhancement type here, but it was a dibre.

シ、ン型FETを用いても別に問題は無くディプレッジ
冒ン型ではV が負となるためVTCtvlmTo。
There is no particular problem even if a line-type FET is used, and VTCtvlmTo is VTCtvlmTo because V is negative in a dipleg type.

レベルからvDDレベルまで変化させることが可能とな
る。
level to vDD level.

このように本発明によればコントロール端子の電圧t−
変えることにより回路閾値電圧を自由に変えることが出
来、かつ出力ハイレベル1kV□付近までスイング可能
な反転回路を実境出来る01i!5図に本発明に於ける
他の実施例を示す・これは2ビ、トのアナログ−ディジ
タル変換器であここでは、Q、′からQ@’  + Q
%’からQ、′は第3図に於けるQlからQ、に相当し
、プロ、り3とブロック4で回路l!1fILを変える
ためにQ 、 //たQマ“ を使っている・しかしQ
y’t”使用する誉わシにQ、′とQ、′あるいはQl
’ とQt’の大きさに変化をつけてもよい。
In this way, according to the present invention, the voltage t-
By changing the circuit threshold voltage, you can freely change the circuit threshold voltage, and you can actually create an inversion circuit that can swing the output high level to around 1kV□! Figure 5 shows another embodiment of the present invention. This is a 2-bit analog-to-digital converter, where Q,' to Q@' + Q
%' to Q,' corresponds to Ql to Q in Figure 3, and the circuit l! I am using Q, //taQma” to change 1fIL・However, Q
Q, ' and Q, ' or Ql to use "y't"
The magnitudes of ' and Qt' may be varied.

尚、第3囚、纂5図において、FETQt −Qs’Q
t’  は抵抗でもよい0
In addition, in the third prisoner, Figure 5, FETQt -Qs'Q
t' can be resistance 0

【図面の簡単な説明】[Brief explanation of the drawing]

譲1図は従来の一実施例を示す図、第2凶は第1図の入
出力特性を示す因、第3L)!gは本発明の一実施例を
示す図、第4図は第3の一実施例に於ける各点の電圧を
示す図、wJ5図は本発明に於ける他の実施例を示す回
路図である。 l・・・・・・エンハンスメント型トランジスタ、2・
・・・・・ディプレヅシ、ン型トランジスタ、3.4・
・・・・・回路閾値電圧の異なる本発明による反転回路
、Q・・・・・・FET。 5S 第1区 第2図 第3図 1 第4図 拾 5図
Figure 1 shows a conventional embodiment, Figure 2 shows the input/output characteristics of Figure 1, and Figure 3L)! g is a diagram showing one embodiment of the present invention, FIG. 4 is a diagram showing the voltage at each point in the third embodiment, and wJ5 is a circuit diagram showing another embodiment of the present invention. be. l...Enhancement type transistor, 2.
・・・・・・Depreciation type transistor, 3.4・
...Inversion circuit according to the present invention having different circuit threshold voltages, Q...FET. 5S District 1 Figure 2 Figure 3 Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 入力信号の位相を反転させる信号反転部と、供、鮒され
た制御傷崎に応じて該信号反転部へ電圧を供給する電王
供給部と、前記信号反転部の出力レベルを電源電圧付近
までシフトする手段とを含むことを特徴とする反転回路
A signal inverting section that inverts the phase of an input signal, a power supply section that supplies voltage to the signal inverting section according to the applied control voltage, and shifting the output level of the signal inverting section to near the power supply voltage. An inverting circuit characterized by comprising means for.
JP57061893A 1982-04-14 1982-04-14 Inverting circuit Pending JPS58179025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061893A JPS58179025A (en) 1982-04-14 1982-04-14 Inverting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061893A JPS58179025A (en) 1982-04-14 1982-04-14 Inverting circuit

Publications (1)

Publication Number Publication Date
JPS58179025A true JPS58179025A (en) 1983-10-20

Family

ID=13184272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061893A Pending JPS58179025A (en) 1982-04-14 1982-04-14 Inverting circuit

Country Status (1)

Country Link
JP (1) JPS58179025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808852A (en) * 1985-03-06 1989-02-28 Fujitsu Limited Input circuit having level shift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808852A (en) * 1985-03-06 1989-02-28 Fujitsu Limited Input circuit having level shift

Similar Documents

Publication Publication Date Title
US4506168A (en) Schmitt trigger circuit
JPS5923915A (en) Schmitt trigger circuit
US5151616A (en) Cmos high voltage switch
JP3868293B2 (en) Semiconductor integrated circuit
JPS5915567B2 (en) CMOS Schmitt circuit
US20070216443A1 (en) High speed voltage translator circuit
JP4774287B2 (en) Output circuit
US6340907B2 (en) Schmitt trigger circuit having independent threshold voltage setting to provide hysteresis
JPS58179025A (en) Inverting circuit
US5113150A (en) Unity gain inverting amplifier providing linear transfer characteristics
US5831465A (en) Variable delay circuit
JPS591005B2 (en) Schmidt trigger circuit
US6292037B1 (en) Output circuit of semiconductor integrated circuit
JPS62163417A (en) Semiconductor integrated circuit device
US7906954B2 (en) Bias circuit
US6448822B1 (en) Comparator for negative and near-ground signals
JPS58182914A (en) Cmos hysteresis circuit
Inaba et al. Analog inverter with neuron-MOS transistors and its application
JPS594890B2 (en) digital circuit
JPH0210763A (en) Semiconductor integrated circuit
JP3077664B2 (en) Input circuit
Sivaram et al. Exploration of PFSCL in Subthreshold region of operation for use in ultra low power applications
JP3846996B2 (en) Analog / digital converter
JPH0218606A (en) Constant current circuit
JPS62114317A (en) Schmitt trigger circuit