JPS58178574A - Input protecting device - Google Patents

Input protecting device

Info

Publication number
JPS58178574A
JPS58178574A JP57061217A JP6121782A JPS58178574A JP S58178574 A JPS58178574 A JP S58178574A JP 57061217 A JP57061217 A JP 57061217A JP 6121782 A JP6121782 A JP 6121782A JP S58178574 A JPS58178574 A JP S58178574A
Authority
JP
Japan
Prior art keywords
type
aluminum
aluminum electrode
input
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57061217A
Other languages
Japanese (ja)
Other versions
JPH0456470B2 (en
Inventor
Kazumichi Aoki
青木 一道
Kiminori Kanamori
金森 公則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57061217A priority Critical patent/JPS58178574A/en
Publication of JPS58178574A publication Critical patent/JPS58178574A/en
Publication of JPH0456470B2 publication Critical patent/JPH0456470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To obtain an input protecting device which has strong electrostatic stress by providing aluminum electrode and conductors on an oxidized film of an N type Si substrate, connecting them to the input terminal of an IC and providing a deep P type layer of low density under the connecting pad. CONSTITUTION:An N<+> type layer 4 and a P<+> type layer 3 are provided on an N type substrate 2, and a deep P type layer 7 is formed under the aluminum electrode 1 on an oxidized film 6 and at the connecting part 5. When a large negative voltage is applied to the electrode 1, a lower N type layer is inverted, the layers 3, 7 are connected, the junction capacity of the layer 7 and the substrate 2 is added, thereby exhibiting large input capacity, and increasing the electrostatic breakdown withstand voltage. The concentration of an electric field at the edge of the electrode which is caused by the inverting phenomenon under the electrode 1 is prevented by providing the layer 7, and the defect in Si due to stress at the junction time does not affect the influence of the electrostatic withstand voltage. According to this structure, an input protecting device which has high reliability can be obtained without adding special steps.

Description

【発明の詳細な説明】 本発明は電界効果トランジスタの入力保護装置に係9、
特にMO8構造のトランジスタにより構成される集&回
路の改善された入力保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an input protection device for a field effect transistor.
In particular, the present invention relates to an improved input protection device for integrated circuits and circuits constituted by transistors of MO8 structure.

近年のMO8果槓囲路の進歩に伴い、人体又は装置の静
電気によりMO8J造のゲート酸化膜がMlllされる
靜亀破職現象に対する理解が反透し、その対策として多
くの入力保護装置が考案された。
With the recent progress in MO8 circuits, an understanding of the phenomenon of static electricity in MO8J structures, where the gate oxide film of MO8J is damaged due to static electricity from the human body or equipment, has become clearer, and many input protection devices have been devised as a countermeasure. It was done.

このような入力保護装置の改良によシ、静電M壊耐量に
向上し、実用上はぼ充分な1倉が鐘体されるに至った。
Through these improvements in the input protection device, the electrostatic M breakdown resistance has improved, and one tank has become available, which is sufficient for practical use.

しかしながら、最近自動車電装等の用途で、更は静電ス
トレスに対する耐重の向上が要求される様になり、入力
保麹装置の改良が蛛眺となっている。一般に、!!11
i1.耐圧向上のためには、入力保瞼装置自体が大型と
ならざるをえず、そのため、特に集積度の小さい集積回
路(S8I)では、ペレットの大きさに1大な影I/I
i、t−及はす。このよりな8SIでは入力保賎装激の
占める面積によりペレットの大きさが決定され、しいて
は製品のコストが決定されるといっても過言ではない。
However, in recent years, there has been a demand for improved weight resistance against electrostatic stress in applications such as automobile electrical equipment, and improvements to input protection devices have become increasingly important. in general,! ! 11
i1. In order to improve the withstand voltage, the input eyelid protection device itself has to be large, and therefore, especially in the case of a small integrated circuit (S8I), the size of the pellet has a large impact on I/I.
i, t- and has. It is no exaggeration to say that in this type of 8SI, the size of the pellet is determined by the area occupied by the input insulation layer, which in turn determines the cost of the product.

本発明の目的は、小型でしかも静電ストレスに対し強い
入力保―装置を実現することにより信頼性が高く、安価
な集積回路素子t−提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable and inexpensive integrated circuit element by realizing an input protection device that is small and strong against electrostatic stress.

本発明の%黴は、少なくとも被数個のMOS)ランジス
タによシ構成さ九る集積回路の入力端子が、N型シリコ
ン基板上にシリコン酸化膜を介して設置された第1のア
ルミニウム1に極と擲蛾により接続され、かつ上記アル
ミニウム電極が基板内。
In the present invention, the input terminal of an integrated circuit constituted by at least several MOS transistors is connected to a first aluminum 1 placed on an N-type silicon substrate with a silicon oxide film interposed therebetween. The aluminum electrode is connected to the pole by a pinhole, and the aluminum electrode is inside the substrate.

のP型拡散層による抵抗領域に電気的に接続された第2
のアルミニウム電極と酸化膜上のアルオニウム配線によ
り*続されて成る入力保^装置において、上記第1のア
ルミニウムを極と第2のアル<ニウム電極の下部にそれ
ぞれP型不純物領域を有する入力保瞼装置にある。そし
て、2つの低濃tPW拡散領域の間で、かつ第1のアル
ミニウム電極と第2のアルミニウム電極とを接続するア
ルミニウム配−の下部にN型不純物領域を有することも
好ましい。また、第1のアルミニウムI!他下部のP型
拡散領域が回路の11It源端子に電気的に接続されて
いることも好ましい。
A second region electrically connected to the resistance region by the P-type diffusion layer of
In an input protection device which is connected to an aluminum electrode and an aluminum wiring on an oxide film, the input protection device has P-type impurity regions at the bottom of the first aluminum electrode and the second aluminum electrode, respectively. It's in the device. It is also preferable to have an N-type impurity region between the two low concentration tPW diffusion regions and below the aluminum interconnection connecting the first aluminum electrode and the second aluminum electrode. Moreover, the first aluminum I! It is also preferred that the other lower P-type diffusion region is electrically connected to the 11It source terminal of the circuit.

一般に静電破Jll耐童は入力容量に関係しており、入
力容量が大きいはど耐量が筒くなる傾向がある、しかし
ながら、入力容量の増大は、回路の応答速IILt−低
下させるなど回路設計上の制約となり好ましくない。
In general, electrostatic discharge resistance is related to input capacitance, and the larger the input capacitance, the lower the resistance is.However, increasing the input capacitance will reduce the circuit response speed, etc. This is not desirable because it imposes the above restriction.

本発明によれは、通常の動作条件では、入力°容量が極
めて小さいが、静電ストレスが印加された場合のみ大き
な入力容量を示すので回路の応答速度が低下することが
なく、さらに低濃度のP型拡散領域が付加されることに
より、静電ストレスの九め′i起される電界集中現象が
緩和される。
According to the present invention, the input capacitance is extremely small under normal operating conditions, but it shows a large input capacitance only when electrostatic stress is applied, so the response speed of the circuit does not decrease. By adding the P-type diffusion region, the electric field concentration phenomenon caused by electrostatic stress is alleviated.

以下、図面を参照し本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1(a)図は、従来の技術による標準の入力保表装置
の平面図であシ、第1(b)図は、平面図におけるx−
x’線に沿った断面の模式図である。図において、lは
アルミ電極、2はN型シリコン基板、3はP+型拡散層
で、入力体層抵抗とダイオードを兼ねるものであるo4
はN+型型数散層5はP+型拡散層3とアルミ電極1の
コンタクト部、6はシリコン酸化膜である。この様な従
来技術による入力保謙装置では、特に入力端子に負電位
が加わる静電ストレスに対して耐重が小さく、第1(a
)図に示すA又はB点で破壊する場合が多い。この原因
は、第1図の2,3領域に形成されたPN襞合が逆バイ
アスされると同時に、アルミIIl極lが負電位となる
ためアルミ電極1の下部のN型半導体鎖酸が反転し、A
点又はB点に電界が集中するためである0この現象に対
して、例えば、第2図様な構造は有効な耐量向上の手段
である。すなわちアル建電他下部のN++拡散領域4を
なくすと同時に、アルミ電極lとN++拡散領域4の間
隔を大きくすることにより、A、B点の電界集中が緩和
される0しかし第2図の構造でも静電耐fFi充分では
ない。
FIG. 1(a) is a plan view of a standard input/tablet device according to the prior art, and FIG. 1(b) is an x-
FIG. 3 is a schematic diagram of a cross section taken along the x' line. In the figure, l is an aluminum electrode, 2 is an N-type silicon substrate, 3 is a P+ type diffusion layer, and o4 serves as an input layer resistance and a diode.
The N+ type scattering layer 5 is a contact portion between the P+ type diffusion layer 3 and the aluminum electrode 1, and 6 is a silicon oxide film. In such a conventional input protection device, the load resistance is small, especially against electrostatic stress where a negative potential is applied to the input terminal, and the first (a)
) It often breaks at point A or B shown in the figure. The reason for this is that when the PN folds formed in regions 2 and 3 in Fig. 1 are reverse biased, the aluminum electrode 1 becomes negative potential, so the N-type semiconductor chain acid at the bottom of the aluminum electrode 1 is reversed. A
This is because the electric field is concentrated at the point or point B. To deal with this phenomenon, for example, a structure as shown in FIG. 2 is an effective means for improving the withstand capability. In other words, by eliminating the N++ diffusion region 4 at the bottom of the aluminum electrode and at the same time increasing the distance between the aluminum electrode 1 and the N++ diffusion region 4, the electric field concentration at points A and B is alleviated. However, the electrostatic resistance fFi is not sufficient.

第3図に本発明による第1の実施例を示す。図において
7は、本発明に係るP型の不純物領域である0第3図に
示す構造において、P型不純物領域3と7は通常の動作
条件では電気的に接続されば、したがって、入力容量も
第1図又は第2図の入力体験装置と変わらないが、アル
i′vL極lに大きな負電圧が印加されると、アルミ電
極lの下部のN型領域が反転し、3と7は電気的に接続
される。その結果、P型不純物領域7と基板2による嵌
合容量が付加され、大きな入力′!6蓋を示す。静電破
壊耐量が向上するのは、印加される静電エネルギーの一
部が、この容量に吸収されるためと考えられる。この構
造のもつ#42の%長は、ボンティングパッドの下部に
、低a11度で、深いPMM不糾動領域が形成されてい
る点で、上述のアルミ11L極下部の反転現象に起因す
るアルミ電極端での電界集中を防止すると同時に、ボン
ディング時のストレスに起因するシリコン中の欠陥が、
静電耐量に影1111に及はさない構造である。更に、
第2の電極下部のP型不純物層も電極端での電界集中を
M和し、第1図におけるB点での破壊耐量を向上させる
ことができる。
FIG. 3 shows a first embodiment of the present invention. In the figure, 7 is a P-type impurity region according to the present invention. In the structure shown in FIG. 3, if P-type impurity regions 3 and 7 are electrically connected under normal operating conditions, the input capacitance is It is the same as the input experience device shown in Fig. 1 or 2, but when a large negative voltage is applied to the aluminum electrode l, the N-type region at the bottom of the aluminum electrode l is inverted, and 3 and 7 are electrically connected. connected. As a result, a fitting capacitance is added by the P-type impurity region 7 and the substrate 2, and a large input '! 6 Lid is shown. It is thought that the reason why the electrostatic breakdown strength is improved is that a part of the applied electrostatic energy is absorbed by this capacitance. The #42% length of this structure is due to the aluminum 11L inversion phenomenon described above in that a deep PMM non-consolidated region with a low a11 degree is formed under the bonding pad. At the same time as preventing electric field concentration at the electrode end, defects in the silicon caused by stress during bonding are
This structure does not affect the electrostatic capacity 1111. Furthermore,
The P-type impurity layer at the bottom of the second electrode also reduces the electric field concentration at the electrode end, thereby improving the breakdown resistance at point B in FIG.

第4図に示す本発明の第2の実施例は、アルミ電極下部
にN−型不純物領域8を有する東に改善された構造であ
る。このN′″型不純物層により、アルミ電極1の下部
の反転電圧を高くすることができる。したがって、高耐
圧が要求されるMO8デバイスに特に適している。P型
不純物領域7は、第1の実施例と同様の効JJ、をもつ
、N−型不純物領域は、第1図のA点の破壊を防止する
ため、2のN+型型数散層不純物atより低いことが必
要だが、一般に高耐圧MO8デバイスは、Nチャネルト
ランジスタの耐圧向上のために、ドレイン接合に、へ−
型不純物領域を有しており、これと同時に形成できる。
A second embodiment of the present invention, shown in FIG. 4, has an improved structure in the east having an N-type impurity region 8 under the aluminum electrode. This N'' type impurity layer can increase the inversion voltage at the bottom of the aluminum electrode 1. Therefore, it is particularly suitable for MO8 devices that require high breakdown voltage. The N- type impurity region, which has the same effect JJ as in the example, needs to be lower than the N+ type scattering layer impurity at in order to prevent the destruction at point A in FIG. In order to improve the breakdown voltage of the N-channel transistor, MO8 devices are equipped with a
It has a type impurity region and can be formed at the same time.

第5図に示す第3の実施例は、ポンディングパッドの下
部に形成するP型不純物領域7がコンタクト9を介して
回路の最低電位を源ライン(Vss)に接続される構造
である。この構造では、静電エネルギーが電流として電
源ラインに放出されるため、極めて大きい静電耐量を有
す。第5図では、Vssラインとの朕続例を示したが、
VDDラインと接続した場合でも−等の効果がある。ま
た、第3の実施例においてもへ一型不純物領域8が上述
の効果1に果すことはいうまでもない。
The third embodiment shown in FIG. 5 has a structure in which a P-type impurity region 7 formed under a bonding pad is connected to the lowest potential of the circuit to a source line (Vss) via a contact 9. In this structure, electrostatic energy is released as a current to the power supply line, so it has an extremely large electrostatic withstand capacity. In Figure 5, an example of connection with the Vss line is shown, but
Even when connected to the VDD line, there are effects such as -. It goes without saying that the F1 type impurity region 8 also achieves the above-mentioned effect 1 in the third embodiment.

以上の本発明による実施例において、P型不純物領域7
は、Pウェルの形成と同時に行うことができ、また、上
述の如く、動作電圧が高い場合に工Sを付加することな
く七のため、低価格で、シかも為gs籾性を有するテバ
イスを提供することができる。
In the embodiment according to the present invention described above, the P-type impurity region 7
This can be done at the same time as forming the P-well, and as mentioned above, when the operating voltage is high, it is possible to create a device with gs grain properties at a low cost without adding any S. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来技術による入力保誇装置を示す図
、第3図、第4図、第5図は本発明の実施例を示す図で
ある。 なお図において、1・・・・・・アルミ電極、2・・・
・・・N型半尋体基板、3・・・・・・P+型拡散領域
、4・・・・・・N++拡散領域、5・・・・・・P 
型拡散領域とアルミ電極のコンタクト部、6・・・・・
・シリコン酸化膜、7・・・・・・P型不純物領域、8
・・・・・・N型不純物領域、9・・・・・・P型不純
物領域のコンタクト、10・・・・・・電源に接続され
るアルミ電極、である。
1 and 2 are diagrams showing an input security device according to the prior art, and FIGS. 3, 4, and 5 are diagrams showing an embodiment of the present invention. In the figure, 1...aluminum electrode, 2...
...N-type semicircular substrate, 3...P+ type diffusion region, 4...N++ diffusion region, 5...P
Contact area between mold diffusion region and aluminum electrode, 6...
・Silicon oxide film, 7... P-type impurity region, 8
. . . N-type impurity region, 9 . . . Contact for P-type impurity region, 10 . . . Aluminum electrode connected to a power source.

Claims (1)

【特許請求の範囲】[Claims] (1)  少なくとも複数個の電界効果トランジスタに
より構成される集積回路の入力端子が、N型・7リコン
基板上にシリコン緻化膜を介して設置された第1のアル
ミニウム11極と導線とによシ接続され、かつ前記アル
ニウム電極が基板内のP型拡散層による抵抗領域に電気
的に接続された第2のアルミニウム電極と酸化膜上のア
ルミニウム配線により接続されて成る入力保護装置にお
いて、前記第1のアルミニウム電極と第2のアルミニウ
ム電極の下部にそれぞれP型不純物領域を有することを
%徴とする入力保護装置。 (23(11項の入力保護装置において、2つの低濃度
P型拡散領域の間で、かつ第1のアルミニウム電極と第
2のアルミニウムw、極t−接続するアルミニウム配縁
の下部にN型不純物領域を肩することを特徴とする特許
請求の範囲第(1)項記載の入力保護装置。 (Jll  (1)項または(2)項の入力保護装置に
おいて、第1のアルミニウム電極下部のX)型拡散領域
が回路の電源端子と電気的に接続されていることを特徴
とする特許請求の範囲第(1)項または第(2)項記載
の入力保護装置。
(1) The input terminal of an integrated circuit constituted by at least a plurality of field effect transistors is connected to the first 11 aluminum poles and conductive wires installed on the N-type 7 silicon substrate with a silicon densified film interposed therebetween. and the aluminum electrode is connected to a second aluminum electrode electrically connected to a resistance region formed by a P-type diffusion layer in the substrate by an aluminum wiring on an oxide film. An input protection device characterized by having P-type impurity regions under each of a first aluminum electrode and a second aluminum electrode. (23 (In the input protection device of Section 11, an N-type impurity is added between the two low-concentration P-type diffusion regions and under the aluminum interconnection connecting the first aluminum electrode and the second aluminum electrodes w and t). The input protection device according to claim (1), characterized in that the area is shouldered. (In the input protection device according to paragraph (1) or (2), the 2. The input protection device according to claim 1, wherein the type diffusion region is electrically connected to a power supply terminal of the circuit.
JP57061217A 1982-04-13 1982-04-13 Input protecting device Granted JPS58178574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061217A JPS58178574A (en) 1982-04-13 1982-04-13 Input protecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061217A JPS58178574A (en) 1982-04-13 1982-04-13 Input protecting device

Publications (2)

Publication Number Publication Date
JPS58178574A true JPS58178574A (en) 1983-10-19
JPH0456470B2 JPH0456470B2 (en) 1992-09-08

Family

ID=13164806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061217A Granted JPS58178574A (en) 1982-04-13 1982-04-13 Input protecting device

Country Status (1)

Country Link
JP (1) JPS58178574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282568A (en) * 1988-09-19 1990-03-23 Nec Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185652U (en) * 1974-12-27 1976-07-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185652U (en) * 1974-12-27 1976-07-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282568A (en) * 1988-09-19 1990-03-23 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0456470B2 (en) 1992-09-08

Similar Documents

Publication Publication Date Title
EP0161983B1 (en) Input protection arrangement for vlsi integrated circuit devices
US5610426A (en) Semiconductor integrated circuit device having excellent dual polarity overvoltage protection characteristics
JPH0151070B2 (en)
JP3116916B2 (en) Circuit device and method of manufacturing the same
US20110163384A1 (en) Semiconductor device
JPS58178574A (en) Input protecting device
JP4795613B2 (en) Semiconductor device
JPH06236965A (en) Semiconductor device
JP2611639B2 (en) Semiconductor device
JPH01214055A (en) Electrostatic breakdown protective device
US20230317712A1 (en) Esd protection circuit and semiconductor device
JP3355651B2 (en) Electrostatic protection circuit and semiconductor device
JP3206703B2 (en) Semiconductor device
KR19980043416A (en) ESD protection circuit
US7485972B2 (en) Semiconductor device
JPS5916364A (en) Signal input circuit of mis type semiconductor integrated circuit
JPH10223843A (en) Protective circuit of semiconductor device
JP2671755B2 (en) I / O protection circuit
JPS58202573A (en) Semiconductor integrated circuit device
JPH06151716A (en) Semiconductor integrated circuit device
JPH0468576A (en) Semiconductor device
JPS61274343A (en) Semiconductor device
JP2023152286A (en) ESD protection circuit and semiconductor device
JPS59104171A (en) Semiconductor device
JPH06188369A (en) Semiconductor circuit having electrostatic breakdown preventive layer