JPS58177639A - Production of ultrasonic probe - Google Patents

Production of ultrasonic probe

Info

Publication number
JPS58177639A
JPS58177639A JP57061219A JP6121982A JPS58177639A JP S58177639 A JPS58177639 A JP S58177639A JP 57061219 A JP57061219 A JP 57061219A JP 6121982 A JP6121982 A JP 6121982A JP S58177639 A JPS58177639 A JP S58177639A
Authority
JP
Japan
Prior art keywords
matching layer
acoustic matching
layer
thickness
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57061219A
Other languages
Japanese (ja)
Other versions
JPH0362413B2 (en
Inventor
高橋 貞行
武志 井上
雅也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57061219A priority Critical patent/JPS58177639A/en
Publication of JPS58177639A publication Critical patent/JPS58177639A/en
Publication of JPH0362413B2 publication Critical patent/JPH0362413B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、超音波パルスを人体などの被検体に照射し、
被検体内部からの反射パルスをブラウン管上で表示する
、いわゆるパルスエコー法の超音波診断装置に用いられ
る超音波探触子の製造方法に関する〇 従来の超音波探触子では圧電体と被検体との音響インピ
ーダンスの葺合をよりよく行ない、さらに特性の広帯域
化を図るため圧電体上に音響整合層を形成した構造が用
いられている0 まず例として従来のパルスエコー法の超音波診断装置に
用いられている2重の整合層を有する超音波探触子の一
般的な構成を示す。第1図において、圧電セラミック、
圧電性結晶などの圧電体1の対向する板肉にメッキ、蒸
着1塗布などによって電極2が形成されているo4はガ
ラス、樹脂、樹脂と無機物の混合物などを接着あるいは
塗布硬化させて電@2上に形成された第1音響整合層で
ある05は樹脂や樹脂と無機物の混合物を$1音響整合
層上Km着あるいは塗布硬化させて形成された第2音響
整合層である0さらに背面負荷層6が音響整合層と反対
側の位置に形成されている。
[Detailed description of the invention] The present invention irradiates an object such as a human body with an ultrasonic pulse,
Regarding the manufacturing method of ultrasound probes used in ultrasound diagnostic equipment using the so-called pulse echo method, which displays reflected pulses from inside the specimen on a cathode ray tube. In conventional ultrasound probes, the piezoelectric material and the specimen A structure in which an acoustic matching layer is formed on a piezoelectric material is used to better match the acoustic impedance of the piezoelectric material and to widen the characteristics. 1 shows a general configuration of an ultrasound probe with a double matching layer. In FIG. 1, a piezoelectric ceramic,
Electrodes 2 are formed on opposing plates of a piezoelectric body 1 such as a piezoelectric crystal by plating, vapor deposition, etc. O4 is made of glass, resin, a mixture of resin and inorganic materials, etc., bonded or coated and hardened. The first acoustic matching layer 05 formed on the top is a second acoustic matching layer formed by depositing or coating a resin or a mixture of a resin and an inorganic material on the acoustic matching layer for 1 km and curing it. 6 is formed at a position opposite to the acoustic matching layer.

3は被検体である0 パルスエコー@1こ耘いて、短か<強いjM 4− m
 ハルスを送受する事が分解能、JIilI直の陶土に
とって重要である0このために超音波&触子の性能とし
ては、パルス応答性に優れた広帯域、低損失、低リップ
ルといった%性か鍼まれる0このため第1図の青畳整合
14.5及び背面負祝層6の適切な構成が要求される0 第1図の背NjiL何層6は背面1(放射された超音波
を吸収する役割をもつ、lltzlmの音響整合層4゜
5は圧電体1と被検体3との関における超音波の送受を
効率良く行うため1層両者の音響インピーダンスを整合
するためのもので、一般Kxl*畳整合層4は圧電体1
よりも音響インピーダンスの小さなものが使われ、第2
音譬整合層5は菖l音畳整合層4よりも音響インピーダ
ンスが小さく、被検体3よりも音響インピーダンスの大
きなものが使われる〇 これらの音響整合層を構成する一般的な方法は圧電体の
共振周波数に対応する波長の4分の1波長の厚みに加工
されたガラス板を圧電体上に接着し同様に4分の1波長
の厚みに加工されたプラスティクシートを、ざらにガラ
ス板上に接着するかあるいは圧電体上に接着されたガラ
ス板上に樹脂を塗布硬化させた後に、研磨によって4分
の1波長の厚みに調節する方法であったoしかしながら
この場合4分の1波長の厚みは、ガラス、樹脂などの音
速マから使用Tる周波数foにおける波長λ−v/f*
を求め、その4分の1にするという事て決められていた
ため、接着層による影蕃や樹脂の硬化条件による音速の
ばらつきのために正確な4分の1波長を実蜆する事は困
難であった。又、整合層としてガラス板は必ずしも理想
的な材料ではないので、こうして出来た兼合層を有する
入音tIt探触子にはパルス応答性に関して問題があっ
た。
3 is the object 0 Pulse echo @ 1, short or strong jM 4- m
Transmitting and receiving Hals is important for resolution and JIILI direct china clay.For this reason, the performance of ultrasonic waves and probes is important, such as broadband with excellent pulse response, low loss, and low ripple. 0 For this reason, an appropriate configuration of the blue tatami matching 14.5 and the back cover layer 6 in Figure 1 is required. The acoustic matching layer 4゜5 of the lltzlm is used to match the acoustic impedance of the two layers in order to efficiently transmit and receive ultrasonic waves between the piezoelectric body 1 and the subject 3, and is a general Kxl*tatami matching layer. Layer 4 is piezoelectric material 1
A device with a smaller acoustic impedance than the second
The acoustic matching layer 5 has a smaller acoustic impedance than the acoustic matching layer 4, and a layer with a larger acoustic impedance than the subject 3 is used. A general method for configuring these acoustic matching layers is to use a piezoelectric material. A glass plate processed to a thickness of 1/4 wavelength of the wavelength corresponding to the resonant frequency is glued onto the piezoelectric body, and a plastic sheet similarly processed to a thickness of 1/4 wavelength is roughly placed on the glass plate. The method was to apply a resin to a glass plate that was adhered to a piezoelectric material or to harden it, and then adjust the thickness to a quarter wavelength by polishing. The thickness is determined by the wavelength λ-v/f* at the frequency fo used from the sound velocity of glass, resin, etc.
It was decided to calculate the wavelength and make it a quarter of that, but it was difficult to obtain an accurate quarter wavelength due to the influence of the adhesive layer and variations in sound speed due to the curing conditions of the resin. there were. Further, since a glass plate is not necessarily an ideal material for the matching layer, the sound input tIt probe having the combined layer made in this manner has a problem with regard to pulse response.

一方接着層の影響を避け、又理想的な音響インピーダン
スの整合層を形成するために樹脂と無機物の混合物を圧
電体上に塗布硬化させる方法があるが、この場合無機物
の沈澱により不均一な層となってしまい、音速を決定す
る事が出来ない0このため従来の方法では正確な4分の
1波長の10整合層を形成する事力長できなかった。
On the other hand, in order to avoid the influence of the adhesive layer and to form an ideal acoustic impedance matching layer, there is a method of coating and curing a mixture of resin and inorganic material on the piezoelectric material, but in this case, the layer is uneven due to precipitation of the inorganic material. Therefore, the speed of sound cannot be determined.For this reason, the conventional method has not been able to form an accurate 1/4 wavelength matching layer.

本発明の目的は、こうした従来技術の欠点を除去し、適
切な音響インピーダンス密度および適切な厚みをもった
音響整合層を形成し、パルス応答性に優れた超音波探触
子を製造する方法を提供することにある。本発明の超音
波探触子の製造方法は圧電体上に音響整合層をもった超
音波探触子の製造方法において、厚みの調整された2N
−2層(N −1,2,3,・・・・・・・・・)の音
wm合層上(N−1のときは圧電体上)にM2N−1層
目の音41111i合層を形成し、この圧電体および2
N−1層の音響整合層からなる複合振動子のN次モード
、N+1次モードの共振周波数を測定し、これらの値と
圧電体単独の基本モード共振周波数の値との差の絶対値
が等しくなるように、前記第2N−1層目の音響整合層
の厚みを調整する工程と、この厚みの調整された2N−
1層の音響整合層上に第2N層目の音響整合層を形成し
、この圧電体および2N層の音響整合層からなる複合振
動子のN+1次モードの共振周波数を測定し、この値と
圧電体単独の基本モード共振周波数の値が一致するよう
kIIrJ記第2N層目の音響整合層の厚みを調整する
工程を有することを特徴としている。
The purpose of the present invention is to eliminate these drawbacks of the prior art, form an acoustic matching layer with an appropriate acoustic impedance density and an appropriate thickness, and provide a method for manufacturing an ultrasonic probe with excellent pulse response. It is about providing. The method for manufacturing an ultrasound probe of the present invention is a method for manufacturing an ultrasound probe having an acoustic matching layer on a piezoelectric material.
-2 layers (N -1, 2, 3, ......) sound wm combination layer (on the piezoelectric body in case of N-1) M2N-1st layer sound 41111i combination layer , and this piezoelectric body and 2
Measure the resonance frequencies of the N-order mode and N+1-order mode of a composite vibrator consisting of N-1 acoustic matching layers, and check that the absolute value of the difference between these values and the value of the fundamental mode resonance frequency of the piezoelectric material alone is equal. a step of adjusting the thickness of the 2N-1 acoustic matching layer, and a step of adjusting the thickness of the 2N-1 acoustic matching layer so that the 2N-
A 2Nth acoustic matching layer is formed on the 1st acoustic matching layer, and the resonant frequency of the N+1st mode of the composite vibrator consisting of this piezoelectric material and 2N acoustic matching layers is measured, and this value and the piezoelectric The present invention is characterized in that it includes a step of adjusting the thickness of the second Nth acoustic matching layer in kIIrJ so that the values of the fundamental mode resonance frequencies of the individual bodies coincide.

本発明の原理について以下に説明する。一般に圧電体上
に圧電体よりも音響インピーダンスの小さな材料の層を
設けると、圧電体とこの設けられた層は複合振動子を形
成し、圧電体単独の基本モードの共振周波数に近い共振
周波数をもった2つのモードを生Tる。第2図はこの様
子を示したもので、圧電体上に設けられた層(以下、第
l音響整合層と呼ぶ)の厚みと複合振動子の基本モード
及び2次モードの共振周波数の関係を計算したものであ
る0こCで第1音譬整合層の厚みは圧電体の共振周波数
に於る4分の1波長の厚みで、周波数は圧電体の共振周
波数で規格化されている0尚ここで圧電体としては音響
インピーダンスv!i度3SX10’に4I/♂・友、
電気機械結合係数50.0チの圧電セラミックを第1音
響整合層としては、音響インピーダンス密度6.6 X
 10’Kp/l/・瀘 の材料を想定した0計算方法
は圧電セラミックの部分をメイソンの等価回°路を用い
る方法で行なった。
The principle of the present invention will be explained below. Generally, when a layer of a material with lower acoustic impedance than the piezoelectric material is provided on the piezoelectric material, the piezoelectric material and this layer form a composite vibrator, and the resonant frequency close to the resonance frequency of the fundamental mode of the piezoelectric material alone is generated. Two modes are available. Figure 2 shows this situation, and shows the relationship between the thickness of the layer provided on the piezoelectric body (hereinafter referred to as the first acoustic matching layer) and the resonance frequencies of the fundamental mode and secondary mode of the composite vibrator. The calculated thickness of the first tuning layer is 1/4 wavelength at the resonant frequency of the piezoelectric material, and the frequency is normalized by the resonant frequency of the piezoelectric material. Here, as a piezoelectric material, the acoustic impedance is v! i degree 3SX10' to 4I/male friend,
When a piezoelectric ceramic with an electromechanical coupling coefficient of 50.0 x is used as the first acoustic matching layer, the acoustic impedance density is 6.6 x
The zero calculation method assuming a material of 10'Kp/l/.filtration was performed using a Mason equivalent circuit for the piezoelectric ceramic part.

第2図より第1音響整合層の厚みが圧電体の共振周波数
に対応する波長の4分の1波長となるとき、基本モード
と2次モードの共振周波数のそれぞれと圧電セラミック
単体の基本共振周波数との差の絶対値は等しくなる0こ
の事を利用して逆に前記4分の1波長の厚みの第1整合
鳩を形成するには、第1整合層の厚みを調整する際に共
振周波数を測定し、基本モード及び2次モードの共振周
波数が、圧電セラミック単体の基本モード共振周波数と
の差において、その絶対値が相等しくなるように調整す
ればよい0   ゛ ざらに上記複合振動子の4分の1波長厚みに調整された
第1音醤整合層上に、第1音番整合層よりもざらに音響
インピーダンス密度の小さな材料の層を設けると、3つ
の近接した共振モードをもつ複合振動子となる。第3@
はこの様子を示したもので、第1f’11m1合層上に
設けられた層(以下第2音響整合層と呼ぶ)の厚みと複
合振動子の基本モード、2次モード及び3次モードの共
振周波数の関係を計算したものである0ここで圧電体、
第1音響整合層の材料は第2図の計算と同じもの第2音
響葺合層としては、音響インピーダンス密度2.4 X
 10@]cf/yl・鱈の材料を想定し、第1音参整
合層は、4分の1波長の厚みとした0第3図より、第2
音書整合層の厚みが圧電体の共振周波数に対応する波長
の4分の1波長となると、2次モードの共振周波数が圧
電セラミック単体の基本共振周波数と一致する。
From Figure 2, when the thickness of the first acoustic matching layer is a quarter wavelength of the wavelength corresponding to the resonant frequency of the piezoelectric material, the resonant frequencies of the fundamental mode and the secondary mode, and the fundamental resonant frequency of the piezoelectric ceramic alone. The absolute value of the difference between them will be equal to 0.Using this fact, conversely, in order to form the first matching layer with the thickness of the quarter wavelength, the resonant frequency must be adjusted when adjusting the thickness of the first matching layer. The resonant frequencies of the fundamental mode and the secondary mode may be adjusted so that their absolute values are equal to each other in terms of the difference from the fundamental mode resonant frequency of the piezoelectric ceramic alone. If a layer of material with a rougher acoustic impedance density than the first tuning layer is provided on the first tuning layer whose thickness is adjusted to a quarter wavelength, a composite layer with three adjacent resonant modes will be created. Becomes a vibrator. 3rd @
shows this situation, and the thickness of the layer provided on the 1f'11m1 composite layer (hereinafter referred to as the second acoustic matching layer) and the resonance of the fundamental mode, secondary mode, and tertiary mode of the composite vibrator. The relationship between the frequencies is calculated as 0 where the piezoelectric material,
The material of the first acoustic matching layer is the same as the calculation in Figure 2. The material of the second acoustic matching layer is the acoustic impedance density of 2.4
10@] cf/yl・Assuming the material of cod, the first tuning layer has a thickness of 1/4 wavelength. From Figure 3, the second
When the thickness of the phonetic matching layer becomes a quarter wavelength of the wavelength corresponding to the resonant frequency of the piezoelectric material, the resonant frequency of the secondary mode coincides with the fundamental resonant frequency of the piezoelectric ceramic alone.

この事から、第2音!#整合膚を4分のl波長の厚みに
g4豊するのに、2次モードの共振周波数を測定し、こ
の値が圧電体単独の基本モード共振周波数に一致するよ
うに調整すればよい。この方法を応用してさらに1音響
整合層を形成するには4分の1波長の厚みの音響整合層
を2層設けた上にさらに第3音響整合層を設け、この厚
みを4分の1波長に調整するには、2次モード及び3次
モードの共振周波数を測定し、これら帽と圧電体単独の
基本モード共振周波数の値との差の絶対値が等しくなる
ように調整すればよい。又、ざらにII4音醤整合層を
設けて、この°厚みを4分の1波長cg*mするには、
3次モードの共振周波数を測定し、この値が圧電体単独
の基本モード共振周波数に一致するように調整すればよ
い。ざらに篇G、86・・・・・・・・・の音響整合層
も同様の方法で調整でき、これらを一般化した場合2N
−2層(N −1,l 3−・・・・・・・・・)の音
響整合層上(N−1のときは圧電体上)にさらに2N−
1層の音響整合層を形成する場合2N−1層の音響整合
層と圧電体からなる複合振動子のN次とN+1次の共振
周波数を測定してこれらの値と圧電体単独の基本共振周
波数との差の絶対値が尋しくなるように2N−1fii
lの音響整合層の厚みを調整し、この2N−1層の音響
整合層の上にさらに2N層目の音IN1合虐を形成する
には2N層の音響整合層と圧電体からなる複合振動子の
N+1次の共振周波数と圧電体相の基−1周波数が等し
くなるようJ(2N層目の音響葺合層の厚みを調整すれ
ばよい。
From this, the second note! #To increase the thickness of the matching skin to a thickness of 1/4 wavelength, it is sufficient to measure the resonance frequency of the secondary mode and adjust this value so that it matches the fundamental mode resonance frequency of the piezoelectric material alone. To form one more acoustic matching layer by applying this method, first provide two acoustic matching layers each having a thickness of 1/4 wavelength, then provide a third acoustic matching layer, and reduce the thickness to 1/4. To adjust the wavelength, the resonant frequencies of the secondary mode and the tertiary mode may be measured and adjusted so that the absolute values of the differences between these caps and the values of the fundamental mode resonant frequencies of the piezoelectric body alone are equal. Also, to provide a II4 tone matching layer on the surface and reduce the thickness to 1/4 wavelength cg*m,
The resonant frequency of the tertiary mode may be measured and adjusted so that this value matches the fundamental mode resonant frequency of the piezoelectric body alone. The acoustic matching layers of Zaraani Hen G, 86... can be adjusted in the same way, and if these are generalized, 2N
-2N- layers (N-1, l 3-......) on the acoustic matching layer (on the piezoelectric body when N-1)
When forming one acoustic matching layer, measure the Nth and N+1st resonance frequencies of a composite vibrator consisting of 2N-1 acoustic matching layers and a piezoelectric material, and calculate these values and the fundamental resonance frequency of the piezoelectric material alone. 2N-1fii so that the absolute value of the difference between
In order to adjust the thickness of the 1 acoustic matching layer and further form a 2N layer of sound IN1 on top of the 2N-1 acoustic matching layer, a composite vibration consisting of the 2N acoustic matching layer and the piezoelectric material is used. The thickness of the 2Nth acoustic mating layer may be adjusted so that the N+1-order resonance frequency of the child and the fundamental -1 frequency of the piezoelectric phase are equal.

以下、本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

なお、本実施例は第1図の超音波探触子と同様の2MI
の音響整合層を有する構成である。圧電体としてジルコ
ン・チタン酸鉛系の圧電セラミックを直@17.0鱈、
厚さ1.0露の円板状に加工したものを用いた。これに
厚さ10μmの銀電極を両面に塗布、焼き付けて形成し
、100℃のシリコン油中で4KVの電圧を1時間印加
し、分極処理を行なった。上記圧電セラミックの片面に
エポキシ樹脂と粉末ガラスの混合物を塗布し、加熱硬化
させた。
Note that this embodiment uses a 2MI similar to the ultrasonic probe in Fig. 1.
This configuration has an acoustic matching layer of. A piezoelectric ceramic based on zircon and lead titanate was used as a piezoelectric body.
A disc-shaped material with a thickness of 1.0 dew was used. Silver electrodes with a thickness of 10 .mu.m were coated on both sides of the substrate and baked, and a voltage of 4 KV was applied for 1 hour in silicone oil at 100.degree. C. to perform polarization treatment. A mixture of epoxy resin and powdered glass was applied to one side of the piezoelectric ceramic and cured by heating.

これを室温で1日放置した後、共振周波数を測定しなか
ら餉脂層を研磨して、基本モード及び2次モードの共振
周波数が、圧電体単独の基本共振周波数と絶対値か静し
い差をもつように調節した0次にこの樹脂層の上に前記
樹脂層より音響インピーダンス密度の小さい別種のエポ
キシ樹脂を塗布し、加熱硬化させた。これを室温で1日
放置した後、共振周波数をfIII足しながら研磨して
、2次そ一ドの共振周#:数が圧電体単独の基本共振周
波数と一致するように関節した0さらにエポキシ樹脂で
できた背面負1hJIi&を音響整合層と反対偶に接着
した。
After leaving this at room temperature for one day, the resonant frequency was measured and the resin layer was polished. A different type of epoxy resin having an acoustic impedance density lower than that of the resin layer was coated on this resin layer, which was adjusted to have 0, and then heated and cured. After leaving this at room temperature for a day, I polished it while adding fIII to the resonance frequency, and then added epoxy resin to the joint so that the resonance frequency of the secondary wave #: matched the fundamental resonance frequency of the piezoelectric material alone. The back surface negative 1hJIi& made of 1hJIi& was bonded to the acoustic matching layer and the opposite side.

本実jiiNの超音波探触子の水魚荷時入力アドミッタ
ンス特性を84図に示す。従来の21警合層を採用した
IIA触子では第4図のような単峯性の共振特性は実現
されていなかつた◎これは音響整合層の構成に問題があ
ったためで、本発明の製造方法により初めて論4図のよ
うな共振特性が可能となった0単峯性の共振特性は、回
路との整合をとりやすいという利点かあり、直列の抵抗
及びコイルにより帯域内全域にわたる整合が得られるO
このため従来のz1g整合層を有する探触子のように電
気囲路との不整合による帯域内リップルは生じないo 
iG h Eはこのことを示したもので、本実施例の探
触子の挿入損失を、水深20cIIMのアルミ板からの
反射波により銅定したものである0広帝城、低損失と同
時暴こ、低リップルが実現されていることがわかる。こ
れは本発明の製造方法によって音響整合層が適切化構成
されているためである。
Figure 84 shows the input admittance characteristics of HonjitsujiiN's ultrasonic probe when loading aquatic fish. The conventional IIA probe that adopted the 21-coil layer did not achieve the single-peak resonance characteristic shown in Figure 4. This was due to a problem with the configuration of the acoustic matching layer, and the manufacturing method of the present invention The zero-single resonance characteristic, which became possible for the first time through this method, has the advantage of being easy to match with the circuit, and by using a series resistor and coil, matching can be achieved over the entire band. O that can be done
Therefore, in-band ripples due to mismatching with the electrical circuit do not occur as with conventional probes with a z1g matching layer.
iGhE shows this, and the insertion loss of the probe of this example was determined by the reflected wave from an aluminum plate at a water depth of 20 cIIM. It can be seen that low ripple has been achieved. This is because the acoustic matching layer is appropriately configured by the manufacturing method of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波探触子の構成図。 第1図中で、l・・・・・・は圧電体、2は電極、3は
被検体、4は第1音響整合層、5は第2音響整合層。 第2図は第1音響整合層の厚みと共振周波数の関係を示
す図。 第2図中で、1は基本モード、2は2次モード、第3図
は第2音響整合層の厚みと共振周波数の関係を示す図。 第3図中で1は基本モード、2は2次モード、3は3次
モード、 第4図は本発明の実施例の入力アトミツタンス特性図。 第4図中で1はコンダクタンス、2はサセプタンス1 81図 鵠 2 図 硯オ各化第1v舎層厚み 第3図 規格化第2整合4sみ 第4図 1.0          2.0         
 30周 j皮 饗文  [MH2)
Figure 1 is a configuration diagram of an ultrasonic probe. In FIG. 1, l... is a piezoelectric body, 2 is an electrode, 3 is a subject, 4 is a first acoustic matching layer, and 5 is a second acoustic matching layer. FIG. 2 is a diagram showing the relationship between the thickness of the first acoustic matching layer and the resonant frequency. In FIG. 2, 1 is a fundamental mode, 2 is a secondary mode, and FIG. 3 is a diagram showing the relationship between the thickness of the second acoustic matching layer and the resonant frequency. In FIG. 3, 1 is a fundamental mode, 2 is a secondary mode, 3 is a tertiary mode, and FIG. 4 is an input atomic characteristic diagram of an embodiment of the present invention. In Figure 4, 1 is conductance, 2 is susceptance 1 81 Figure 2 Figure 3 Standardization 2 Matching 4s Figure 4 1.0 2.0
30 laps j skin banquet [MH2]

Claims (1)

【特許請求の範囲】[Claims] 圧電体上に音響整合層が形成された超音波探触子の製造
方法&C詔いて、厚みの調整された2N−2層(N■1
.I &・・・・・・)の音響整合層上(N−1のとき
は圧電体上)K第2N−IMi目の音響整合層を形成し
、この圧電体および2N−IJilの音lIP!Ii−
合層からなる複合振動子の8次モードとN+1次モード
の共振周波数を調定し、これらの麹と圧電体単独の基本
モード共振周波数の値との差の絶対値が等しくなるよう
に、前記第2N−1層目の音響整合層の厚みを調整する
工程と、この厚みの調整された2N−1層の音響整合層
上に第2NNk目の音響整合層を形滅し、この圧電体お
よび2N層の音響整合層からなる複合振動子のN+1次
モードの共振周波数を調定し、 この値と圧電体単独の
基本モード共振周波数の値が一故するように前記第2N
M目の音w贅合層の厚みを調整する工程を有することを
特徴とする超音波探触子の製造方法0
Method for manufacturing an ultrasonic probe in which an acoustic matching layer is formed on a piezoelectric material
.. A K2N-IMith acoustic matching layer is formed on the acoustic matching layer (I &...) (on the piezoelectric body in the case of N-1), and the sound lIP! of this piezoelectric body and 2N-IJil is formed. Ii-
The resonant frequencies of the 8th mode and the N+1st mode of the composite vibrator composed of laminated layers are adjusted, and the absolute values of the differences between these koji and the fundamental mode resonant frequency values of the piezoelectric material alone are equalized. A step of adjusting the thickness of the 2N-1 acoustic matching layer, forming a 2NNk-th acoustic matching layer on the 2N-1 acoustic matching layer whose thickness has been adjusted, and forming the 2N-1 acoustic matching layer on the piezoelectric material and the 2N The resonance frequency of the N+1st mode of the composite vibrator made of the acoustic matching layer is adjusted, and the second N
Method 0 for manufacturing an ultrasonic probe characterized by having a step of adjusting the thickness of the M-th sound w plush layer
JP57061219A 1982-04-13 1982-04-13 Production of ultrasonic probe Granted JPS58177639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061219A JPS58177639A (en) 1982-04-13 1982-04-13 Production of ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061219A JPS58177639A (en) 1982-04-13 1982-04-13 Production of ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS58177639A true JPS58177639A (en) 1983-10-18
JPH0362413B2 JPH0362413B2 (en) 1991-09-25

Family

ID=13164867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061219A Granted JPS58177639A (en) 1982-04-13 1982-04-13 Production of ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS58177639A (en)

Also Published As

Publication number Publication date
JPH0362413B2 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
US4366406A (en) Ultrasonic transducer for single frequency applications
Brown et al. Mass-spring matching layers for high-frequency ultrasound transducers: A new technique using vacuum deposition
JPS60100950A (en) Ultrasonic probe
JPS6133516B2 (en)
JPS6135716B2 (en)
JPH0453117Y2 (en)
JPS58177639A (en) Production of ultrasonic probe
Dias Construction and performance of an experimental phased array acoustic imaging transducer
JPS5929816B2 (en) ultrasonic probe
Levassort et al. Characterisation of thin layers of parylene at high frequency using PZT thick film resonators
JPH0362412B2 (en)
JPH06225391A (en) Ultrasonic wave probe and manufacture thereof
JPS6093899A (en) Ultrasonic wave probe
JPS5832557B2 (en) Ultrasonic transceiver probe and its manufacturing method
TW202037335A (en) Ultrasound probe
JPS60138457A (en) Transmission and reception separating type ultrasonic probe
JPS58170200A (en) Multi-layer piezoelectric transducer and its production
JPS5811000A (en) Piezoelectric element
JPS61195000A (en) Manufacture of composite piezoelectric body
JPS6169300A (en) Ultrasonic probe
JPH07108037B2 (en) Ultrasonic probe
JPS60102098A (en) Ultrasonic wave probe
JPH0546217B2 (en)
JPS61278298A (en) Ultrasonic probe and its manufacture
JPH02200099A (en) Ultrasonic wave transmission/reception probe and its manufacture