JPS58170200A - Multi-layer piezoelectric transducer and its production - Google Patents

Multi-layer piezoelectric transducer and its production

Info

Publication number
JPS58170200A
JPS58170200A JP57051650A JP5165082A JPS58170200A JP S58170200 A JPS58170200 A JP S58170200A JP 57051650 A JP57051650 A JP 57051650A JP 5165082 A JP5165082 A JP 5165082A JP S58170200 A JPS58170200 A JP S58170200A
Authority
JP
Japan
Prior art keywords
piezoelectric
plates
plate
multilayer
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57051650A
Other languages
Japanese (ja)
Other versions
JPS6410998B2 (en
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP57051650A priority Critical patent/JPS58170200A/en
Publication of JPS58170200A publication Critical patent/JPS58170200A/en
Publication of JPS6410998B2 publication Critical patent/JPS6410998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Abstract

PURPOSE:To improve the mass-productivity of multi-layer piezoelectric transducers, by laminating plural piezoelectric plates to obtain different level of stress from these piezoelectric plates when electric field is applied to these plates and then obtaining an optional distribution of stress within the piezoelectric plate in response to purpose. CONSTITUTION:As shown by a cross section, electrode 2 and 3 are coated on both sides of a multi-layer piezoelectric plate 1 and terminals 4 and 5 are led out from these electrodes 2 and 3 respectively. A backing layer 6 is attached to the electrode 3. The plate 1 is formed into laminated piezoelectric plates 1a, 1b and 1c by adhesion or sintering. These plates 1a, 1b and 1c are made of different type of piezoelectric ceramic material such as PTZ (zirconium lead titanate), etc. and polarized completely up to the critical value respectively. The internal field intensity of the plate 1 is adversely proportional to the specific dielectric constant c33 of plates 1a, 1b and 1c respectively, and therefore different values of c33 are selected for these plates to obtain a desired distribution of stress.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、多層構造の圧電トランスデユーサとその製造
方法に関するものであり、このような圧電トランスデユ
ーサは、例えば超音波診断装置の振動子などに用いられ
る。
Detailed Description of the Invention [Field of the Invention] The present invention relates to a piezoelectric transducer with a multilayer structure and a method for manufacturing the same. Used for children, etc.

〔従来技術の親羽〕[Main feather of conventional technology]

従来、33モードの厚みたて振動の超音波用に用いる圧
電トランスデユーサは、普通にはその圧電板が均一な素
材の単層板でできている。また、圧電トランスデユーサ
をプレイとする場合にも、上述O単層板をさいの目状、
あるいは角棒状に切り、これを組み合せて作るものであ
るため、素材は均一なものである。このような均一材料
の単板による圧電トランスデユーサは、ステツブ励振時
における応力分有−1IXII 1図の(イ)で示すよ
うな方形状のものになる。また、そのインパルス応答は
、11211に示すような2つのインパルス(ダイポー
ル)とな夛、送出される音響信号の周波数特性は、sg
i図に示スようにスペクトラムに厚みで決まる零点が存
在するものとなり、送受信系を本質的に広帯域にするこ
とができない。なお、第3図中、(ロ)はステップドラ
イブ時の、(ハ)はインパルスドライブ時の特性である
Conventionally, in a piezoelectric transducer used for 33-mode thick vertical vibration ultrasonic waves, the piezoelectric plate is usually made of a single-layer plate made of a uniform material. Also, when using a piezoelectric transducer as a play, the above-mentioned O single layer plate can be diced,
Alternatively, it is made by cutting square bars and combining them, so the material is uniform. A piezoelectric transducer made of a single plate made of such a uniform material has a rectangular shape as shown in (a) in FIG. In addition, the impulse response is two impulses (dipole) as shown in 11211, and the frequency characteristics of the transmitted acoustic signal are sg
As shown in Figure i, there is a zero point determined by the thickness in the spectrum, and the transmitting/receiving system cannot essentially be made into a wide band. In FIG. 3, (b) is the characteristic during step drive, and (c) is the characteristic during impulse drive.

この欠点を解決するためKは、圧電板内に任意の適当な
応力分布を与えればよ(、たとえば第1図の四で示すよ
うに、圧電板の奥行き方向へ応力分布が次第に減少して
零に収束する、いわゆるファン・デル・ホープ的なもの
にするのならば、その崗波数特性は第5図の(ホ)で示
すような零点が存在しない広帯域なものとなる。しかし
ながら、均一圧電材料の内sK任意の応力分布を作るこ
とは非常に困難であり、分極の強さを分布させることk
よシこれを実現するものもあるが、再現性や経年安定性
などの見地からまだ実用となるものではない。
To solve this drawback, K can be created by giving an arbitrary stress distribution within the piezoelectric plate (for example, as shown in Figure 1, the stress distribution gradually decreases to zero in the depth direction of the piezoelectric plate). If the so-called van der Hoop-like characteristic converges to It is very difficult to create an arbitrary stress distribution within sK, and it is difficult to distribute the polarization strength.
There are some methods that achieve this, but they are not yet practical from the standpoint of reproducibility or stability over time.

〔発明の目的〕 」 本発明は、目的に応じた任意の応力分布を圧電板内に実
現でき、しかも、利用に際しては従来の圧電素子と同様
に取り扱える多層圧電トランスデユーサを提供し、さら
にこの多層圧電トランスデユーサtmめて簡単に、かつ
、量産性に富んで製造することができる製造方法を提供
することを目的とする。
[Objective of the Invention] The present invention provides a multilayer piezoelectric transducer that can realize any stress distribution in a piezoelectric plate according to the purpose and can be handled in the same way as a conventional piezoelectric element when used. It is an object of the present invention to provide a method for manufacturing a multilayer piezoelectric transducer tm easily and with high mass productivity.

〔本発明の要点〕[Key points of the invention]

本発明の多層圧電トランスデユーサは、複数の圧電板が
重層され、これらの圧電板に電界を付与したときに発生
する応力がそれぞれ異なるように構成されたことを特徴
とする。
The multilayer piezoelectric transducer of the present invention is characterized in that a plurality of piezoelectric plates are stacked one on top of the other, and the stresses generated when an electric field is applied to these piezoelectric plates are different from each other.

また、本発明の製造方法は、複数のセラミック・グリー
ンシートを重層する工程と、このグリーンシートを焼成
する工程とを含むことt−特徴とする。
Further, the manufacturing method of the present invention is characterized in that it includes a step of layering a plurality of ceramic green sheets, and a step of firing the green sheets.

〔実施例による説明〕[Explanation based on examples]

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

114図は、本発明の一実施例圧電トランスデユーサの
側断面図である。同図において、多層圧電板lの両画に
は電1i2.3をそれぞれ被着し、この電極2.3から
は端子4.5をそれぞれ導き出し、電極3にはバッキン
グ層6を堆9付ける。多層圧電板1は、圧電板1a 、
lb 、lcを密Km着、あるいは焼結して重層した構
造となっている。これらは、それぞれ種類の異なるpz
t(ジルコンチタン酸鉛: pb (Z(、Ti ) 
Os)などの圧電セラミック材料でできていて、それぞ
れは限界値まで十分に分極されている。この分極の付与
は、各圧電板1a 、lb 、 lcを個別に分極して
から被着せしめても、また、全体を焼成してから一斉に
分極するものであってもよい。圧電板1a 、 lb 
、 lcは比誘電率ass、圧電率dss3合係数k 
1あるいはglsなどがそれぞれ異なり、このうちdi
s 、 gss、あるいはに等の値は良(最適化されて
いて、標準的な値に対して1/2〜2倍@度の範囲に収
まる。一方、焼土シ結果としての誘電率−1mの値は、
pztの種類により10倍位も異なる。
FIG. 114 is a side sectional view of a piezoelectric transducer according to an embodiment of the present invention. In the figure, electrodes 1i2.3 are applied to both sides of the multilayer piezoelectric plate 1, terminals 4.5 are led out from the electrodes 2.3, and a backing layer 6 is applied to the electrodes 3. The multilayer piezoelectric plate 1 includes a piezoelectric plate 1a,
It has a structure in which lb and lc are densely bonded or sintered to form a layered structure. These are different types of pz
t (lead zirconium titanate: pb (Z(,Ti)
They are made of piezoceramic materials such as Os), each fully polarized to a critical value. The polarization may be applied by individually polarizing each piezoelectric plate 1a, lb, lc and then attaching the piezoelectric plates to each other, or by firing the whole piezoelectric plate and then polarizing them all at once. Piezoelectric plates 1a, lb
, lc is the relative dielectric constant ass, piezoelectric constant dss3 sum coefficient k
1 or gls etc. are different, among which di
Values such as s, gss, or The value of
It varies by about 10 times depending on the type of pzt.

圧電板1a 、lb 、 lcの種類およびその厚さの
選択は、このトランスデユーサをステップドライブした
ときの多層圧電板1の内部での応力分布が、第5図中の
実線(ト)で示すように電極2から電極3に向って、す
なわち奥行き方向にその大きさが階段状に減少するよう
Kして行う。多層圧電板10内部電界強度は各圧電板1
a、1b、ICの比誘電率@lsK反比例したものとな
るので、それぞれの比誘電率り3の値が適当に相違する
ように選択すれば、上述のような応力分布を得ることが
できる。
The selection of the types and thicknesses of the piezoelectric plates 1a, lb, and lc is such that the stress distribution inside the multilayer piezoelectric plate 1 when this transducer is step-driven is shown by the solid line (G) in FIG. This is done so that the size decreases stepwise from electrode 2 to electrode 3, that is, in the depth direction. The internal electric field strength of the multilayer piezoelectric plate 10 is
Since a, 1b, and IC are inversely proportional to the relative permittivity @lsK, if the values of the relative permittivity 3 are selected to be appropriately different, the stress distribution as described above can be obtained.

なお、応力値はdSSの相違によっても変るものである
から、結局、assとdllとを勘案した上で各圧電層
1a 、 lb 、 lcの種類とその厚さを選択する
こととなる。
Note that since the stress value changes depending on the difference in dSS, the type and thickness of each piezoelectric layer 1a, lb, and lc are selected after taking into consideration ass and dll.

この階段状の応力分布は、第5図に点−一で示すファン
・デル拳ボープ的な応力分布に近似したものと考えるこ
とができ、そのインパルス応答ハ、116図に実線四で
示すようなものとなる。これをフィルタを用いて帯域制
限すれば、第6図に点線−)で示すようなファン・デル
・ホープ構造のインパルス応答とほぼ類似のものとなり
、実用上は十分に単一パルスの応答とみなすことができ
る。
This step-like stress distribution can be thought of as approximating the van der Boop stress distribution shown by point 1 in Figure 5, and its impulse response is similar to that shown by solid line 4 in Figure 116. Become something. If this is band-limited using a filter, it will become almost similar to the impulse response of a van der Hoop structure as shown by the dotted line (-) in Figure 6, and for practical purposes it can be regarded as a single-pulse response. be able to.

なお、pzt族は、はとんど、 pCφso x 1o  (g/cj@1l)−・・・
材料の密tトタ C・・・材料の音速c#/B 程度にそろっているものであるから、音響学的には重層
体内部でのミスマツチングは大きな問題とならず、背面
を完全バッキング(マツチド負荷)するとともに、正面
を多層マツチング層によシ十分にマツチングして使用す
れば、はとんど整合条件は問題とはならない。
In addition, the pzt family is mostly pCφso x 1o (g/cj@1l)-...
Since the density of the material is consistent with the sound velocity of the material c#/B, acoustically speaking, mismatching inside the layered body is not a big problem, and the back side is completely backed (matshidden). As long as the front surface is sufficiently matched with a multi-layer matching layer while applying a load), matching conditions will not be a problem for the most part.

多層圧電板1の内部に任意の応力分布を与える方法は本
実施例の方法Kllられるものではなく、他にも種々の
方法がある。たとえは、異なる材料を何層かにつみ上げ
たものであってもよい。また、同一の材料を用いた薄い
圧電板にそれぞれ異なる分極の強さを付与して、これを
重ね合わせて被着せしめてもよい。しかしこの場合には
、中@度に分極した材料は、その分極の@度が不安定で
電気的刺激によシ増減しやすいという欠点がある。さら
に、同一材料であっても素材O組成を変えることKより
、誘電率εasがほとんど同じでdSSあるいはgoの
みが異なる材料を得ることができるので、これらを重層
することKよっても目的を達成できる。
The method of providing an arbitrary stress distribution inside the multilayer piezoelectric plate 1 is not limited to the method of this embodiment, and there are various other methods. For example, it may be made of several layers of different materials. Alternatively, thin piezoelectric plates made of the same material may be given different polarization strengths, and these may be stacked and adhered. However, in this case, a material polarized to a medium degree has the disadvantage that the degree of polarization is unstable and easily increases or decreases due to electrical stimulation. Furthermore, by changing the composition of the material O even if they are the same material, it is possible to obtain materials with almost the same dielectric constant εas but different only in dSS or go, so the objective can also be achieved by layering these materials. .

また、多層圧電板内の応力分布は本実施例のようなファ
ン・デル・ホープ構造に近似させたものに限定されるも
のではなく、用途に応じた任意の応力分布が可能である
。たとえば、多層圧電板内の中央部分の応力が強くなる
ようなexp<x >の形に近似させることも可能であ
る。また、多層圧電板内の中央部分に高電位側の電極を
、その両面K11l地電極を設けて、高電位側電極の両
側に任意の応力分布が配置されるようKすれば、種々の
偶関数状、奇関数状、あるいは周期性の応力発生分、1
1を得ることができる。
Further, the stress distribution within the multilayer piezoelectric plate is not limited to one approximating the van der Hoop structure as in this embodiment, but any stress distribution depending on the application is possible. For example, it is also possible to approximate the shape of exp<x> such that the stress in the central portion of the multilayer piezoelectric plate is strong. In addition, if a high potential side electrode is provided at the center of the multilayer piezoelectric plate, and K11L ground electrodes are provided on both sides of the high potential side electrode, and the K is set so that an arbitrary stress distribution is arranged on both sides of the high potential side electrode, various even functions can be obtained. 1
1 can be obtained.

さらに、圧電板1a 、 lb 、 lcの材料は、い
わゆる強誘電体圧電材料であれば何であってもよいし、
本発明圧電トランスデユーサをたとえば探触子等に実装
するに際しての実施態様、すなわち圧電板の加工形状や
重層する圧電板の数、電極の形状や配置位置や数、音響
インピーダンスの整合構造などは本実施例に制@される
ものでないことは勿論のことである。
Furthermore, the material of the piezoelectric plates 1a, lb, and lc may be any so-called ferroelectric piezoelectric material.
The embodiments when the piezoelectric transducer of the present invention is mounted on a probe, for example, the processed shape of the piezoelectric plates, the number of stacked piezoelectric plates, the shape, arrangement position and number of electrodes, the acoustic impedance matching structure, etc. Of course, this is not limited to this embodiment.

次に上述の多層圧電トランスデユーサを製造する本発明
製造方法について説明する。
Next, a manufacturing method of the present invention for manufacturing the above-mentioned multilayer piezoelectric transducer will be explained.

セラミックは、一般には最終焼成の段階で、原料をバイ
ンダー(結合剤)と混ぜ合わせた#!j物状の中間原料
に仕上げ、これを仮焼きして固めた上で本焼きする。最
終的な製品を板状のものとするには、この練p物状の中
間原料の段階で薄いシート状のものに予備成形すること
が一般であや、このシート状の中間原料はグリーンシー
トと呼ばれている。なお、製品の大略の外周形状は、こ
のグリーンシートの段階で打抜き加工やプレス加工をす
るなとして得る。またその厚さはシート自身の成形(カ
レンダー成形)の犀さにより決める。
Ceramics are generally produced by mixing raw materials with a binder during the final firing stage. j Finished as an intermediate raw material, calcined it to harden it, and then fired it. In order to make the final product into a plate-like product, it is common practice to preform this kneaded intermediate raw material into a thin sheet-like product, and this sheet-like intermediate raw material is called a green sheet. being called. Note that the approximate outer circumferential shape of the product is obtained without punching or pressing at this green sheet stage. The thickness is determined by the precision of the sheet itself (calender molding).

本発明製造方法は、複数の圧電板の重層を上述のセラミ
ック・グリーンシートの段階で行い、この後に焼成して
多層圧電板を得“るものであり、この後は従来の単板均
一材料圧電素子の製造ニーと全く同様KMljシ扱う。
In the manufacturing method of the present invention, a plurality of piezoelectric plates are layered at the above-mentioned ceramic green sheet stage, and then fired to obtain a multilayer piezoelectric plate. KMlj is handled in exactly the same way as the device manufacturing process.

多層圧電板への分極の付与は、各層の圧電板に同時に行
うことKなる。なお、この多層圧電板をグイシングして
アレイとすることも勿論可能である。
Polarization is applied to the multilayer piezoelectric plate at the same time on each layer of the piezoelectric plate. Note that it is of course possible to form an array by guising this multilayer piezoelectric plate.

多層圧電トランスデユーサの製造方法としては他にも種
々の方法があシ、たとえば、複数の圧電板を別々に焼成
して作製し、これに分極をそれぞれ付与した後に重層し
て接着剤で接着するなどの方法がある。
There are various other methods for manufacturing multilayer piezoelectric transducers. For example, multiple piezoelectric plates are fired separately, polarized, and then layered and bonded with adhesive. There are ways to do this.

この方法では、*mの電気的音響学的な確実さおよび接
着層の厚みが問題となる。すなわち、たとえばエポキシ
等の接着剤の誘電率は圧電セラミックに比べてはるかに
小さいものであるから、それがわずかの厚さであっても
、そこで多層圧電板に印加される電圧の大部分を負担し
てしまう。このため、重層工程においては、接着層を挾
みながらも、圧電板同志の表面凹凸部分が無数の点で接
触するようKしなければならず、多層圧電板に相轟強い
押圧力を均等に印加しつつ接着剤を固化させなければな
らず、その際ひびわれなとの仕損じを生じやすい。また
気泡の混入を防ぐ必要があるから真空中で作業を行なわ
なければならず、重層作業は極めて厄介なものになる。
In this method, the electroacoustic reliability of *m and the thickness of the adhesive layer are issues. In other words, the dielectric constant of adhesives such as epoxy is much lower than that of piezoelectric ceramics, so even if it is only a small thickness, it will bear most of the voltage applied to the multilayer piezoelectric plate. Resulting in. For this reason, in the layering process, it is necessary to keep the uneven surfaces of the piezoelectric plates in contact with each other at countless points while sandwiching the adhesive layer between them, so that the mutually strong pressing force is applied evenly to the multilayer piezoelectric plates. The adhesive must be allowed to solidify while being applied, and cracks and failures are likely to occur during this process. Furthermore, since it is necessary to prevent air bubbles from entering, the work must be carried out in a vacuum, making multilayer work extremely troublesome.

また、別々に焼成した圧電板を低融点ガラス粉末により
熱−着する方法もあるが、上述同様の配慮が必要であり
、重層作業が容品ではない。
There is also a method of thermally bonding separately fired piezoelectric plates with low melting point glass powder, but this requires the same considerations as mentioned above and does not allow for multilayer work.

本発明製造方法によれば、これらO欠点を解決でき、極
めて簡単に重層作at行える。
According to the manufacturing method of the present invention, these O drawbacks can be solved and multilayer manufacturing can be performed extremely easily.

〔効果の説明〕[Explanation of effects]

本発明の多層圧電トランスデユーサによれd、種々の目
的に応じた任意の応力分布を多層圧電板内に容j+に実
現できる。たとえば、広帯域の単一パルスとなるインパ
ルス応答が欲しい場合には応力分布をファン・デル・ボ
ーブ的なものとすればよい。そして、このトランスデユ
ーサは、そ0141用技法、すなわち使用する電子−路
、探触子等の音響学的設計、素材の加工・組立て作Il
勢が従来のトランスデユーサと本質的に変わることがな
く、汎用性がある。
By using the multilayer piezoelectric transducer of the present invention, any stress distribution suitable for various purposes can be realized within the multilayer piezoelectric plate. For example, if you want an impulse response that is a broadband single pulse, the stress distribution can be made van der Bove-like. This transducer is manufactured using the same techniques as the electronic path used, the acoustic design of the probe, etc., and the processing and assembly of materials.
The transducer is essentially the same as a conventional transducer and is versatile.

また、本発明の製造方法によれば、上述のトラ1   
ンスデューサを焼成後におけ゛る厄介な重層作業をする
ことな(簡単に、しかも量産的に製造することができる
Further, according to the manufacturing method of the present invention, the above-mentioned tiger 1
This eliminates the troublesome multi-layering work that occurs after firing the radiator (it can be manufactured easily and mass-produced).

【図面の簡単な説明】[Brief explanation of drawings]

嬉111は従来の圧電素子の応力分布図。 1g211は従来の圧電素子のインノくルス応答特性図
。 1113図は従来の圧電素子の周波数特性図。 第4図は本発明実施例の多層圧電トランメデューナO儒
断面図。 115図は実施例トランスデユーサの応力分布図。 114図は実施例トランスデユーサのインノ(ルス応答
特性図。 1・・・多層圧電板、la 、lb 、 lc −圧電
板、2.3・−・電極。 特許出願人株式会社横河電Il製作所 代履人 弁場士井 出 直 孝 第2図 尾3品 九5図 九6図
111 is a stress distribution diagram of a conventional piezoelectric element. 1g211 is an innoculus response characteristic diagram of a conventional piezoelectric element. Figure 1113 is a frequency characteristic diagram of a conventional piezoelectric element. FIG. 4 is a cross-sectional view of a multilayer piezoelectric transmeduna according to an embodiment of the present invention. Figure 115 is a stress distribution diagram of the example transducer. Figure 114 is an inno(luss) response characteristic diagram of the example transducer. 1... Multilayer piezoelectric plate, LA, LB, LC - piezoelectric plate, 2.3... Electrode. Patent applicant: Yokogawa Electric Corporation Il Manufacturer's representative Benba Shii Izunao Takashi Figure 2, tail 3, figure 95, figure 96

Claims (4)

【特許請求の範囲】[Claims] (1)  II数の圧電板が重層され、これらの圧電板
に電界【付毒したときに発生する応力がそれぞれ異なる
ように構成された多層圧電トランスデヱーす。
(1) A multilayer piezoelectric transducer is constructed of two piezoelectric plates stacked one on top of the other, and the stress generated when an electric field is applied to these piezoelectric plates is different from each other.
(2)複数の圧電板は誘電率がそれぞれ異なる圧電材料
からなシ、この誘電率の相違に起因してこれらの圧電板
に発生する応力が異なる特許請求の範囲第(1)項に記
載の多層圧電トランスデユーサ。
(2) The plurality of piezoelectric plates are made of piezoelectric materials having different dielectric constants, and the stress generated in these piezoelectric plates is different due to the difference in dielectric constant. Multilayer piezoelectric transducer.
(3)複数の圧電板は、付4された分極の強さがそれぞ
れ異なる圧電材料からなり、この分極の強さの相違に起
因してこれらの圧電板に発生する応力が異なる特許請求
の範i!l @ +11項に記載の多層圧電トランスデ
ユーサ。
(3) The plurality of piezoelectric plates are made of piezoelectric materials having different polarization strengths, and the stress generated in these piezoelectric plates due to the difference in the polarization strength is different. i! l @ + The multilayer piezoelectric transducer according to item 11.
(4)複数のセラミックーグリーンシートを重層する工
程と、このグリーンシートを焼成する1薯とを含む多層
圧電トランスデユーサの製造方法。
(4) A method for manufacturing a multilayer piezoelectric transducer, which includes a step of layering a plurality of ceramic green sheets, and a step of firing the green sheets.
JP57051650A 1982-03-30 1982-03-30 Multi-layer piezoelectric transducer and its production Granted JPS58170200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051650A JPS58170200A (en) 1982-03-30 1982-03-30 Multi-layer piezoelectric transducer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051650A JPS58170200A (en) 1982-03-30 1982-03-30 Multi-layer piezoelectric transducer and its production

Publications (2)

Publication Number Publication Date
JPS58170200A true JPS58170200A (en) 1983-10-06
JPS6410998B2 JPS6410998B2 (en) 1989-02-22

Family

ID=12892735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051650A Granted JPS58170200A (en) 1982-03-30 1982-03-30 Multi-layer piezoelectric transducer and its production

Country Status (1)

Country Link
JP (1) JPS58170200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126617A (en) * 1987-11-09 1992-06-30 Texas Instruments Incorporated Cylinder pressure sensor for an internal combustion engine
WO2002047432A1 (en) * 2000-12-05 2002-06-13 Sigeyasu Isida Wave transmitter/receiver capable of emitting a plurality of frequencies
US6628047B1 (en) 1993-07-15 2003-09-30 General Electric Company Broadband ultrasonic transducers and related methods of manufacture
JP2016145732A (en) * 2015-02-06 2016-08-12 株式会社日立製作所 Ultrasonic probe and ultrasonic flaw detection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865923A (en) * 1971-12-10 1973-09-10
JPS5234196A (en) * 1975-09-09 1977-03-15 Ca Atomic Energy Ltd Connection configuration for double temperature isotope exchanging process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865923A (en) * 1971-12-10 1973-09-10
JPS5234196A (en) * 1975-09-09 1977-03-15 Ca Atomic Energy Ltd Connection configuration for double temperature isotope exchanging process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126617A (en) * 1987-11-09 1992-06-30 Texas Instruments Incorporated Cylinder pressure sensor for an internal combustion engine
US6628047B1 (en) 1993-07-15 2003-09-30 General Electric Company Broadband ultrasonic transducers and related methods of manufacture
WO2002047432A1 (en) * 2000-12-05 2002-06-13 Sigeyasu Isida Wave transmitter/receiver capable of emitting a plurality of frequencies
JP2002174679A (en) * 2000-12-05 2002-06-21 Kiyasu Ishida Underwater sound transmitting/receiving device capable of emitting a plurality of frequencies
JP2016145732A (en) * 2015-02-06 2016-08-12 株式会社日立製作所 Ultrasonic probe and ultrasonic flaw detection system

Also Published As

Publication number Publication date
JPS6410998B2 (en) 1989-02-22

Similar Documents

Publication Publication Date Title
US6552471B1 (en) Multi-piezoelectric layer ultrasonic transducer for medical imaging
US5359760A (en) Method of manufacture of multiple-element piezoelectric transducer
US5539965A (en) Method for making piezoelectric composites
JP4702826B2 (en) Manufacturing method of multilayer ceramic acoustic transducer
US6467140B2 (en) Method of making composite piezoelectric transducer arrays
US7581295B2 (en) Piezoelectric element and method of manufacturing the same
US6121718A (en) Multilayer transducer assembly and the method for the manufacture thereof
US20030051323A1 (en) Composite piezoelectric transducer arrays with improved acoustical and electrical impedance
US7583010B1 (en) Hybrid transducer
JPH02219313A (en) Filter device
JPS6193800A (en) Manufacture of array ultrasonic antenna
JPS58170200A (en) Multi-layer piezoelectric transducer and its production
Bowen et al. Design, fabrication, and properties of sonopanelTM 1–3 piezocomposite transducers
JP3419327B2 (en) Porcelain material, ultrasonic probe, piezoelectric vibrator, and methods of manufacturing them
JP2974815B2 (en) Ultrasonic vibrator and manufacturing method thereof
JP2001069595A (en) Manufacture of ultrasonic transducer
JP2005117159A (en) Ultrasonic transducer array and manufacturing method therefor
JPH07250399A (en) Porous piezoelectric ceramic vibrator and its manufacture
JP4516327B2 (en) Manufacturing method of laminated structure
Huebner et al. Fabrication of 2-2 connectivity PZT/thermoplastic composites for high frequency linear arrays
JP2009194226A (en) Multilayer piezoelectric device and manufacturing method for the same
JPS60138457A (en) Transmission and reception separating type ultrasonic probe
JPS6169300A (en) Ultrasonic probe
Kwon et al. Ceramic/polymer 2-2 composites for high frequency transducers by tape casting
JPH07108037B2 (en) Ultrasonic probe