JPS5817661A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS5817661A
JPS5817661A JP56116082A JP11608281A JPS5817661A JP S5817661 A JPS5817661 A JP S5817661A JP 56116082 A JP56116082 A JP 56116082A JP 11608281 A JP11608281 A JP 11608281A JP S5817661 A JPS5817661 A JP S5817661A
Authority
JP
Japan
Prior art keywords
layer
insulating film
semiconductor
region
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56116082A
Other languages
Japanese (ja)
Inventor
Minoru Taguchi
実 田口
Koichi Kanzaki
神崎 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56116082A priority Critical patent/JPS5817661A/en
Priority to US06/389,931 priority patent/US4539742A/en
Priority to DE19823223230 priority patent/DE3223230A1/en
Publication of JPS5817661A publication Critical patent/JPS5817661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]

Abstract

PURPOSE:To form an I<2>L, which operates at extremely high speed and power consumption thereof is low, by using an N-P-N transistor operating in the reverse direction. CONSTITUTION:An N type high impurity concentration 52 and an N type epitaxial layer 53 are shaped onto a P type silicon substrate 51, and a field oxide film 54 is further formed. A thin SiO2 film 55 is molded, and a small concentration P<-> type region 56 functioning as the internal base layer of the I<2>L is shaped into the layer 53. One part of the film 55 is removed through etching, and a Schottky metallic layer 57 and the CVDSiO2 film 58 of a low temperature are formed continuously. The layers 57, 58 are taken off, and projecting regions are molded. The ions of a P type impurity for an external base such as boron are implanted while using the films 58 as masks, the CVDSiN film 59 of a low temperature is deposited, and an ion implantation layer is activated by laser beams. The film 59 is removed through etching by EIE, metallic wiring 61 is disposed and the metal is sintered lastly.

Description

【発明の詳細な説明】 本発明は半導体装置及びその製造方法に係り、特に逆方
向動作を行うNPN )ランジスタを用いたI”L (
Int@grat@d InJ@@ti@m+ L@g
ls )ダートを集積してなる半導体集積回路に好適な
半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a semiconductor device using an NPN (NPN) transistor that operates in a reverse direction.
Int@grat@d InJ@@ti@m+ L@g
ls) The present invention relates to a semiconductor device suitable for a semiconductor integrated circuit formed by integrating darts, and a method for manufacturing the same.

I”Lは第1図に示すようにいわゆる逆構造形のパーテ
ィカルNPN )ランジス/1と、このトランジスタの
ペースをコレクタとする上記トランジスタ1とは相補形
のラテラルPNP )う/ジメタ2との複合構造をもり
た論理素子である。
As shown in Fig. 1, I"L is a so-called inverted structure type particle NPN) Rungis/1 and the above transistor 1 whose collector is the pace of this transistor are complementary lateral PNPs) U/dimetal 2 It is a logic element with a complex structure.

この論理素子はラテラルPNP )ランジスタ2が前記
逆構造パーティカルNPN )ツンジスタ10ペースに
電荷を注入するインジェクタとして作用し、逆構造パー
ティカルNPN )ランジスタ1がインバータとして動
作するものである。
In this logic element, the lateral PNP transistor 2 acts as an injector for injecting charge into the inverse structure particle NPN transistor 10, and the inverse structure particle NPN transistor 1 acts as an inverter.

従って論理振幅が小さく、高速且つ低消費電力の動作が
可能な素子として近年注目されている。また、素子間分
離が不必要なので集積度が高く、大規模集積回路への応
用に適している。
Therefore, it has recently attracted attention as an element that has a small logic amplitude and can operate at high speed and with low power consumption. In addition, since isolation between elements is not required, the degree of integration is high and it is suitable for application to large-scale integrated circuits.

さ6Kr”x、は、パイイー2プロセス技術であること
から、同一チップ上に容易に他のΔイI−ラ回路、たと
えばす=ア回路十ECL回路を共存させることができ、
複合機能降積回路が実現できる。
Since S6Kr"x is a pie2 process technology, it is possible to easily coexist other ΔI-ra circuits, such as S=A circuit and ECL circuit, on the same chip.
A multi-function accumulating circuit can be realized.

このよりなI”Lを高速動作させるための方法について
は多くの研究がなされているが、スイ、チングトランジ
スタのエミッタ及びペース領域に蓄積され゛ている少数
中ヤリアを前段のスイ、チンダトランジスタがシンクす
る時間、いわゆる少数キャリアの蓄積時間を小さくする
ことが重要であるという説明が、たとえば、IEI]I
i!Journal  @f  8elid  −8t
at@ C1rauits、  Vol、5C−14r
 N’ −2*ムpril 197L第327〜336
頁でなされている。
A lot of research has been done on methods to operate this higher I"L at high speed, but it is important to understand that the small amount of ions accumulated in the emitter and pace region of the switching and switching transistors can be removed by the switching and switching transistors in the previous stage. For example, IEI] I
i! Journal @f 8elid -8t
at@C1rauits, Vol, 5C-14r
N'-2*Mupril 197L No. 327-336
It is done in pages.

この少数中ヤリアの蓄積を少なくするために線、エビタ
中シャル半導体層及びエミ、り層のaltプロファイル
を最適化することに加えて、少WOLFヤリアの蓄積さ
れる領域を必要最少限にす纂ことが効果的である。
In order to reduce the accumulation of this small amount of WOLF particles, in addition to optimizing the alt profile of the line, semiconductor layer, and emitter layer, we also minimized the area where small WOLF particles are accumulated. This is effective.

その方法として第2図に示すような構造が考えられる。As a method for this purpose, a structure as shown in FIG. 2 can be considered.

同図において、11はP型シリコン基板、12はN型高
不純物濃度埋込み層、13はPNP )ランジスタ2の
ペース及びNPN )ランジスタ1のエミ、りとなるN
型工♂タキシャル層、14はシリコン酸化膜、15はN
PN )ランジスタ1のペース及びPNP )ランジス
タ2のコレクタとなるP型領域、16はNPN )ラン
ジスメ1のコレクタとなるNm高不純物濃度領域、17
はN+槃ポリシリコン層、18は誘電体層、19は酸化
膜、20は金属配線、21はPNPトランジスタ2のエ
ミッタとなるPM領領域ある。すなわち、l2Lr−)
はシリコン酸化膜14によシ囲まれ、Nfi高濃度不純
物領域16と誘電体層18が隣接し、P減領域15の面
積も最少にしている。
In the same figure, 11 is a P-type silicon substrate, 12 is an N-type buried layer with high impurity concentration, 13 is a PNP (PNP) paste of transistor 2 and NPN) an emitter of transistor 1,
Mold ♂ taxial layer, 14 is silicon oxide film, 15 is N
PN) Pace of transistor 1 and PNP) P type region which becomes collector of transistor 2, 16 is NPN) Nm high impurity concentration region which becomes collector of transistor 1, 17
18 is an N+ polysilicon layer, 18 is a dielectric layer, 19 is an oxide film, 20 is a metal wiring, and 21 is a PM region which becomes the emitter of the PNP transistor 2. That is, l2Lr-)
is surrounded by a silicon oxide film 14, the Nfi high concentration impurity region 16 and the dielectric layer 18 are adjacent to each other, and the area of the P reduced region 15 is also minimized.

このような構造では、低抵抗のP型領域15は、N型高
不純物濃度領域16によシ分断されておシ、インジェク
タから注入された電荷は、インジェクタから遠いコレク
タ直下のベース層壕で十分に到達しえないが、第3図に
示されているように、N型高濃度不純物領域16に近接
してベースコンタクトホール22を形成し、金属配置t
I20で相互接続することによシ上記問題は解決される
。との場合、N型高濃度不純物領域16の拡散源及びそ
の相互接続にN+型テリシリコン層11を用い、ベース
コンタクトの相互接続のための金属配線20とは立体交
差させる。
In such a structure, the low-resistance P-type region 15 is separated by the N-type high impurity concentration region 16, and the charge injected from the injector is sufficiently absorbed in the base layer trench directly under the collector far from the injector. However, as shown in FIG. 3, a base contact hole 22 is formed close to the N-type heavily doped region 16,
By interconnecting with I20, the above problem is solved. In this case, the N+ type terisilicon layer 11 is used for the diffusion source of the N type high concentration impurity region 16 and its interconnection, and the metal wiring 20 for base contact interconnection is intersected three-dimensionally.

この構造によれば、コレクタ(N型高濃度不純物領域1
6)面積に比較して、ペース面積を小さくできるので、
ILのスイッチング時間を速くできる。
According to this structure, the collector (N-type high concentration impurity region 1
6) The pace area can be made smaller compared to the area, so
IL switching time can be made faster.

しかしながら、この場合、N+型ポリシリコン層1ri
):N型高濃度不純物領域16の拡散源ならびにコレク
タ電極数シ出し配線に使用しているが、砒素ドーf−リ
シリコンの場合、抵抗値が厚さ5ooo1で100〜2
0θΩ乙と高い。従って、上記I2Lを微細化、すなわ
ちコレクタの?リシリコン層の巾を狭くしたシ、ILt
高電流領域において使用したシすると、ポリシリコンの
抵抗値が高いためにI2Lが動作しなかったシ、動作速
度が遅くなったシする欠点を有している。
However, in this case, the N+ type polysilicon layer 1ri
): Used for the diffusion source of the N-type high concentration impurity region 16 and the collector electrode number wiring, but in the case of arsenic-doped silicon, the resistance value is 100 to 2 at a thickness of 5 mm.
It's as high as 0θΩ. Therefore, the above I2L is miniaturized, that is, the collector? ILt with narrower silicon layer width
When used in a high current region, the disadvantage is that I2L does not operate due to the high resistance value of polysilicon, and the operating speed becomes slow.

従って、ILをよシ高速化及び高集積度化するために、
コレクタ層形成に/リシリコン層を使用するには一定の
限界がある。この発明は上記実情に鍋みてなされ丸もの
で、その目的は、NPN )ランジスタのジレクタにシ
請、トキ金属を使用することによシ、従来の欠点を解消
できる半導体装置及びその製造方法を提供することにあ
る。
Therefore, in order to make IL faster and more highly integrated,
There are certain limits to the use of silicon layers for collector layer formation. This invention has been made in view of the above circumstances, and its purpose is to provide a semiconductor device and a method for manufacturing the same, which can eliminate the conventional drawbacks by using a special metal for the director of an NPN transistor. It's about doing.

すなわち、本発明は、−導電型の半導体層若しくは半導
体基板上に金属あるいは金属硅化物層と絶縁膜層を順次
堆積せしめたのちに、選択的に一部を残存せしめて、半
導体層若しくは半導体基板とは逆導電型の不純物イオン
を注入し、この不純物層を活性化させ、前記金属あるい
は金属硅化一層と絶−膜層の側面に選択的に絶縁膜層を
残存せしめて、前記金属あるい鉱金属硅化物層をシ璽ッ
トキ・コレクタおよびコレクタ電極数シ出し配線に使用
するもので、金属配線とコレクタの金属あるいは金I1
4硅化物層とは前記の絶縁膜層のみで分離されているこ
とを特徴とする半導体装置である。本発明によれば、金
属配線とコレクタの鰐型fリシコン層とが絶縁膜のみで
自己整合的に構成されている従来のI”Lよシも論理振
幅が小さく、プレフ電極積取り出し配線の抵抗が小さい
高速で低消費電力のI”Lが容易に可能となるφ 以下、図面を参照してこの発明の一実施例を説明する。
That is, the present invention deposits a metal or metal silicide layer and an insulating film layer sequentially on a conductive type semiconductor layer or semiconductor substrate, and then selectively leaves a part of the semiconductor layer or semiconductor substrate. Impurity ions of the opposite conductivity type are implanted to activate this impurity layer, and selectively leave an insulating film layer on the side surfaces of the metal or metal silicide layer and the insulation layer. A metal silicide layer is used for the collector and collector electrode wiring, and the metal wiring and collector metal or gold I1
A semiconductor device is characterized in that the tetrasilicide layer is separated only by the above-mentioned insulating film layer. According to the present invention, the logic amplitude is small compared to the conventional I''L in which the metal wiring and the collector's crocodile-shaped silicon layer are self-aligned with only an insulating film, and the resistance of the pre-electrode stack wiring is small. A high-speed, low-power consumption I''L with a small φ is easily possible.Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第4図はシ盲、ト中コレクタのILあ゛ r−)回路を示すものである。同図にすいて、41は逆
構造形のΔ−ティカルNPN )ランジスp、41はこ
のトランジスタ41とは相補形の2チラルPNP )ラ
ンゾスタ、411  # 43鵞 。
FIG. 4 shows the IL(r-) circuit for the blind and middle collectors. In the figure, 41 is a Δ-Tical NPN transistor with an inverse structure, 41 is a 2-tyral PNP transistor that is complementary to this transistor 41, and 411 is a Lanzostar transistor.

41畠はそれぞれ上記トランジスタ42のコレクタに接
続されたシ曹、)キ・ノ譬リア・ダイオードである・ 次に、とのILr−)回路の具体的な構造及びその製造
方法の第1の実施例について、嬉5図(a)〜(f)を
参照して説明する。
41 is a diode connected to the collector of the transistor 42, respectively.Next, the specific structure of the circuit and the first implementation of the manufacturing method thereof An example will be explained with reference to Figures 5 (a) to (f).

先ず、第5図(a)に示すようにP型シリコン蔦板51
上にN型高不純物濃度層52及びN型エピタキシャル層
53を形成し、さらに選択酸化してフィールド獣化膜5
4を形成する。そして比較的薄い8102膜55を形成
した後、ILの内部ペース層となる濃度のうすいP−型
領域56をN型エピタキシャル層53内に形成する。こ
のP−fi領域56の形成はぎロンの高加速イオン注入
法によれば可能である。次に、第5図(b)に示すよう
に、薄い5in2膜55の一部をエツチング除去した後
、シ璽、トキ金属層57と低温(メタルがアロイをしな
いような低温)のCVD8102膜58を連続的に形成
する・次に、#IJ5図(C)に示すように、シ冒、ト
キ金属層57及びCVD5102膜58をレジストをマ
スクとして選択的にエピタキシャル層53の一部まで達
するように工。
First, as shown in FIG. 5(a), a P-type silicon vine plate 51 is
An N-type high impurity concentration layer 52 and an N-type epitaxial layer 53 are formed thereon, and selectively oxidized to form a field beast film 5.
form 4. After forming a relatively thin 8102 film 55, a lightly-concentrated P-type region 56, which will become an internal space layer for the IL, is formed in the N-type epitaxial layer 53. This P-fi region 56 can be formed using Giron's high acceleration ion implantation method. Next, as shown in FIG. 5(b), after removing a part of the thin 5in2 film 55 by etching, the metal layer 57 and the CVD 8102 film 58 at a low temperature (such a low temperature that the metal does not form an alloy) are removed. Next, as shown in FIG. Engineering.

チング除去して突出領域を形成する。このエツチング方
法としてはRIIC(Rea@tive IonEte
klmg)でほぼ垂直にエツチングするのがよシ好まし
い。
tings are removed to form protruding regions. This etching method is known as RIIC (Rea@tive IonEte).
It is more preferable to etch the film approximately vertically with a .klmg).

次に、第5図(d)に示すように、低温のcvngto
2膜58をマスクにして比較的濃度の高い外部ベース用
P型不純物、例えばがロンをイオン注入し、さらに低温
(メタルがアロイしないような低温)のCVD1iiN
膜51を堆積させて、レーザービームで上記イオン注入
層を活性化させる。このとき金属の反射係数が高いので
シ箇、トキ金属51部分は温度がほとんど上昇せず、そ
の他のシリコン部分のみが高温になル、第5図C@)に
示すように外部ペースP+型領域60の部分のみ活性化
される0次に、館5図(f)に示すように低温のCVD
81N膜59をRIEでエツチング除去する。
Next, as shown in FIG. 5(d), the low temperature cvngto
Using the 2 film 58 as a mask, a relatively high concentration of P-type impurity for the external base, for example, ion implantation is performed, and then CVD1iiN at a low temperature (a low temperature at which the metal is not alloyed) is performed.
A film 51 is deposited and the ion implanted layer is activated with a laser beam. At this time, since the reflection coefficient of metal is high, the temperature of the metal 51 part hardly rises, and only the other silicon part becomes high temperature. Then, as shown in Figure 5 (f), low-temperature CVD is applied where only the 60 part is activated.
The 81N film 59 is etched away by RIE.

この場合選択的にエピタキシャル層53、シ璽ッF中金
属層51及びcyosto、膜58でなる突出領域側面
のみにCVDIIN膜59を残存せしめてから、金属配
線61を完了させる・最後に金属をシンクすると本IL
が完成する。
In this case, the CVDIIN film 59 is selectively left only on the side surface of the protruding region consisting of the epitaxial layer 53, the metal layer 51 in the film 58, and the cyosto film 58, and then the metal wiring 61 is completed.Finally, the metal is sinked. Then the book IL
is completed.

・このようにして製造されたILは次の様な効□ 呆を有する。・IL manufactured in this way has the following effects□ I feel dumbfounded.

■ NPN )ランジスタ41のコレクタがシ曹、)キ
クランプになっているので、従来のN+コレクタ層−N
+ポリシリコン引き出し配線にくらべて論理振幅が小さ
く、寄生容量の小さ々I2Lが出来る。従って、高速で
低消費電力化も図れ、合せてコレクタ引き出し配線が金
属であるので配線抵抗が殆ど無視出来る。
■NPN) Since the collector of the transistor 41 is a clamp, it is different from the conventional N+ collector layer -N.
+The logic amplitude is smaller than that of polysilicon lead wiring, and a small parasitic capacitance I2L can be formed. Therefore, high speed and low power consumption can be achieved, and since the collector lead-out wiring is made of metal, the wiring resistance can be almost ignored.

■ 外部ペースのP 型領域60とコレクタのシmy)
キ金属層67との間が縦方向から見て余裕があるので、
外部ペースとコレクタ間の耐圧が低下しない。
■ External pace P type area 60 and collector symmetry)
There is ample space between the metal layer 67 and the main metal layer 67 when viewed from the vertical direction, so
The withstand pressure between the external pace and the collector does not drop.

■ コレクタ引き出し配線用の金属が低抵抗の配線材料
にも工程上無理なく使用でき、実質上2層配線が可能と
なる・ このように本発明を用いればILを高性能化できる。こ
こでシmyト中金属としてはW(タングステン)、ムg
(銀)、ムA(アルミニウム)、ムU(金)、rt (
白金)等が考えられ、シリサイド膜としては工記シ1ッ
トキ金属のシリサイド等が考えられる。
■ The metal for the collector lead-out wiring can be used as a wiring material with low resistance in terms of the process, and two-layer wiring is essentially possible. In this way, by using the present invention, the IL can be improved in performance. Here, the metals in the simulation are W (tungsten) and Mug.
(silver), MuA (aluminum), MuU (gold), rt (
Platinum), etc. can be considered, and as the silicide film, silicide of a metal such as that described above can be considered.

第6図(、)〜(・)は本発明の第2の実施例を示すも
のである。先ず、第6図(、)に示すように第1O実施
例と同様にP型シリコン基板rl上にN型高不線動員度
層12及びN型エピタキシャル層FJを形成し、さらに
選択酸化してフィールド酸化膜74を形成する。そして
比較的薄いslo 膜11を形成した後に、!2Lの内
部ペース層となる濃度の薄いP−型領域76をNfi工
♂タキシャル層13内に形成する0次に、シmyトキ金
属層F1と低温のCVD810.膜18t一連続的に形
成する0次に、第6図(b)に示すように、シ曹、ト命
金属層11とCVD810.膜78をレジストをマスク
として選択的に工、チング除去する。この場合、シー、
トキ金属をリン酸系のエツチング液(A/!、の場合)
でエツチングすれば、低温のCVD1lO,膜r1がオ
ーバーハング構造となる。
FIGS. 6(,) to (·) show a second embodiment of the present invention. First, as shown in FIG. 6(,), an N-type high nonwire mobilization layer 12 and an N-type epitaxial layer FJ are formed on a P-type silicon substrate rl in the same manner as in the first O embodiment, and then selectively oxidized. A field oxide film 74 is formed. After forming the relatively thin slo film 11,! A thinly concentrated P-type region 76, which will become a 2L internal space layer, is formed in the Nfi engineered taxial layer 13. Next, the metal layer F1 and the low-temperature CVD 810. As shown in FIG. 6(b), the film 18t is continuously formed with a carbon dioxide layer 11 and a CVD 810. The film 78 is selectively etched and removed using a resist as a mask. In this case, sea,
Tokimetal with phosphoric acid-based etching solution (in case of A/!)
If etching is performed, the low-temperature CVD 11O film r1 becomes an overhang structure.

次に、第6図(、)に示すように、低温の(VD810
2膜r8をマスクにして比較的に濃度の高い外部ペース
用のがロンをイオン注入する。そして低温のCVT)i
lIN膜1#を堆積させた後、レーザービームで上記l
イオン注入層を活性化させ外部ペースP”ff1lI域
80を形成する。次に第6図(d)に示すようにシ璽、
トキ金属層17及びCVD8102膜18からなる突出
領域の側面のみ残存せしめる様にRIBにてCVD5 
IN膜19を工、チングしてから、第6図(・)に示す
ように金属配線81を完了させる。最後に金属をシンク
すると本ILが完成する。
Next, as shown in Figure 6(,), the low temperature (VD810
Using the second film r8 as a mask, ions of relatively high concentration external paste ion are implanted. and low temperature CVT)i
After depositing lIN film 1#, the above lIN film 1# is deposited using a laser beam.
The ion implantation layer is activated to form an external paste P"ff1lI region 80. Next, as shown in FIG. 6(d), a seal is formed.
CVD5 is applied in RIB so that only the side surfaces of the protruding region made of the metal layer 17 and the CVD8102 film 18 remain.
After etching and etching the IN film 19, the metal wiring 81 is completed as shown in FIG. 6(-). Finally, sink the metal to complete this IL.

とのI”Lは第1実施例のI”Lと同様の効果を有する
The I"L of the first embodiment has the same effect as the I"L of the first embodiment.

以上のように本発明によれば極めて高速で低消費電力の
ILを製造出来る・ 尚、上述した第11及び第2の実施例では、I2Lであ
るが、必ずしも本発明は・ぐイI−ラ型の論理素子であ
るI”Lに限定されるものではなく、電界効果トランジ
スタ(IQCT )等にも有効である。
As described above, according to the present invention, it is possible to manufacture an IL with extremely high speed and low power consumption.In addition, in the above-mentioned 11th and second embodiments, the I2L is used, but the present invention does not necessarily apply to the I2L. The present invention is not limited to I''L type logic elements, but is also effective for field effect transistors (IQCT) and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のl2Lf−)回路、第2図は上記I’L
の構造を示す断面図、第3図は上記I2Lの配線/4タ
ーンを示す平面図、第4図はシ冒。 トキ・コレクタI”Lゲート回路ζ第5図(a)〜(f
)は本発駒の第1o夾施例に係るI2Lの製造工程を示
す断面図、第6図(a)〜(・)は本発明の第2の実施
例に係る断面図である。 5l−PljJシリコン基板、52・・・N型高不純物
濃度層、51−N型エピタキシャル層、56・・・P−
ffifj域(内部ペース)、57・・・シ璽、トキ金
属層、s 5−cv’osto、膜、59−CVD81
N膜、60−P 型領域(外部ペース)、61・・・金
属配線、11・・・Pfiシリコン基板、72・・・N
fi高不純物線動層、73・・・N壓エピタ呼シャル層
、1g−P”″型領域(内部ペース)、71・・・シ曹
ット中金属層、y g ・cvDsio2a、r 9−
CVD5iN膜、go−p fJ領領域外部ペース)、
81−・・金属配線。 第1図 第2図
Figure 1 shows the conventional l2Lf-) circuit, Figure 2 shows the above I'L
FIG. 3 is a plan view showing the I2L wiring/four turns, and FIG. 4 is a diagram showing the structure. Toki collector I”L gate circuit ζ Fig. 5 (a) to (f
) is a cross-sectional view showing the manufacturing process of I2L according to the first embodiment of the present invention, and FIGS. 6(a) to (·) are cross-sectional views according to the second embodiment of the present invention. 5l-PljJ silicon substrate, 52...N-type high impurity concentration layer, 51-N-type epitaxial layer, 56...P-
ffifj area (internal pace), 57... seal, crested metal layer, s 5-cv'osto, membrane, 59-CVD81
N film, 60-P type region (external space), 61...metal wiring, 11...Pfi silicon substrate, 72...N
fi high impurity linear dynamic layer, 73...N epitaxial layer, 1g-P'''' type region (internal pace), 71...metal layer in carbonate, yg/cvDsio2a, r9-
CVD5iN film, go-p fJ region external pace),
81--Metal wiring. Figure 1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)  第一導電製の半導体層若しくは半導体基板と
、前記半導体層若しくは半導体基板の表面の少くとも一
部を含み、該半導体層若しくは半導体基板とシ璽、ト中
結合を有する導電層と第一の絶縁膜とからなる突出領域
と、前記突出領域の側面部を覆うように形成された第2
の絶縁膜と、前記半導体層若しくは半導体基板内におい
て前記突出領域の下部領域の周辺領域に形成された第2
導電製の不純物領域と、前記第1の絶縁膜及び第2の絶
縁膜と前記不純物領域を扱うように形成された金属配線
とを具備し、前記不純物領域と前記導電層とが前記突出
領域の側面方向に沿って離間されていることを特徴とす
る半導体装置。
(1) A first conductive semiconductor layer or semiconductor substrate; a conductive layer that includes at least a part of the surface of the semiconductor layer or semiconductor substrate and has a bond between the semiconductor layer or the semiconductor substrate; a second insulating film formed so as to cover a side surface of the first insulating film;
a second insulating film formed in the peripheral region of the lower region of the protruding region in the semiconductor layer or semiconductor substrate;
It includes a conductive impurity region, the first insulating film, the second insulating film, and a metal wiring formed to handle the impurity region, and the impurity region and the conductive layer are connected to the protruding region. A semiconductor device characterized in that the semiconductor devices are spaced apart along the lateral direction.
(2)  前記半導体層をN型工ぜりΦシャル層とし、
このN′m二−タ命シャル層の内部にP型領域を選択的
に形成し、このP型領域上に前記導電層を形成し、この
導電層をシ冒、トキコレクタとして用いることを特徴と
する特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor layer is an N-type engineered Φshall layer,
A P-type region is selectively formed inside this N'm dielectric layer, the conductive layer is formed on this P-type region, and this conductive layer is used as a collector. A semiconductor device according to claim 1.
(3)  前記半導体層はI2LダートのNPN )ラ
ンジスタのエイツタ、前記不純物領域は前記NPNトラ
ンジスタのペース及びI2LゲートのPNP )ランジ
スタのエイ、夕を構成し、前記導電層をシ冒、トキコレ
クタ及び電極数シ出し配線として用いることを特徴とす
る特許請求の範囲第2項記載の半導体装置。
(3) The semiconductor layer is NPN of the I2L gate.The impurity region is the NPN gate of the NPN transistor and the PNP gate of the I2L gate. 3. The semiconductor device according to claim 2, wherein the semiconductor device is used as an electrode wiring.
(4)  第1導電型の半導体層若しくは半導体基板上
に1該牛導体層若しくは半導体基板とシ雷、トキ結合を
有する導電層と第1の絶縁膜を順次堆積させる工程と、
前記第1の絶縁膜、導電層及び前記半導体層若しくは半
導体基板の少なくとも一部を選択的にエツチングし、突
出領域を形成する工程と、前記半導体層若しくは半導体
基板の表面から第二導電型の不純物イオンを注入し、第
2の絶縁膜を堆積した後、前記不純物領域を活性化させ
る工程と、前記第2の絶縁膜を前記突出領域の側面に選
択的に残存させる工程と、前記導電層から電極を取シ出
し、金属配線を形成する工程とを具備したことを特徴と
する半導体装置の製造方法。
(4) a step of sequentially depositing a conductive layer and a first insulating film having a flash bond with the conductor layer or semiconductor substrate and a first insulating film on the semiconductor layer or semiconductor substrate of the first conductivity type;
selectively etching the first insulating film, the conductive layer, and at least a portion of the semiconductor layer or semiconductor substrate to form a protruding region; and etching impurities of a second conductivity type from the surface of the semiconductor layer or semiconductor substrate. After implanting ions and depositing a second insulating film, activating the impurity region, selectively leaving the second insulating film on the side surface of the protruding region, and removing the conductive layer from the conductive layer. 1. A method for manufacturing a semiconductor device, comprising the steps of taking out an electrode and forming metal wiring.
(5)  第一導電型の半導体層若しくは半導体基板上
に、該半導体層若しくは半導体基板とシ曹、トキ結合を
有する導電層と第1の絶縁膜とを順次堆積させる工程と
、前記第1の絶縁膜及び導電層を腋第1の絶縁膜がオー
バーハンダ構造となるように選択的に工、チンダして、
前記第1の絶縁膜及び導電層の一部を残存させる工程と
、前記半導体層及び半導体基板の表面から第2導電蓋の
不純物イオンを注入し、第2の絶縁膜を堆積した後、前
記不純物領域を活性化させる工程と、前記第2の絶縁膜
を前記導電層及び第1の絶縁膜の側面にのみ選択的に残
存させる工程と、前記導電層から電極を取シ出し、金属
□ 配線を形成する工程とを具備したことを特徴とする半導
体装置の製造方法。
(5) a step of sequentially depositing, on a semiconductor layer or semiconductor substrate of a first conductivity type, a conductive layer having a bond with the semiconductor layer or semiconductor substrate, and a first insulating film; selectively etching and cindering the insulating film and the conductive layer so that the first insulating film in the armpit has an oversolder structure;
a step of leaving a part of the first insulating film and the conductive layer; and implanting impurity ions for the second conductive lid from the surfaces of the semiconductor layer and the semiconductor substrate, and depositing the second insulating film; a step of activating the region; a step of selectively leaving the second insulating film only on the side surfaces of the conductive layer and the first insulating film; and removing an electrode from the conductive layer and forming a metal □ wiring. 1. A method of manufacturing a semiconductor device, comprising a step of forming a semiconductor device.
JP56116082A 1981-06-22 1981-07-24 Semiconductor device and its manufacture Pending JPS5817661A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56116082A JPS5817661A (en) 1981-07-24 1981-07-24 Semiconductor device and its manufacture
US06/389,931 US4539742A (en) 1981-06-22 1982-06-18 Semiconductor device and method for manufacturing the same
DE19823223230 DE3223230A1 (en) 1981-06-22 1982-06-22 SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116082A JPS5817661A (en) 1981-07-24 1981-07-24 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPS5817661A true JPS5817661A (en) 1983-02-01

Family

ID=14678261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116082A Pending JPS5817661A (en) 1981-06-22 1981-07-24 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS5817661A (en)

Similar Documents

Publication Publication Date Title
US4539742A (en) Semiconductor device and method for manufacturing the same
JPH1197716A (en) Mos control diode and manufacture of the same
JPH0123949B2 (en)
JPS6159852A (en) Manufacture of semiconductor device
JPS5873156A (en) Semiconductor device
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPH02246264A (en) Semiconductor device and manufacture thereof
JPS6298663A (en) Semiconductor integrated circuit device
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPS5817661A (en) Semiconductor device and its manufacture
JPH05343413A (en) Bipolar transistor and manufacture thereof
JP3535542B2 (en) Semiconductor memory device and method of manufacturing the same
JPS5838939B2 (en) integrated circuit
JPS6052038A (en) Manufacture of semiconductor device
JP2004207438A (en) Semiconductor device and its manufacturing method
JP2604550B2 (en) Semiconductor device
TW538505B (en) Method of fabricating bipolar complementary metal-oxide semiconductor on silicon on insulator
JPS61187273A (en) Semiconductor device
JPS61269377A (en) Semiconductor device
JPS644351B2 (en)
JPH02237151A (en) Semiconductor memory device
JPH04207038A (en) Semiconductor device and its manufacture
JPS5843574A (en) Field effect transistor
JPS59107562A (en) Semiconductor device and its manufacture
JPS63142867A (en) Mis transistor and manufacture thereof