JPS58176616A - Fiber type isolator - Google Patents

Fiber type isolator

Info

Publication number
JPS58176616A
JPS58176616A JP57060490A JP6049082A JPS58176616A JP S58176616 A JPS58176616 A JP S58176616A JP 57060490 A JP57060490 A JP 57060490A JP 6049082 A JP6049082 A JP 6049082A JP S58176616 A JPS58176616 A JP S58176616A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
metal
polarizer
single polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060490A
Other languages
Japanese (ja)
Other versions
JPH06100732B2 (en
Inventor
Katsunari Okamoto
勝就 岡本
Toshito Hosaka
保坂 敏人
Takao Edahiro
枝広 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57060490A priority Critical patent/JPH06100732B2/en
Publication of JPS58176616A publication Critical patent/JPS58176616A/en
Publication of JPH06100732B2 publication Critical patent/JPH06100732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain an optical isolator which eliminates the need for an external magnetic field by using a fiber type polarizer and a single polarized-wave optical fiber as a polarizer and a lambda/4 element respectively. CONSTITUTION:The clad of the fiber type polarizer 4-1 including cores 4-3 and 4-5 is etched asymmetrically and a metal 4-4 is vapor-deposited thereupon. The component of an electric field vector perpendicular to the metallic surface has large loss, so the fiber type polarizer operates as a 45 deg. polarizer in a figure. Light of 45 deg. linear polarization entering a single polarized-wave optical fiber 4-2 through the fiber type polarizer is converted into circular polarized light in propagating therein by specific distance. Light reflected by the end surface of the single polarized-wave optical fiber 4-2 and the surface of another optical element is opposite in the rotation direction of the circular polarized light in a direction +z and reconverted into linear polarized light perpendicular to the incident light in passing through the lambda/4 plate again.

Description

【発明の詳細な説明】 本実W14社反射光による半導体レーザ勢の光源の動作
不安定性を防止するための光アイソレータにおいて、特
に外部磁界が不用であシ、小型で経済的なアイソレータ
に関するものである。
Detailed Description of the Invention This invention relates to an optical isolator for preventing operational instability of light sources such as semiconductor lasers due to reflected light from Honjitsu W14 Co., Ltd. In particular, this invention relates to an optical isolator that does not require an external magnetic field and is small and economical. be.

光アイソレージは光ファイバやコネクタ等の他の光学素
子からの反射光による半導体レーザ等の光源の動作不安
定化を防止して、信頼性の高い通信を行ううえで、重要
な光部品である。従来、光アイソレータとしては、第1
1!!Qに示すようなバルク形アイソレータおよび第2
図に示すようなファイバ形の磁気光学材料を用いたアイ
ソレータおよび第3図に示すような磁性薄膜を用いたア
イソレータが知られている(第1図に関して、岩村他、
rYaFeso□、結晶を用いた近赤外用小形アイソレ
ータ」信学技報OQE 78−59 、 P、 9 、
1978、第2図に関して、菊地他、「光フアイバ型フ
ァラデー回転素子の試作とその特性」東北大電通読話会
記録VO1,49、no、 2 、 P、 56 、1
980、第8図に関して、宮崎他、r GGG基板基板
上置1置換YIG薄膜いた導波形光アイソレータにおけ
るTE−7Mモード変換特性」信学全大no、 827
 、 P、 4−21゜1981 )。
Optical isolation is an important optical component in order to prevent unstable operation of light sources such as semiconductor lasers due to reflected light from other optical elements such as optical fibers and connectors, and to perform highly reliable communications. Conventionally, as an optical isolator, the first
1! ! A bulk type isolator and a second
An isolator using a fiber-shaped magneto-optical material as shown in the figure and an isolator using a magnetic thin film as shown in Fig. 3 are known (with regard to Fig. 1, Iwamura et al.
rYaFeso□, Compact near-infrared isolator using crystals,” IEICE Technical Report OQE 78-59, P, 9,
1978, regarding Figure 2, Kikuchi et al., “Prototype of optical fiber type Faraday rotator element and its characteristics” Tohoku University Dentsu Reading Group Record VO1, 49, no. 2, P. 56, 1
980, with regard to Figure 8, Miyazaki et al., TE-7M mode conversion characteristics in a waveguide optical isolator with a single-substituted YIG thin film on a GGG substrate, IEICE National University, No. 827.
, P, 4-21°1981).

第1図、第2図および第3図において、lは光ファイバ
またはレーザ、2はレンズ、8は偏光子、4は磁気光学
材料、5は検光子、Hは磁界、6は金属誘電体多層膜、
7はファイバ形ファラデー回転素子、8はルチルプリブ
ム、9はモード選択素子、10は非相反モード変換索子
、11は相反上一ド変換素子である。
In Figures 1, 2 and 3, l is an optical fiber or laser, 2 is a lens, 8 is a polarizer, 4 is a magneto-optical material, 5 is an analyzer, H is a magnetic field, and 6 is a metal dielectric multilayer. film,
7 is a fiber type Faraday rotation element, 8 is a rutile pribum, 9 is a mode selection element, 10 is a non-reciprocal mode conversion element, and 11 is a reciprocal one-mode conversion element.

従来のこれらのアイソレータは以下のような欠点を有し
ていた。
These conventional isolators had the following drawbacks.

(+)  すべて磁気光学材料中のファラデー効果を利
用しているので、磁界を印加するための永久磁石または
ソレノイドによる電磁石を必要とする。
(+) All use the Faraday effect in magneto-optical materials, so they require a permanent magnet or solenoid electromagnet to apply the magnetic field.

(1)  バルク形はレンズ系を必要とするので、光回
路が複雑であり、システムとしての安定性を欠く。
(1) Since the bulk type requires a lens system, the optical circuit is complicated and the system lacks stability.

(Ill)  7アイパ形磁性材料を用いた光アイソレ
ータはペルデ定数が小さいので、大きな外部磁界または
長いファイバを必要とする。例えばFR−5ガラスをコ
アとして用いた場合、λ−= 0.688μ易では(磁
界)X(長さ)の関係は H−t=1.08X10  (Oe・aw)   (1
)で与えられる。−例として、j=10amのときH−
1,08Woeの外部磁界が必要である。
(Ill) Optical isolators using 7-eyeper magnetic materials have small Perdet constants, so they require large external magnetic fields or long fibers. For example, when FR-5 glass is used as the core, the relationship between (magnetic field) and X (length) is H-t=1.08X10 (Oe・aw) (1
) is given by -For example, when j=10am, H-
An external magnetic field of 1.08 Woe is required.

翰 薄膜形アイソレータは膜の不完全性による散乱のた
めに挿入損失が大きく、また散乱による非偏光成分の発
生のために反射光を完全に除去することが難しい。
Kan: Thin film isolators have a large insertion loss due to scattering due to imperfections in the film, and it is difficult to completely remove reflected light due to the generation of non-polarized light components due to scattering.

本発明の目的は、従来の前述の欠点を除去するためファ
イバ形偏光子および単一偏波光ファイバをそれぞれ偏光
子およびλ/4素子として用いることによシ、外部磁界
を必要としない小型で高性能の光アイソレータを提供す
ることにある。以下、図面によシ本発明の詳細な説明す
る。
The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology by using a fiber polarizer and a single polarization optical fiber as a polarizer and a λ/4 element, respectively, thereby providing a compact and high performance device that does not require an external magnetic field. Our goal is to provide high-performance optical isolators. Hereinafter, the present invention will be explained in detail with reference to the drawings.

第4図は本発明の一実施例図であって、4−1はファイ
バ形偏晃子(保坂他、「ファイバ形偏光子の作製方法」
特願昭56−208048)、4−2は単一偏波光ファ
イバ(?、 Ho5aka etal ” Low −
1oss  single  polarizat土o
n  fibers  with 、asyxn%−1
ngence ’ 、  Ii:1ectron、 L
ett、 。
FIG. 4 is a diagram showing an embodiment of the present invention, and 4-1 is a fiber-type polarizer (Hosaka et al., "Method for manufacturing a fiber-type polarizer").
4-2 is a single polarization optical fiber (?, Ho5aka etal ” Low -
1oss single polarizat soil
n fibers with, asyxn%-1
ngence', Ii:1ectron, L
ett, .

vol、1?’、 no、 15 、 P、1580.
1981)であシ、4−8および4−5はコアである。
Vol.1? ', no, 15, P, 1580.
1981), 4-8 and 4-5 are cores.

また4−4はクラッドを非対称にエツチングした後に蒸
着した金属であシ、4−6はコアに非軸対称な応力を印
加するための応力付与部である。774バ形偏光子にお
いて、電界ベクトルが金属面と平行な成分は、はとんど
吸収損失を受けないが、電界ベクトルが金属面に垂直な
成分は大きな損失を受ける。例えば金属としてムtを用
いた場合、偏光子の長さが4個で消光比41(iB、挿
入損失1 dB (λ=:1.15μll1)という値
が得られている。損失の最も小さい電界ベクトルの方向
すなわち金属面に平行な方向と、単一偏波ファイバの主
軸(主応力の方向であり、第4図ではX軸とy軸)との
なす角度は46°である。
Further, 4-4 is a metal deposited after asymmetrically etching the cladding, and 4-6 is a stress applying portion for applying a non-axisymmetric stress to the core. In the 774 bar type polarizer, the component whose electric field vector is parallel to the metal surface hardly suffers from absorption loss, but the component whose electric field vector is perpendicular to the metal surface suffers a large loss. For example, when Mut is used as the metal, an extinction ratio of 41 (iB) and an insertion loss of 1 dB (λ = 1.15 μll1) are obtained when the length of the polarizer is 4. The electric field with the smallest loss The angle between the direction of the vector, that is, the direction parallel to the metal surface, and the principal axis of the single polarization fiber (direction of principal stress; X-axis and y-axis in FIG. 4) is 46°.

このときレーザから出てファイバ形偏光子を通過した直
線偏光の光は単一偏波ファイバのX軸と45°の角度で
入射する(第“4図の黒矢印)から、■    ■ Exおよび]cy酸成分等振幅で励振される。
At this time, the linearly polarized light that comes out of the laser and passes through the fiber polarizer enters the single polarization fiber at an angle of 45° with the X axis (black arrow in Figure 4), so that ■ ■ Ex and] The cy acid component is excited with equal amplitude.

す表わち、この点の2座標を2=−1とすると、と表わ
される。いま単一偏波光ファイバの長さをt=cW1+
/りπ/(β8−βy)    (a)を満足するよう
に決めると、2−0においては、なる関係が成立する。
That is, if the two coordinates of this point are 2=-1, then it is expressed as follows. Now, the length of the single polarization optical fiber is t=cW1+
/riπ/(β8−βy) If it is determined to satisfy (a), the following relationship holds true for 2-0.

す々わち第5図に示すように出射光は円偏光となり、単
一偏波光ファイバ社2/4素子として働くことがわかる
。このとき単一偏波光ファイバの端面で反射される光、
または他の光学素子によって反射され、単一偏波光ファ
イバに入射される光は、+2方向から見ると円偏光の回
転方向が逆になる。この現象はレーダ等のブラウン管の
反射防止装置としてよく知られておシ、模式市に示すと
第6図のようになる(W、ム。
In other words, as shown in FIG. 5, the emitted light becomes circularly polarized light, and it can be seen that it functions as a single polarization optical fiber 2/4 element. At this time, the light reflected by the end face of the single polarization optical fiber,
Alternatively, when the light is reflected by another optical element and enters the single polarization optical fiber, the rotation direction of the circularly polarized light is reversed when viewed from the +2 direction. This phenomenon is well known as an anti-reflection device for cathode ray tubes such as radar, and is shown schematically in Figure 6 (W, M).

5hurcliff、 ’ C1rcular pol
arizer impravesviewing”+ 
Electronlcs Design ’ + Ap
ril 1 +1956 )。
5hurcliff, ' C1rcular pol
arizer impraves viewing”+
Electronlcs Design' + Ap
ril 1 +1956).

第6図において、12は白色光、18は偏光子、14は
/4板、15d反射1i1(例えばブラウン管面)、1
6は右回シ円偏光、17は入射波、18は反射波、19
は左回シ円偏光である。なお偏光子18と274板とか
ら円偏光板が構成されておシ、第6図の左下端部に示し
た眼の位置では反射光はない。
In FIG. 6, 12 is white light, 18 is a polarizer, 14 is a quarter plate, 15d reflection 1i1 (for example, a cathode ray tube surface), 1
6 is right-handed circularly polarized light, 17 is an incident wave, 18 is a reflected wave, 19
is left-handed circularly polarized light. Note that a circularly polarizing plate is constituted by the polarizer 18 and the 274 plate, and there is no reflected light at the eye position shown at the lower left end in FIG.

186図かられかるように、回転方向が逆転した円偏光
は、再び/4板を通ることによって、入射の直線偏光と
906の角をなす直線偏光となる。すなわち第4図の白
矢印で示すように、反射波は入射波に垂直な直線偏光と
なる。ここで、この反射波の電界ベクトルは金属面に垂
直であるから、ファイバ形偏党子によって大きな損失を
受け、2=−2゜の点では反射波はにぼ零となる。
As can be seen from Figure 186, the circularly polarized light whose rotation direction has been reversed passes through the quarter plate again and becomes linearly polarized light making an angle of 906 with the incident linearly polarized light. That is, as shown by the white arrow in FIG. 4, the reflected wave becomes linearly polarized light perpendicular to the incident wave. Here, since the electric field vector of this reflected wave is perpendicular to the metal surface, it suffers a large loss due to the fiber polarizer, and the reflected wave becomes zero at the point of 2=-2°.

第7図はファイバ形偏光子の代わシK、金属装荷光導波
路を偏光子として用いた実施例の図である。
FIG. 7 is a diagram of an embodiment in which a metal-loaded optical waveguide is used as a polarizer instead of a fiber polarizer.

第7図において、7−2は単一偏波光ファイバ、7−5
はコア、7−6は応力付与部、?−7は高屈折率光導波
路、7−8は低屈折率媒質、7−9は基板、?−Noは
金属である。
In Fig. 7, 7-2 is a single polarization optical fiber, 7-5
is the core, 7-6 is the stress applying part, ? -7 is a high refractive index optical waveguide, 7-8 is a low refractive index medium, and 7-9 is a substrate. -No is metal.

光は高屈折率光導波路7−7に閉じ込められて伝搬し、
単一偏波光フアイバフ−2の主軸に対して4s度の方向
にベクトルを持つ電界が入射する(黒矢印)。単一偏波
光フアイバフ−2の端面または他の光学素子によって反
射された反射光は、前述のように、2=−1の点では入
射電界と垂直のベクトルを有する(白矢印)。このとき
反射波は、金属によって大きなFI&収損失を受けるの
で、光源側に戻る反射波は/Itとんど零となる。
The light propagates while being confined in the high refractive index optical waveguide 7-7,
An electric field having a vector in the direction of 4s degrees with respect to the principal axis of the single polarized optical fiber buff 2 is incident (black arrow). The reflected light reflected by the end face of the single polarization optical fiber 2 or other optical element has a vector perpendicular to the incident electric field at the point 2=-1 (white arrow), as described above. At this time, the reflected wave is subjected to large FI and loss due to the metal, so the reflected wave returning to the light source side becomes /It almost zero.

以上の説明により明らかなとおシ、本発明の7アイパ形
アイソレータは、外部磁界を必要とせず、小型で低挿入
損失、高消光比の反射波防止素子であるから、光通信に
おける光アイソレータとして大きな利点を有している。
As is clear from the above explanation, the 7-eyeper type isolator of the present invention does not require an external magnetic field and is a small reflected wave prevention element with low insertion loss and high extinction ratio. It has advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバルク形アイソレータの構成図、第2図はファ
イバ形磁性材料を用いたアイソレータの構成図、第8図
は磁性薄膜を用いたアイソレータの構成図、第4図は本
発明の一爽施例図、第5図は単一偏波光ファイバの出射
端における偏光の様子を示す図、第6図は偏光子とし4
板を用いて反射波を除去する従来技術の模式図、第7図
は本発明の他の実施例図である。 4−1・・・ファイバ形偏光子、4−2.7−2・・・
単一偏波光ファイバ、4−8・・・コア、4−4・・・
金属、4−5.7−5川コア、4−6.7−6・・・応
力付与部、7−フ・・・高屈折率光導波路、7−8・・
・低屈折率媒質、7−9・・・基板、7−10・・・金
属。 特許出願人 日本電信電話公社 手続補正書(方式) 昭和57年8 月 3 日 1、事件の表示 昭和57年 特 許 願第60490号2、発明の名称 ファイバ形アイソレータ 3、補正をする者 事件との関係 特許出願人 (+22 )日本電信電話公社 図面の第5図を別紙訂正図のとおりに訂正する。 第5図 (a)      (b) 手続補正書 昭和57年 8 月 3 日 1、事件の表示 昭和57年 特 許 願第60490  号2、発明の
名称 ファイバ形アイソレータ 3、補正をする者 事件との関係 特許出願人 (422)日本電信電話公社 (1)明細書第1頁第8行〜第2頁第8行の特許請求の
範囲を、次のとおりに補正する。 「2、特許請求の範囲 L コアの両側にコアおよびクラッドの熱膨張係数と異
なる熱膨張係数を有する応力付与部が配置された単一偏
波光ファイバおよびコアの片側のクラッド部を非対称に
エツチングし金属を蒸着したファイバ形偏光子からなり
、前記単一偏波光ファイバの直交する二つの基本モード
の伝搬定数をβ工およびβ9とし、mをy整数とし、単
一偏波光ファイバの長さlがt−+m−1−34)+c
/1βニーβy1なる条件を満足し、前記ファイバ形偏
光子中で金属によって受ける吸収損失が最も小切い電界
ベクトル方向と前記単一偏波光ファイバの主軸とのなす
角度が45度となるようにファイバ形偏光子と単一偏波
光ファイバが接続されていることを特徴とするファイバ
形アイソレータ。 i 高屈折率光導波路がこれより屈折率の低い二つの媒
質で挾まれており、この片側のtaX低屈折率媒質側に
は金属が蒸着されている金属装荷光導波路と単一偏波光
ファイバを有し、mを正の整数とし、前記単一偏波光フ
ァイバの長さlがj−(II+%)π/1βニーβy1
なる条件を満足し、前記金属装荷光導波路の金属面と単
一偏波光7アイパの主軸となす角度が45度となるよう
に接続されていることを特徴とするファイバ形アイソレ
ータ。」 (2)明細書第6頁第15行の「いま」と「単一偏波光
ファイバ」の間に、次の字句を加入する。 「mを正の整数として、」 (8)同第7頁第7行の「逆になる。」と「この現象」
の間に、次の文を加入する。 [すなわち亀が偶数の場合は第5図(a)に示すように
なり、mが奇数の場合は、第5図Φ)に示すようになる
。」
Fig. 1 is a block diagram of a bulk type isolator, Fig. 2 is a block diagram of an isolator using a fiber type magnetic material, Fig. 8 is a block diagram of an isolator using a magnetic thin film, and Fig. 4 is a summary of the present invention. Example diagrams, Figure 5 is a diagram showing the state of polarization at the output end of a single polarization optical fiber, and Figure 6 is a diagram showing the state of polarization at the output end of a single polarization optical fiber.
FIG. 7, which is a schematic diagram of a conventional technique in which a plate is used to remove reflected waves, is another embodiment of the present invention. 4-1...Fiber type polarizer, 4-2.7-2...
Single polarization optical fiber, 4-8...core, 4-4...
Metal, 4-5.7-5 River core, 4-6.7-6... Stress applying part, 7-F... High refractive index optical waveguide, 7-8...
-Low refractive index medium, 7-9...substrate, 7-10...metal. Patent Applicant: Nippon Telegraph and Telephone Public Corporation Procedural Amendment (Method) August 3, 1980 1, Indication of Case 1982 Patent Application No. 60490 2, Name of Invention Fiber Type Isolator 3, Person Making Amendment Case Relationship between patent applicant (+22) Figure 5 of the Nippon Telegraph and Telephone Public Corporation drawings is corrected as shown in the attached corrected drawing. Figure 5 (a) (b) Procedural Amendment August 3, 1981 1. Indication of the case 1982 Patent Application No. 60490 2. Name of the invention Fiber type isolator 3. Person making the amendment Related Patent Applicant (422) Nippon Telegraph and Telephone Public Corporation (1) The scope of claims on page 1, line 8 to page 2, line 8 of the specification is amended as follows. ``2. Claim L: A single polarized optical fiber in which stress applying parts having a thermal expansion coefficient different from those of the core and cladding are arranged on both sides of the core, and the cladding part on one side of the core is asymmetrically etched. The propagation constants of the two orthogonal fundamental modes of the single-polarized optical fiber are β and β9, m is an integer of y, and the length l of the single-polarized optical fiber is t-+m-1-34)+c
/1βkneeβy1, and the angle between the direction of the electric field vector in which the absorption loss caused by the metal in the fiber polarizer is the smallest and the principal axis of the single polarization optical fiber is 45 degrees. A fiber isolator characterized in that a fiber polarizer and a single polarization optical fiber are connected. i A high refractive index optical waveguide is sandwiched between two media with a lower refractive index, and on one side of the taX low refractive index medium, a metal-loaded optical waveguide with metal vapor-deposited and a single polarization optical fiber are sandwiched. , m is a positive integer, and the length l of the single polarization optical fiber is j-(II+%)π/1β ny βy1
1. A fiber isolator which satisfies the following conditions and is connected such that the angle between the metal surface of the metal-loaded optical waveguide and the principal axis of the single polarized light 7-eyeper is 45 degrees. (2) Add the following phrase between "ima" and "single polarization optical fiber" on page 6, line 15 of the specification. "If m is a positive integer," (8) "It will be the opposite." and "this phenomenon" on page 7, line 7.
In between, add the following sentence: [That is, if the turtle is an even number, the result will be as shown in FIG. 5(a), and if m is an odd number, the result will be as shown in FIG. 5 Φ). ”

Claims (1)

【特許請求の範囲】 L コアの両側にコアおよびクラッドの熱膨張係数と異
なる熱膨張係数を有する応力付与部が配置された単一偏
波光ファイバおよびコアの片側のクラッド部を非対称に
エツチングし金属を蒸着し九ファイバ形偏光子からなシ
、前記単一偏波光ファイバの直交する二つの基本モード
の伝搬定数をβ およびβアとし、mを整数とし、単一
偏波光ファイバの長さtがt=(m+し2)π/1βニ
ーβy1なる条件を満足し、前記ファイバ形偏光子中で
金属によって受ける吸収損失が最°も小さい電界ベクト
ル方向と前記単一偏波光ファイバの主軸とのなす角度が
45度となるよλに7アイパ形偏光子と単一偏波光ファ
イバが接続されていること全特徴とするファイバ形アイ
ソレータ。 t 高屈折率光導波路がこれよシ屈折率の低い二つの媒
質で挾まれており、この片側の低屈折率媒質側には金属
が蒸着されている金属装荷光導波路と単一偏波光ファイ
バを有し、前記単一偏波光7アイパの長さtが t=(Il+1/2)π/l/x−βy1なる条件を満
足しへ前記金属装荷光導波路の金属面と単一偏波光ファ
イバの主軸とのなす角度が45度となるように接続され
ていることを特徴とするファイバ形アイソレータ。
[Claims] L A single-polarized optical fiber in which stress-applying parts having a thermal expansion coefficient different from that of the core and cladding are arranged on both sides of the core, and a cladding part on one side of the core is asymmetrically etched to form a metal. The propagation constants of the two orthogonal fundamental modes of the single polarization optical fiber are β and βa, m is an integer, and the length t of the single polarization optical fiber is t=(m+2)π/1βnyβy1, and the electric field vector direction in which the absorption loss caused by the metal in the fiber polarizer is the smallest and the main axis of the single polarization optical fiber A fiber type isolator characterized in that a 7-eyeper type polarizer and a single polarization optical fiber are connected at λ so that the angle is 45 degrees. t A high refractive index optical waveguide is sandwiched between two low refractive index media, and one side of the low refractive index medium has a metal-loaded optical waveguide with a metal vapor deposited on it and a single polarization optical fiber. and the length t of the single-polarized light 7 eyer satisfies the condition t=(Il+1/2)π/l/x-βy1, and the metal surface of the metal-loaded optical waveguide and the single-polarized optical fiber A fiber type isolator characterized in that it is connected so that the angle formed with the main axis is 45 degrees.
JP57060490A 1982-04-12 1982-04-12 Fiber type isolator Expired - Lifetime JPH06100732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060490A JPH06100732B2 (en) 1982-04-12 1982-04-12 Fiber type isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060490A JPH06100732B2 (en) 1982-04-12 1982-04-12 Fiber type isolator

Publications (2)

Publication Number Publication Date
JPS58176616A true JPS58176616A (en) 1983-10-17
JPH06100732B2 JPH06100732B2 (en) 1994-12-12

Family

ID=13143771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060490A Expired - Lifetime JPH06100732B2 (en) 1982-04-12 1982-04-12 Fiber type isolator

Country Status (1)

Country Link
JP (1) JPH06100732B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155623A (en) * 1984-08-27 1986-03-20 Nippon Telegr & Teleph Corp <Ntt> Optical isolator and light source provided with isolator
JPH01269915A (en) * 1988-04-21 1989-10-27 Nikon Corp Spectacles
JP2007104923A (en) * 2005-10-11 2007-04-26 Agritecno Yazaki Co Ltd Fertilizer applicator
JP2007116919A (en) * 2005-10-25 2007-05-17 Iseki & Co Ltd Travel vehicle for work

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155623A (en) * 1984-08-27 1986-03-20 Nippon Telegr & Teleph Corp <Ntt> Optical isolator and light source provided with isolator
JPH01269915A (en) * 1988-04-21 1989-10-27 Nikon Corp Spectacles
JP2585997B2 (en) * 1988-04-21 1997-02-26 株式会社ニコン Eye mirror
JP2007104923A (en) * 2005-10-11 2007-04-26 Agritecno Yazaki Co Ltd Fertilizer applicator
JP2007116919A (en) * 2005-10-25 2007-05-17 Iseki & Co Ltd Travel vehicle for work

Also Published As

Publication number Publication date
JPH06100732B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JPS5983126A (en) Optical circulator
JPH03150524A (en) Polarization non-dependence type isolator
JP2002515130A (en) Compact optical fiber circulator with low polarization mode dispersion
JPH07218866A (en) Optical isolator
US5479551A (en) Optical fiber non-reciprocal phase shifters and optical isolators using them
JPH01134424A (en) Optical system having thin film polarization rotor and manufacture thereof
JPS60149023A (en) Magnetooptic waveguide
JPS589B2 (en) optical isolator
CA2115721C (en) Optical isolator
JPS58176616A (en) Fiber type isolator
JPH07191280A (en) Optical isolator
JP2758457B2 (en) Waveguide type optical circulator
JPH07191278A (en) Optical isolator
JPS63200117A (en) Multistage optical isolator
JPH0244310A (en) Optical isolator
CN212933176U (en) Optical isolator
JPH0311303A (en) Optical circulator
JP2565423B2 (en) Optical isolator
JPS59119315A (en) Optical isolator
JP3540826B2 (en) Fiber type optical isolator
GB2143337A (en) Optical isolator
JPS5977408A (en) Optical isolator
JP2890525B2 (en) Optical isolator
JPH04102821A (en) Polarization nondependent type optical isolator
JPH085960A (en) Two-step type optical isolator