JPS63200117A - Multistage optical isolator - Google Patents

Multistage optical isolator

Info

Publication number
JPS63200117A
JPS63200117A JP3416587A JP3416587A JPS63200117A JP S63200117 A JPS63200117 A JP S63200117A JP 3416587 A JP3416587 A JP 3416587A JP 3416587 A JP3416587 A JP 3416587A JP S63200117 A JPS63200117 A JP S63200117A
Authority
JP
Japan
Prior art keywords
optical isolator
magnets
polarization
light
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3416587A
Other languages
Japanese (ja)
Inventor
Shigeru Takeda
茂 武田
Satoshi Makio
諭 牧尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3416587A priority Critical patent/JPS63200117A/en
Priority to EP88102242A priority patent/EP0279412B1/en
Priority to DE88102242T priority patent/DE3884421T2/en
Priority to US07/156,845 priority patent/US4865429A/en
Publication of JPS63200117A publication Critical patent/JPS63200117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a small-sized highly functional multistage optical isolator where the plane of polarization is not rotated, by magnetizing N-number of magnets in the axial direction and arranging magnets so that magnetic poles having the same polarity of adjacent magnets face each other. CONSTITUTION:Cylindrical magnets 3a and 3b' having a thickness L have opposite magnetization directions and are arranged a length (x) apart from each other so that their S poles face each other. Beam spliters P1 and P3' in the incidence side and the exit side are directed to the same direction, namely, the direction of 0 deg., and an analyzer P2 interposed between two Farady rotating elements FR-1 and FR-2' is directed to the direction of 45 deg.. Consequently, the light incident on a point (a) passes the Farady rotating element FR-1 to have the plane of polarization rotated at 45 deg. and passes the analyzer P2 inclined at 45 deg. and is made incident on the second Farady rotating element FR-2'. Since the element FR-2' is magnetized in the opposite direction, the plane of polarization of the light passing the element FR-2' is rotated at 45 deg. in the opposite direction. Thus, the small-sized multistage optical isolator having a large opposite loss is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光を一方向に伝搬させる場合に、同じ光路を
逆方向に伝搬する光を制御する機能を有するアイソレー
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an isolator that has the function of controlling light propagating in the opposite direction along the same optical path when light propagates in one direction.

〔従来の技術〕[Conventional technology]

例えば、光源として半導体レーザの発生した光を光ファ
イバーを介して伝搬させようとする場合、光フアイバー
内部での光の分散、屈折率の部分的不均一、接続部の存
在等によって反射光を生じ、光路を逆方向に伝搬して光
源の半導体レーザーに再び結合することがある。このよ
うな状態では、半導体レーザーの発振が不安定となり発
生光の雑音が増加して好ましくない、そこでこのような
場合、前記反射光を抑制するために光アイソレータを使
用することが有効である。
For example, when attempting to propagate light generated by a semiconductor laser as a light source through an optical fiber, reflected light may occur due to dispersion of light within the optical fiber, local non-uniformity of refractive index, presence of connections, etc. It may propagate in the opposite direction along the optical path and be coupled back into the light source semiconductor laser. In such a state, the oscillation of the semiconductor laser becomes unstable and the noise of the generated light increases, which is undesirable. Therefore, in such a case, it is effective to use an optical isolator to suppress the reflected light.

第1図は従来の光アイソレータの構成例を示したもので
ある。同図においてa点から入射した光はレンズ1で平
行光線に変換されて偏光子P1に入射する。偏光子P1
は入射光から一定方向の偏波光例えば垂直偏波光だけを
選択的に通過させる。偏光子PIの出射光はY I G
 (YlLOl、 Fetusを主成分とする酸化物単
結晶)等の単結晶により構成されるファラディ回転素子
3に入射し、偏波方向が45゛回転した出射光を生じる
0通常は、“ファラディ回転素子PRは図のように円筒
形磁石3の中央に置かれ、光路とほぼ平行方向に磁化さ
れている。ファラディ回転素子PRの出射光は検光子P
2に入射するが、検光子P2の偏波方向は垂直方向から
45°傾いている。このため、ファラディ回転素子PR
から入射した光は、検光子P2をそのまま通過して出射
し、レンズ2を経てb点に収束された出力を生じる。従
って、例えばb点に光ファイバーの端部を置けば、a点
すら入射した光を光ファイバーに結合させることができ
る。
FIG. 1 shows an example of the configuration of a conventional optical isolator. In the figure, light incident from point a is converted into parallel light by lens 1, and then enters polarizer P1. Polarizer P1
selectively passes only polarized light in a certain direction, such as vertically polarized light, from the incident light. The light emitted from the polarizer PI is Y I G
(YlLOl, an oxide single crystal whose main component is Fetus), etc., enters the Faraday rotator element 3, which produces an output light whose polarization direction is rotated by 45 degrees. As shown in the figure, PR is placed at the center of the cylindrical magnet 3 and is magnetized in a direction almost parallel to the optical path.The emitted light from the Faraday rotary element PR is sent to the analyzer P.
However, the polarization direction of the analyzer P2 is inclined by 45 degrees from the vertical direction. For this reason, the Faraday rotating element PR
The incident light passes through the analyzer P2 and exits, passes through the lens 2, and produces an output converged at point b. Therefore, for example, by placing the end of the optical fiber at point b, it is possible to couple the light incident even at point a to the optical fiber.

一方、前述のように光ファイバー等において発生した反
射光はb点からレンズ2を経て偏光子P2(前回は検光
子として作用)に入射し、偏光子P2の偏光方向に一致
した成分光は偏光子P2を通過してファラディ回転素子
3に入射する。ファラディ回転素子PRは、周知のよう
に光の入射方向とファラディ回転素子材料の磁化方向と
の関係により偏光面の回転方向が変わる。この場合の配
置の座標系では入射光の場合と同方向に45゛回転する
ので、(ファラディ回転素子PRの出射光の偏波方向は
検光子Pi(前回は偏光子として作用)の可伝搬方向に
対して垂直になる。このため、ファラディ回転素子PR
からの入射光は検光子Piにおいて阻止されaの側に伝
搬されない、従って、a点に置かれた半導体レーザーに
結合する逆進入光は阻止され、半導体レーザーにおける
S/Nの劣化が防止される。
On the other hand, as mentioned above, the reflected light generated in the optical fiber, etc. enters the polarizer P2 (acted as an analyzer in the previous example) from point b through the lens 2, and the component light that matches the polarization direction of the polarizer P2 passes through the lens 2. The light passes through P2 and enters the Faraday rotary element 3. As is well known, in the Faraday rotation element PR, the direction of rotation of the plane of polarization changes depending on the relationship between the incident direction of light and the magnetization direction of the Faraday rotation element material. In this case, the coordinate system of the arrangement is rotated by 45 degrees in the same direction as the incident light, so (the polarization direction of the output light of the Faraday rotator PR is the propagation direction of the analyzer Pi (which acted as a polarizer last time). Therefore, the Faraday rotating element PR
The incident light from is blocked by the analyzer Pi and does not propagate to the side of a. Therefore, the reversely incident light that couples to the semiconductor laser placed at point a is blocked, and S/N deterioration in the semiconductor laser is prevented. .

第1図に示された光アイソレータにおいて、偏子及び検
光子Pi、 P2には従来ローションプリズムやグラン
トムソンプリズムが使用されている。これらのプリズム
の消光比は約50dBが限度と言われている。また、フ
ァラデイ回転素子として用いられる前述のYIGやCB
 I C(GdzOs、Rig’s。
In the optical isolator shown in FIG. 1, a Rochon prism or a Glan-Thompson prism has conventionally been used for the polarizer and analyzers Pi and P2. It is said that the extinction ratio of these prisms is limited to approximately 50 dB. In addition, the above-mentioned YIG and CB used as Faraday rotation elements
I C (GdzOs, Rig's.

YtOi+PezQsを主成分とする酸化物単結晶)の
材料の消光比は約40dBと言われている。このような
部品をいくつか組み合わせて構成される光アイソレータ
の逆方向損失は各々の部品の効果が重畳し合い、それほ
ど高くできない、逆方向損失が約30dB以上というの
が一般的な単一光アイソレータの仕様である。
The extinction ratio of the material (oxide single crystal mainly composed of YtOi+PezQs) is said to be about 40 dB. The reverse loss of an optical isolator constructed by combining several such components cannot be increased very much because the effects of each component are superimposed on each other; a typical single optical isolator has a reverse loss of about 30 dB or more. The specifications are as follows.

さて、光通信は年々益々光密度、光速度になって行くに
ともない、コヒーレント光通信の研究が各所で盛んに行
われるようになった。この様なコヒーレント光通信には
光アイソレータの逆方向損失が30dBでは不十分であ
り、この倍の60dB以上が要求されると言われる。当
然、第1図の光アイソレータの一段だけの構成では不十
分であり、第2図のように従来の光アイソレータを2段
連結して用いることが考えられる。これにより、原理的
には60dB以上が実現できる。しかし、これをそのま
ま用いたのではレーザーダイオードa側と光ファイバー
への出射側すとの間隔が離れ過ぎて、両者の結合効率を
著しく低下させることになる。
Now, as the optical density and speed of optical communication increases year by year, research on coherent optical communication has become active in various places. It is said that a reverse loss of 30 dB of an optical isolator is not sufficient for such coherent optical communication, and that a reverse loss of 60 dB or more is required. Naturally, the configuration of only one stage of optical isolators as shown in FIG. 1 is insufficient, and it is conceivable to connect two stages of conventional optical isolators as shown in FIG. 2. As a result, in principle, 60 dB or more can be achieved. However, if this is used as is, the distance between the laser diode a side and the output side to the optical fiber will be too large, and the coupling efficiency between the two will be significantly reduced.

これを避けるために、二つのアイソレータ即ち、二つの
永久磁石3a、3bを近付けると、対向する磁極面の磁
力性が引き合い、肝心のファラデイ回転素子PR−1,
PR−2に掛かる磁界が弱くなる。接近のさせ方によっ
てはPR−1,PR−2が不飽和状態になり、それぞれ
が光アイソレータとしての単独の性能を維持できなくな
る恐れがある。
In order to avoid this, when the two isolators, that is, the two permanent magnets 3a and 3b are brought close together, the magnetic forces of the opposing magnetic pole surfaces attract each other, and the important Faraday rotary element PR-1,
The magnetic field applied to PR-2 becomes weaker. Depending on how they are approached, PR-1 and PR-2 may become unsaturated and each may be unable to maintain its individual performance as an optical isolator.

また、入射側と出射側の偏波面が90度回転してしまい
、レーザーダイオードaとファイバーbの各々の光学系
の偏波方向を直交させる配置の必要が生ずる。
Furthermore, the polarization planes on the incident side and the output side are rotated by 90 degrees, and it becomes necessary to arrange the polarization directions of the optical systems of the laser diode a and the fiber b to be perpendicular to each other.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来の多段光アイソレータは、寸法が大きく
かつ偏波面が90度回転するという不都合を有していた
0本発明の目的は、これらの問題点を解決するための小
型高性能の多段光アイソレータを提供することである。
As described above, conventional multi-stage optical isolators have the disadvantages of large dimensions and 90 degree rotation of the plane of polarization. The purpose is to provide an isolator.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明の多段光アイソレータは、ファラディ回転
素子がN個、かつこれらのそれぞれを内包する円筒型磁
石がN個、かつ偏光子、検光子として作用するN+1個
のビームスプリッタ−の間に前記ファラディ回転子が交
互に配されてなる多段光アイソレータにおいて、前記N
個の磁石は軸方向に磁化されており、かつ隣接する磁石
の極性は同極同志が互いに向かい合うように配されてい
ることを特徴としている。
That is, the multi-stage optical isolator of the present invention includes N Faraday rotary elements, N cylindrical magnets containing each of these elements, and N+1 beam splitters that act as polarizers and analyzers. In a multi-stage optical isolator in which Faraday rotators are arranged alternately, the N
Each magnet is magnetized in the axial direction, and adjacent magnets are characterized in that the polarities of adjacent magnets are arranged so that the same polarity faces each other.

〔作 用〕[For production]

本発明の光アイソレータの構造を用いれば、偏波面の回
転しない小型の高性能多段光アイソレータを実現できる
By using the optical isolator structure of the present invention, it is possible to realize a compact, high-performance multi-stage optical isolator that does not rotate the plane of polarization.

〔実施例〕〔Example〕

第3図は本発明の2段光アイソレータの一実施例の構成
を示したものである。即ち、厚みLの円筒形磁石3a、
3b’ は互いに磁化方向が逆であり、距離Xだけ離れ
てS極同志が向かい合うようになっている。また、偏光
子、検光子として作用するビーム・スプリッターPI、
 P2. P3°は図のように配置される。入射及び出
射側のPI、 P3’ は同じ方向即ち0°方向を向い
ている。二つのファラディ回転素子PR−1,PR−2
″に挟まれた検光子P2は45°の方向を向いている。
FIG. 3 shows the configuration of an embodiment of the two-stage optical isolator of the present invention. That is, a cylindrical magnet 3a with a thickness L,
3b' have opposite magnetization directions, and are separated by a distance X so that their south poles face each other. Also, the beam splitter PI, which acts as a polarizer and analyzer,
P2. P3° is arranged as shown. The input and output side PIs, P3', face the same direction, that is, the 0° direction. Two Faraday rotating elements PR-1, PR-2
The analyzer P2 sandwiched between `` is facing in the direction of 45°.

このような構成にすると、a点より入射した光はファラ
ディ回転素子PR−1を通過することにより偏波面が4
5゛回転し、約45°傾いた検光子P2を通過して第2
のファラディ回転素子FR−2°に入る。ここで、PR
−2”が逆方向に磁化されているため通過する光の偏波
面は逆の方向に45゛回転する。即ち、光の偏波面はa
点より入射した最初の光の偏波の方向に戻り、はぼ0°
方向に配置された検光子P3°を通過する。
With this configuration, the light incident from point a passes through the Faraday rotation element PR-1, and the plane of polarization changes to 4.
The second
into the Faraday rotating element FR-2°. Here, PR
-2" is magnetized in the opposite direction, the polarization plane of the light passing through it is rotated 45 degrees in the opposite direction. That is, the polarization plane of the light is a
It returns to the direction of the polarization of the first light incident from the point, and is approximately 0°
It passes through an analyzer P3° arranged in the direction.

この方向が光アイソレータの順方向である0本発明の実
施例では、光が順方向を通過する際、偏波面を変えるこ
となく、極めて低い挿入損失で通過させることができる
。このことは従来のように光アイソレータの存在を考慮
した45°もしくは90゜の偏波面の傾いた光学系を予
め設計する必要がなく極めて好都合である。また、S極
同志を接近させたことにより、1段の光アイソレータの
場合よりファラディ回転素子に印加される磁界は強くな
るという効果もある。
In the embodiment of the present invention in which this direction is the forward direction of the optical isolator, when light passes in the forward direction, it can be passed with extremely low insertion loss without changing the plane of polarization. This is extremely convenient since it is not necessary to design in advance an optical system with a polarization plane inclined at 45° or 90° in consideration of the presence of an optical isolator, as in the conventional case. Furthermore, by bringing the south poles closer to each other, there is an effect that the magnetic field applied to the Faraday rotary element becomes stronger than in the case of a single-stage optical isolator.

一方、b点から入射した光はPR−2’により逆方向に
45゛させられ、検光子P2の通過方向とは直交する。
On the other hand, the light incident from point b is turned 45 degrees in the opposite direction by PR-2', and is orthogonal to the direction of passage of analyzer P2.

ここで先ず30dBの逆方向損失が確保される。次に検
光子P2を漏れた光は順方向に45゜回転させられ、検
光子P1とは直交し、更に30dB減衰する。合計60
dBの減衰量が得られることになる。このように逆方向
損失の加算のされ方は従来技術の場合となんら変化はな
い。
First, a reverse loss of 30 dB is ensured here. Next, the light leaking from analyzer P2 is rotated 45 degrees in the forward direction, perpendicular to analyzer P1, and further attenuated by 30 dB. Total 60
This results in an attenuation of dB. In this way, there is no change in the way the backward loss is added compared to the prior art.

第4図は、磁界が強化される効果を利用した本発明のも
う一つの実施例を示したものである。即ち、二つの磁石
の距離XはOであり、密着している。但し、この構成を
可能にするためには、中央の検光子P2はできるだけ薄
いもの例えば膜状の物である必要がある。勿論、従来構
造のような場合も密着させることは可能であるが、密着
部分の磁荷が相殺しあい見掛は上は消えてなくなる。こ
のため、単に長い磁石を用いたことと等価になり、ファ
ラディ回転素子PR−1,PR−2に印加される磁界は
極めて弱くなる。
FIG. 4 shows another embodiment of the present invention that utilizes the effect of strengthening the magnetic field. That is, the distance X between the two magnets is O, and they are in close contact. However, in order to make this configuration possible, the central analyzer P2 needs to be as thin as possible, for example, in the form of a film. Of course, it is possible to make them come into close contact with each other in the case of the conventional structure, but the magnetic charges in the close contact portion cancel each other out and the appearance disappears. Therefore, this is equivalent to simply using long magnets, and the magnetic field applied to the Faraday rotation elements PR-1 and PR-2 becomes extremely weak.

第5図が、このような関係を明らかにするために数値計
算した結果である。グラフの縦軸は二つの磁石の中央の
点0.0°の磁界強度を、横軸は二つの磁石の距離を磁
石の内径で正規化してx/Diで示す、0及びO゛点の
磁界強度は磁石の配置が対称であるので同じである。従
来技術のようにS極とN極が対向する場合には両者の方
向は同じであ葛が、本発明のように同極同志が対向する
場合には方向が反対となる。計算の条件としては、Do
 /Di=2.L/Di=1とした。直線ハは二つの磁
石の距離が十分離れたときの中心の磁界強度、即ち単一
磁石の場合の磁界限度である。曲線イは従来技術の場合
であり、二つの磁石が近付くにつれて次第に磁界強度が
弱(なることが分かる。これに対して、本発明に実施例
の場合には曲線口のように二つの磁石が近付くにつれて
次第に磁界強度は強くなる。特に効果が顕著に現れるX
=0のところで比較すると、イと口では約2倍近く磁界
強度に差が現れる。従って、もし単一磁石のハの磁界強
度を飽和磁界のぎりぎりに設計している場合には、従来
技術の2段光アイソレータは結果としてその性能を維持
できなくなることは明白である0本発明の場合には逆に
磁界強度が強くなるので、この点では更に限界設計に挑
めることになる。
Figure 5 shows the results of numerical calculations to clarify this relationship. The vertical axis of the graph is the magnetic field strength at the center point of the two magnets at 0.0°, and the horizontal axis is the magnetic field at the 0 and O゛ points, where the distance between the two magnets is normalized by the magnet's inner diameter and is expressed as x/Di. The strength is the same because the magnet arrangement is symmetrical. When the S and N poles face each other as in the prior art, the directions are the same, but when the same poles face each other as in the present invention, the directions are opposite. The calculation conditions are: Do
/Di=2. L/Di=1. The straight line C is the magnetic field strength at the center when two magnets are sufficiently far apart, that is, the magnetic field limit in the case of a single magnet. Curve A is the case of the prior art, and it can be seen that the magnetic field strength gradually becomes weaker as the two magnets approach.On the other hand, in the case of the embodiment of the present invention, the two magnets are The magnetic field strength gradually becomes stronger as you get closer.The effect is particularly noticeable at X
When compared at =0, there appears to be a difference in magnetic field strength of approximately twice that between the a and the mouth. Therefore, if the magnetic field strength of a single magnet is designed to be on the edge of the saturation magnetic field, it is clear that the two-stage optical isolator of the prior art will not be able to maintain its performance as a result. On the other hand, the magnetic field strength will become stronger in this case, so we will be able to push the limits of design further in this respect.

第6図は、前述の効果を更に分かりやすくするために、
x/Di=0.0.4.Doの場合に付いて中心軸上の
磁界分布を計算した結果を示す。図は左側の磁石の中心
近傍の結果のみを示す、計算の条件は第5図と同じであ
る。磁界強度がマイナスということは方向が反対方向で
あることを意味する。(a)は従来技術を、(b)は本
発明の場合を示す。
Figure 6 shows the above effect in order to make it easier to understand.
x/Di=0.0.4. The results of calculating the magnetic field distribution on the central axis in the case of Do are shown. The figure shows only the results near the center of the left magnet, and the calculation conditions are the same as in Figure 5. Negative magnetic field strength means opposite directions. (a) shows the conventional technique, and (b) shows the case of the present invention.

従来技術の場合には、全体として磁界強度が低下して行
くが、密着した場合の密着部分の磁界は逆に強くなる部
分も僅かではあるが存在する。また本発明の場合にも、
密着させた場合の密着部分では逆に磁界強度が逆に弱く
なる部分が僅かではあるが存在する。しかし、この部分
は全体からみると僅かであり、本来フプラディ回転素子
をこの部分まで伸ばして使うことはないのでこの部分の
効果は本発明の効果を論する場合問題ではない。どちら
かというと、本発明の場合、完全に密着させるよりは、
x/Di=0.4程度少し離して使用した方がこの部分
を避けることがきると言える。
In the case of the prior art, the magnetic field strength decreases as a whole, but when the two come in close contact, the magnetic field of the closely-contacted portion becomes stronger, albeit in a small portion. Also in the case of the present invention,
On the other hand, when they are brought into close contact, there is a small portion where the magnetic field strength becomes weaker. However, this portion is small when viewed from the whole, and since the FPLAD rotation element is not originally used by extending it to this portion, the effect of this portion is not a problem when discussing the effects of the present invention. Rather, in the case of the present invention, rather than completely adhering,
It can be said that this problem can be avoided by using a distance of about x/Di=0.4.

第7図は本発明の他の多段光アイソレータの実施例を示
す図である。この場合は3段の光アイソレータの場合で
ある。この図から分かるように、円筒形の磁石が3個並
べられており、隣接する二つに磁石同志は、S極同志、
N極同志と同極が向かい合っている。この配置では3つ
のファラディ回転素子のうちPR−2’を除< FR−
1,PR−3は同じ方向に磁化されている。検光子P4
はP2と同じく45゜傾いている。この場合は本発明の
一つ効果である偏波面の保存の効果は実現できないが、
中心部分の磁界強度の強調効果は確保できる。また、3
段にすることにより、逆方向損失も90dB以上は確保
できる。本発明の隣接磁石同志の磁極を同極にするやり
方では、4段光アイソレータにすれば再び偏波面保存の
効果を確保できることはこれまでの説明の延長で明らか
であろう。
FIG. 7 is a diagram showing another embodiment of a multi-stage optical isolator of the present invention. This case is a case of a three-stage optical isolator. As you can see from this figure, three cylindrical magnets are lined up, and the two adjacent magnets have S poles,
North-polar comrades and same-polar comrades are facing each other. In this arrangement, of the three Faraday rotary elements, excluding PR-2'< FR-
1, PR-3 are magnetized in the same direction. Analyzer P4
is tilted at 45 degrees like P2. In this case, the effect of preserving the plane of polarization, which is one of the effects of the present invention, cannot be achieved, but
The effect of emphasizing the magnetic field strength at the center can be ensured. Also, 3
By layering, a reverse loss of 90 dB or more can be ensured. It will be clear from the above explanation that in the method of making the magnetic poles of adjacent magnets the same according to the present invention, if a four-stage optical isolator is used, the effect of preserving the polarization plane can be ensured again.

また、本発明の実施例では偏光子、検光子としてそれぞ
れ一つで代表させたが、消光比を改善するためにこれら
を複数用いても本発明の効果は同じであることは本技術
に関する専門家にとっては明らかなことである。
In addition, in the embodiments of the present invention, one polarizer and one analyzer are used as a representative example, but experts in this technology know that the effect of the present invention is the same even if a plurality of these are used to improve the extinction ratio. It's obvious for the house.

更に、本発明の実施例を拡張すれば、任意の数のN段の
光アイソレータを実現できることは明白であろう。これ
に用いられる偏光子及び検光子の回転角も、光の入射方
向からみて1番目のものを0°とすれば、偶数番目は4
5°及び奇数番目は0°になる。この設定角度の精度は
多段式の場合それほど厳密ではなく、それぞれ±5°の
範囲に入っていれば充分に実用可能である。
Furthermore, it will be apparent that embodiments of the present invention may be extended to realize any number of N stages of optical isolators. Regarding the rotation angle of the polarizer and analyzer used for this, if the first one is 0° when viewed from the direction of light incidence, the even numbered one is 4 degrees.
5° and odd numbers become 0°. The accuracy of this setting angle is not so strict in the case of a multi-stage type, and it is sufficiently practical if it falls within the range of ±5° for each stage.

〔発明の効果〕〔Effect of the invention〕

本発明の構造を用いれば、光アイソレータの性能を損な
うことなく複数の磁石を狭い空間に集めることができ、
コヒーレント光通信に不可欠な小型で高逆方向損失を有
する多段光アイソレータを実現できる。
By using the structure of the present invention, multiple magnets can be gathered in a narrow space without impairing the performance of the optical isolator.
A compact multi-stage optical isolator with high reverse loss, which is essential for coherent optical communications, can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来技術を説明する光アイソレータの
断面図、第3図、第4図、第7図は本発明の実施例の光
アイソレータの断面図、第5図、第61!lは本発明の
磁界強度の強化効果を説明するスプリッター(偏光子、
検光子) 、PR,PR−1゜PR’42. PR−2
°、 PR−3;ファラディ回転素子、3゜3a、3b
、3b’+  3c;円筒形磁石。 第1rl!J 第2図 第3図 第4図 第5図 第7図 第6 <a>
1 and 2 are cross-sectional views of optical isolators explaining the prior art, and FIGS. 3, 4, and 7 are cross-sectional views of optical isolators according to embodiments of the present invention, and FIGS. 5 and 61! l is a splitter (polarizer,
Analyzer), PR, PR-1゜PR'42. PR-2
°, PR-3; Faraday rotating element, 3° 3a, 3b
, 3b'+3c; cylindrical magnet. 1st rl! J Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 6 <a>

Claims (5)

【特許請求の範囲】[Claims] (1)ファラディ回転素子がN個、かつこれらのそれぞ
れを内包する円筒型磁石がN個、かつ偏光子、検光子と
して作用するN+1個のビームスプリッターの間に前記
ファラディ回転素子が交互に配されてなる多段光アイソ
レータにおいて、前記N個の磁石は軸方向に磁化されて
おり、かつ隣接する磁石は、その極性の同極同志が互い
に向かい合うように配されていることを特徴とする多段
光アイソレータ。
(1) The Faraday rotation elements are arranged alternately between N Faraday rotation elements, N cylindrical magnets containing each of these elements, and N+1 beam splitters that act as polarizers and analyzers. The N magnets are magnetized in the axial direction, and adjacent magnets are arranged so that the same polarity faces each other. .
(2)特許請求の範囲の第1項の光アイソレータにおい
て、前記N+1個のビームスプリッターのうち光の入射
方向から数えて1番目のビームスプリッターの偏向方向
の角度が約0度とすると、偶数番目のビームスプリッタ
ーの偏向方向の角度は45±5度、1番目を含む奇数番
目の角度は0±5度の範囲内にそれぞれある多段光アイ
ソレータ。
(2) In the optical isolator according to claim 1, if the angle of the deflection direction of the first beam splitter counting from the light incident direction among the N+1 beam splitters is approximately 0 degrees, then the even-numbered beam splitter The angle of the deflection direction of the beam splitter is 45 ± 5 degrees, and the odd angles including the first are within the range of 0 ± 5 degrees.
(3)前記N+1個の偏光子及び検光子がそれぞれ複数
の偏光子、検光子からなることを特徴とする特許請求の
範囲の第1項の多段光アイソレータ。
(3) The multi-stage optical isolator according to claim 1, wherein the N+1 polarizers and analyzers each include a plurality of polarizers and analyzers.
(4)前記ファラディ回転素子が、Y_2O_3、Fe
_2O_3を主成分とする酸化物単結晶からなることを
特徴とする特許請求の範囲の第1項の多段光アイソレー
タ。
(4) The Faraday rotation element is Y_2O_3, Fe
The multi-stage optical isolator according to claim 1, characterized in that it is made of an oxide single crystal whose main component is _2O_3.
(5)前記ファラディ回転素子が、Gd_2O_3、B
i_2O_3、Y_2O_3、Fe_2O_3を主成分
とする酸化物単結晶からなることを特徴とする特許請求
の範囲の第1項の多段光アイソレータ。
(5) The Faraday rotation element is Gd_2O_3, B
The multi-stage optical isolator according to claim 1, characterized in that it is made of an oxide single crystal whose main components are i_2O_3, Y_2O_3, and Fe_2O_3.
JP3416587A 1987-02-17 1987-02-17 Multistage optical isolator Pending JPS63200117A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3416587A JPS63200117A (en) 1987-02-17 1987-02-17 Multistage optical isolator
EP88102242A EP0279412B1 (en) 1987-02-17 1988-02-16 Optical isolator
DE88102242T DE3884421T2 (en) 1987-02-17 1988-02-16 Optical isolator.
US07/156,845 US4865429A (en) 1987-02-17 1988-02-17 Apparatus for suppressing backward propagation along an optical path, comprising magnetic configurations that improve the Faraday effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3416587A JPS63200117A (en) 1987-02-17 1987-02-17 Multistage optical isolator

Publications (1)

Publication Number Publication Date
JPS63200117A true JPS63200117A (en) 1988-08-18

Family

ID=12406597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3416587A Pending JPS63200117A (en) 1987-02-17 1987-02-17 Multistage optical isolator

Country Status (1)

Country Link
JP (1) JPS63200117A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364968A2 (en) * 1988-10-18 1990-04-25 Hitachi Metals, Ltd. Optical isolator
JPH02257041A (en) * 1989-03-30 1990-10-17 Yokogawa Electric Corp Device for measuring light reflectance
JPH02272419A (en) * 1989-04-13 1990-11-07 Hitachi Metals Ltd Small-sized two-stage optical isolator
JP2004361757A (en) * 2003-06-06 2004-12-24 Nec Tokin Corp Optical isolator
JP2007248779A (en) * 2006-03-15 2007-09-27 Murata Mfg Co Ltd Optical isolator
JP2012068598A (en) * 2010-09-27 2012-04-05 Fdk Corp Faraday rotator and optical isolator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364968A2 (en) * 1988-10-18 1990-04-25 Hitachi Metals, Ltd. Optical isolator
EP0364968A3 (en) * 1988-10-18 1990-10-31 Hitachi Metals, Ltd. Optical isolator
JPH02257041A (en) * 1989-03-30 1990-10-17 Yokogawa Electric Corp Device for measuring light reflectance
JPH02272419A (en) * 1989-04-13 1990-11-07 Hitachi Metals Ltd Small-sized two-stage optical isolator
JP2004361757A (en) * 2003-06-06 2004-12-24 Nec Tokin Corp Optical isolator
JP2007248779A (en) * 2006-03-15 2007-09-27 Murata Mfg Co Ltd Optical isolator
JP2012068598A (en) * 2010-09-27 2012-04-05 Fdk Corp Faraday rotator and optical isolator

Similar Documents

Publication Publication Date Title
US5689593A (en) Compact fiberoptic circulator with low polarization mode dispersion
US5682446A (en) Polarization mode dispersion-free circulator
US4991938A (en) Quasi-achromatic optical isolators and circulators using prisms with total internal fresnel reflection
US5602673A (en) Optical isolator without polarization mode dispersion
US6002512A (en) Optical circulator using latchable garnet
US4865429A (en) Apparatus for suppressing backward propagation along an optical path, comprising magnetic configurations that improve the Faraday effect
JPS63200117A (en) Multistage optical isolator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JPS5828561B2 (en) optical isolator
JPH07191280A (en) Optical isolator
EP0653661A1 (en) Optical isolator with reduced polarization mode dispersion
JPH0244310A (en) Optical isolator
US6091866A (en) Optical isolator
US20060077546A1 (en) Polarized wave coupling optical isolator
JP2516463B2 (en) Polarization-independent optical isolator
CN212933176U (en) Optical isolator
US6288826B1 (en) Multi-stage optical isolator
GB2143337A (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JP2004139030A (en) Optical apparatus including faraday rotator
EP0653660A1 (en) Optical isolator with reduced walk-off
JP3716981B2 (en) Optical isolator
JPS58176616A (en) Fiber type isolator
JP2553358B2 (en) Optical isolator
JP3694812B2 (en) Optical circulator