JPS58176508A - Method and device for calibrating meter in optical thickness gage - Google Patents

Method and device for calibrating meter in optical thickness gage

Info

Publication number
JPS58176508A
JPS58176508A JP5896982A JP5896982A JPS58176508A JP S58176508 A JPS58176508 A JP S58176508A JP 5896982 A JP5896982 A JP 5896982A JP 5896982 A JP5896982 A JP 5896982A JP S58176508 A JPS58176508 A JP S58176508A
Authority
JP
Japan
Prior art keywords
amplifier
converter
optical thickness
measured
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5896982A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iguchi
勝啓 井口
Takayoshi Sano
孝義 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP5896982A priority Critical patent/JPS58176508A/en
Publication of JPS58176508A publication Critical patent/JPS58176508A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a measurement output signal with high accuracy, by converting the detection signal of the light transmitted through a sample logarithmically and calculating the calibration conditions of a DC amplifier for said output from the coefft. of absorption and reflectivity. CONSTITUTION:The light from a light source 10 transmits through an object 14 to be measured and is made incident to a photodetector 12. The detection signal thereof is inputted through a primary DC amplifier 16, a logarithmic converter 18 and a DC amplifier 20 to an AD converter 22 and the thickness of the sample is displayed on a display 26. On the other hand, the coefft. of absorption, reflectivity and the average value and deviation rate of the measured value are calculated by a CPU26 from the output signal from the converter 22. The calibration conditions of the DC amplifier 20 are calculated from the measured values of the coefft. of absorption and reflectivity of plural samples and a correction is applied to the amplifier 20, whereby the measurement output of high accuracy is obtained.

Description

【発明の詳細な説明】 この発明は、赤外線、紫外線オたはレーザ等を応用する
光学式厚み針の計器校正方法および装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for calibrating an optical thickness needle using infrared rays, ultraviolet rays, lasers, or the like.

一般に1光学式厚み針は、光源と光検出器との関に被測
定物を配置し、光源よりの光が被測定物f透過するとき
に、吸収・散乱によって滅良し、その減衰量が被測定物
の厚さの関数であることを利用して、被測定物の厚さt
−測定するものである。
In general, an optical thickness needle is constructed by placing an object to be measured between a light source and a photodetector, and when the light from the light source passes through the object to be measured, it is damaged by absorption and scattering, and the amount of attenuation is affected. Using the fact that it is a function of the thickness of the object to be measured, the thickness t of the object to be measured is
-It is something to be measured.

しかしながら、被測定物が光を反射する場合には測定誤
差が生じる欠点があった。
However, there is a drawback that measurement errors occur when the object to be measured reflects light.

従来より、この植の光学式厚み計においては、撞々のi
t器校正手段が提案され実施されており、典型的には次
のような方法が知られている。
Traditionally, this type of optical thickness gauge has been
T-meter calibration means have been proposed and implemented, and the following methods are typically known.

(1)光検出器による検出信号を線形化処理しない校正
方法 β4i!を使用した厚み計において利用されている校正
技術で、光検出器により検出信号管線形化しないで指数
曲線の2点間t−直線で近似して校正するようにしたも
のである。この場合、設定点を外れるに従って、大きな
誤差が生じる難点がある。
(1) Calibration method β4i that does not linearize the detection signal from the photodetector! This is a calibration technique used in thickness gauges using a photodetector, and the detection signal tube is not linearized by a photodetector, but is calibrated by approximating a t-line between two points on an exponential curve. In this case, there is a problem in that as the setting point is deviated from, a large error occurs.

(2)光検出器による検出伊号【対数増幅器で線形化処
理する校正方法 回路途中に対数増幅器¥を接続配置することKより、検
出信号を厚さに対し一応線形化が可能であゐが、反射率
の処理ができないため大きな校正誤差が生じる難点があ
る。なお、厚さが既知の2枚のサンプルを使用し、校正
用直流増幅器の零調整およびスパン調整を試行錯誤的に
何回も繰返し調整すbことにより1反射率の処理はoJ
能であるが、理論的および経験的判断が必要のため、一
般に適切な校正は困難であり、tた、校正を行うとして
も、相当の時間を要するばかりでなく、多数のサンプル
の平均値を使用できないために校正精fを向上できない
一点がある。
(2) Detection using a photodetector [Calibration method using linearization processing using a logarithmic amplifier By connecting and arranging a logarithmic amplifier in the middle of the circuit, it is possible to linearize the detection signal with respect to the thickness. , there is a drawback that large calibration errors occur because reflectance cannot be processed. In addition, by using two samples of known thickness and repeatedly adjusting the zero adjustment and span adjustment of the calibration DC amplifier many times by trial and error, the processing of 1 reflectance was
However, proper calibration is generally difficult because it requires theoretical and empirical judgment, and even if calibration is performed, it not only takes a considerable amount of time but also requires calculating the average value of a large number of samples. There is one point in which the calibration precision f cannot be improved because it cannot be used.

一般K、光学式厚み計の測定原理は、ベヤ−の法則によ
り1次式で示される。
Generally, the measurement principle of an optical thickness meter is expressed by a linear equation based on Beer's law.

Vl : Vlo el−μt     ・・・・・(
1)但し、■1:検出信号 vlo:光路がオープンの時の測定電圧μ :被測)・
定物の吸光係数 t :被測定物の厚さ 前記式(1)においては、従来の放射線式厚み計と同一
であり、前述した従来の校正方法(2)による校正も口
■能である。しかしながら、光学式厚み針によれば、明
らかに反射の影響があり、大きな測定−差を生じbこと
が確認された。そこで、反射率′Irrとして、前記式
(1)t−修正すれば次式が成立する。
Vl: Vloel-μt...(
1) However, ■1: Detection signal vlo: Measured voltage when the optical path is open μ: Measured)・
Extinction coefficient t of constant: Thickness of the object to be measured In the above equation (1), it is the same as that of the conventional radiation type thickness meter, and the calibration using the above-mentioned conventional calibration method (2) is also straightforward. However, it was confirmed that the optical thickness needle was clearly affected by reflection, resulting in a large measurement difference. Therefore, by modifying the above equation (1) by t, the following equation holds true as the reflectance 'Irr.

V1= Vlo (1−r)e−μ’   −−−−(
2)前記式(2)の適用によって、高精度の測定が可能
となることr確認できたが1校正条件の把償が難しくな
った。
V1= Vlo (1-r)e-μ' -----(
2) Although it was confirmed that high-accuracy measurement was possible by applying the above formula (2), it became difficult to determine one calibration condition.

そこで、本発明者等は、前述した従来の光学式厚み計の
計器校正手段の問題点を全て克服すべく種々検討を重ね
た結果、光検、出器による検出信号を1次直流増m器で
増幅し、次いで対数変換器および直流増幅6vi−介し
て線形化並びに校正を行い、その後A/D変換器を介し
て表示8jVこ表示するかもしくJdCPUKより演算
処理を行うよう構成した光学式厚み針による計測システ
ムにおいて、校正に際し1次直流増幅器出力もしくは対
数変換器出力を切換スイッチにより直接A/D変侠器を
介してCPUK送信すbことにより被測定物の吸光係数
と反射率とを算出すれば、直流増幅器の校正条件を精度
よく算定し、高aFtの測定出力信号を得すことができ
Therefore, the inventors of the present invention have conducted various studies to overcome all the problems of the conventional optical thickness gauge calibration method described above, and have determined that the detection signal from the optical detector and output device can be converted into a primary DC intensifier. The optical thickness is amplified by a logarithmic converter and a DC amplifier, and then linearized and calibrated via a logarithmic converter and a DC amplifier, and then displayed via an A/D converter and subjected to arithmetic processing by JdCPUK. In a measurement system using a needle, when calibrating, the extinction coefficient and reflectance of the object to be measured are calculated by transmitting the primary DC amplifier output or logarithmic converter output directly to the CPUK via the A/D converter using a changeover switch. By doing so, it is possible to accurately calculate the calibration conditions of the DC amplifier and obtain a high aFt measurement output signal.

前記問題点を解消し得ることを突き止めた。It has been found that the above problems can be solved.

従って1本発明の目的は、検出信号の線形化を対数変換
器で、行い、次いで直流増幅器によって校正条件を定め
て高fW度の厚み計測を行うよう構成した光学式厚み計
による計測システムにおいて、複数サンプルの実測信号
から直流増幅器の校正条件を直ちに演算し、高精度の手
動校正または自動校正を行うことができる光学式厚み針
における計器校正方法を提供するKある。
Therefore, one object of the present invention is to provide a measurement system using an optical thickness meter configured to linearize a detection signal using a logarithmic converter, then set calibration conditions using a DC amplifier, and perform high fW thickness measurement. An object of the present invention is to provide a method for calibrating an instrument in an optical thickness needle, which can immediately calculate calibration conditions for a DC amplifier from measured signals of a plurality of samples and perform highly accurate manual or automatic calibration.

前記の目的を達成する丸め1本発明においては、被測定
物に対し光源より透過された光量を検出し、得られた検
出信号を増幅し対数変換器を介して線形化処理を行った
後A/D変換して被測定物の厚さを計測する光学式厚み
針を応用した計測システムにおいて、検出信号管増幅し
または対数変換して得られた信号を直@A/D変換して
厚さ既知のサンプルによる吸光係数および反射率を算定
し、これらの算定値に基づいて対ei変換された出力信
号を直流増幅する場合の校正条件を手動または自動的に
設定することを特徴とす込。
Round 1 to achieve the above object In the present invention, the amount of light transmitted from the light source to the object to be measured is detected, the obtained detection signal is amplified and linearized through a logarithmic converter, and then A In a measurement system that uses an optical thickness needle that measures the thickness of a workpiece by A/D conversion, the signal obtained by amplifying the detection signal tube or logarithmically converting the signal is directly @A/D converted to measure the thickness. The present invention is characterized by calculating the extinction coefficient and reflectance of a known sample, and manually or automatically setting calibration conditions for DC amplification of an output signal converted to EI based on these calculated values.

StJ記の計器校正方法において、対数変換された出力
信号を直流増幅する場合の校正条件の設定は、対数変換
器の後段に接続した直流増幅器の零調整およびスパン1
IIIN金竹うようにすれば好適である。
In the instrument calibration method described in StJ, the calibration conditions are set when the logarithmically converted output signal is DC amplified.
It is preferable to use IIIN Kintake.

また、前記の校正方法を実施するに際しては、被測定物
に対し光源と光検出器とを対向配置し、光検出器の出力
ラインに1次直流増幅器、対数変換器、直流増幅器およ
びA/D変換器を介して表示器を接続してなる光学式厚
み針を応用した計測システムにおいて、直流増幅器とA
/l)変換器との間Vこ切換スイッチを接続し、1次直
流#1@器および対数変換器の出力ラインを直接に/D
変換器を介してCPUK*続するよう構成すれば好適で
あり。
In addition, when carrying out the above calibration method, a light source and a photodetector are arranged opposite to the object to be measured, and a primary DC amplifier, a logarithmic converter, a DC amplifier, and an A/D are connected to the output line of the photodetector. In a measurement system using an optical thickness needle connected to a display via a converter, a DC amplifier and an A
/l) Connect a V changeover switch between the converter and connect the output line of the primary DC #1 and logarithmic converter directly to /D.
It is preferable to configure it so that it is connected to CPUK* via a converter.

次に1本発明に係る光学式厚み計における計器校正方法
につき、仁の方法を実施する装置との関係において以下
詳細に説明する。
Next, a method for calibrating an optical thickness gauge according to the present invention will be described in detail below in relation to an apparatus that implements Jin's method.

縞1図は本発明方法を実施する装置のブロック回路図を
示す、すなわち、鮪1図において、参照符号10は光源
を示し、例えば赤外線ランプで構成する。この光源10
と対向して光検出器12t−設け、これら光源10と光
検出器12との間に被測定物14tl−配設する。そこ
で、前記光検出器12で検出された検出信号は、1次直
流増幅器16、対数変換器18シよび直流増幅520′
に介してA/l)変換器22に供給し。
Figure 1 shows a block circuit diagram of an apparatus for carrying out the method of the invention, ie in Figure 1 reference numeral 10 designates a light source, for example consisting of an infrared lamp. This light source 10
A photodetector 12t is provided opposite the light source 10 and the photodetector 12, and an object to be measured 14tl is provided between the light source 10 and the photodetector 12. Therefore, the detection signal detected by the photodetector 12 is transmitted to the primary DC amplifier 16, the logarithmic converter 18, and the DC amplifier 520'.
A/l) converter 22 via the A/l) converter 22.

被測定物14の厚さを計測し、適宜表示器24により計
測値を表示する。なお、A/D変換器22で侍られた信
号は、CPU26を使用して吸光係数μ、反射率rその
地金測定値の平均値および偏差率を演算し、計測システ
ムとしての機能の拡大を図っている。
The thickness of the object to be measured 14 is measured, and the measured value is displayed on the display 24 as appropriate. In addition, the signal received by the A/D converter 22 is used to calculate the average value and deviation rate of the extinction coefficient μ, reflectance r, and the measured values of the bare metal using the CPU 26, thereby expanding the function as a measurement system. I'm trying.

前述した計測システムは、従来の一般的な校正技術を採
用し得る赤外線厚み計を使用した計測システムと同一に
構成すみことができる。しかし、本発明においては、光
検出器12による検出信号から、誤差の発生要因となる
被測定物14の吸光係数および反射率の適正値を算出す
るため、tiに増幅器2(IA/D変換器22との聞y
c切換スイッチ28t−設け、対数変換器18の出力信
号または1次増幅器16の出力信号を直接A/D変換器
22へ供給するよう構成−する。
The measurement system described above can be constructed in the same manner as a measurement system using an infrared thickness gauge that can employ conventional general calibration techniques. However, in the present invention, in order to calculate appropriate values of the extinction coefficient and reflectance of the measured object 14, which may cause errors, from the detection signal from the photodetector 12, an amplifier 2 (IA/D converter) is used at ti. Interview with 22
A changeover switch 28t is provided and configured to directly supply the output signal of the logarithmic converter 18 or the output signal of the primary amplifier 16 to the A/D converter 22.

次に、^d配構成からなる計測システムにおける計器の
校正方法ンこつき、各構成t!素の出力特性曲線図を参
照しながら説明する。
Next, we will explain how to calibrate instruments in a measurement system consisting of ^d configurations, and how to calibrate each configuration. This will be explained with reference to an original output characteristic curve diagram.

M2図は、光検出器12の出力特性曲SV示す。この場
合に得らt′1.、L特性曲線は、前述したヘヤーの法
則rこ基づき、次式の関係が成立すす。
Diagram M2 shows the output characteristic curve SV of the photodetector 12. In this case, t′1. , L characteristic curve, the following relationship holds based on the above-mentioned Hair's law.

1=I(1−r)e−μ’    −−−−(31但し
、l :検出電戚 Io:光路がオーブンの時の検出電 流 r :被測定物の反射率 μ :被測定物の吸光係数 t :被測定物の厚さ 第3図は、1次直流増幅器16の出力特性曲線を示す、
この場合に得られゐ特性曲線は、前記式(3)I/C基
づいて次式の関係が成立すふ。この関係は、前記式c2
)と同一である。
1=I(1-r)e-μ' -----(31, however, l: Detection current Io: Detection current when the optical path is an oven r: Reflectance of the object to be measured μ: Absorption of the object to be measured Coefficient t: Thickness of the object to be measured FIG. 3 shows the output characteristic curve of the primary DC amplifier 16.
The characteristic curve obtained in this case has the following relationship based on the above equation (3) I/C. This relationship is expressed by the above formula c2
) is the same as

V1= Vlo (1−r)@−μt  −・・−(4
)第4図は、対数変換器18の出力特性曲線を示す、こ
の場合に得られる特性曲線は、前記式(4)全対数変換
し、次式の関係が成立する・V2 = A LoPVl
o + A top(1−r)−A(toPe)μt−
−−(5) 但し1人:変換器定数 そこで、本発明においては、厚さ既知のサンプルを被測
定物として使用し、切換スイッチ2日を切換操作して1
次直流増幅616または対数変換器18の出力信号を直
接A/D変換器22を介して信号変換を行い、CPU2
6により吸光係数μおよび反射率rを算定し、対数変換
器18の出力側に接続される直流増幅器20の零調整お
よびスパン調整を手動によりまたは自動的に行う。この
場合、厚ζ既知のサンプルを少なくと412種類用意す
れば、前述した校正作業により校正条件の設定は充分精
度の高い4のが優られる。
V1= Vlo (1-r) @-μt −・・−(4
) FIG. 4 shows the output characteristic curve of the logarithmic converter 18. The characteristic curve obtained in this case is fully logarithmically converted according to the above equation (4), and the following equation holds: V2 = A LoPVl
o + A top(1-r)-A(toPe)μt-
--(5) However, 1 person: Converter constant Therefore, in the present invention, a sample of known thickness is used as the object to be measured, and the changeover switch 2 is set to 1.
The output signal of the next DC amplifier 616 or the logarithmic converter 18 is directly converted into a signal via the A/D converter 22, and the CPU 2
6, the extinction coefficient μ and reflectance r are calculated, and the zero adjustment and span adjustment of the DC amplifier 20 connected to the output side of the logarithmic converter 18 are performed manually or automatically. In this case, if at least 412 types of samples with known thickness ζ are prepared, the calibration conditions can be set with sufficient accuracy through the above-mentioned calibration work.

すなわち、まず1次直流増幅器16の出力信号に基づく
校正条件の設定に際し、1次直流増幅器16の出力信号
は、前記式(4)で求められる。
That is, first, when setting the calibration conditions based on the output signal of the primary DC amplifier 16, the output signal of the primary DC amplifier 16 is determined by the above equation (4).

この場合の未知数けvIC1+r+J’  の3つであ
るが、Vlo(オープン時の電圧)は測定によって求め
られるため、吸光係数μと反射率r ti2枚以上の厚
さ既知のサンプルtPz用すれば容易に算定することが
できる。
In this case, there are three unknowns: vIC1+r+J', but since Vlo (voltage when open) can be found by measurement, it can be easily determined by using two or more samples tPz of known thickness, extinction coefficient μ, reflectance r, and It can be calculated.

また、対数変換器18の出力信号に基づく校正条件の設
定に際し、対数変換器18の出力信号は、前記式6)で
求められ石、仁の場合、厚さt以外は定数であるから、
v2と電の関係は1次式(直線)となる、捉って、この
場合[4゜前記と同様にして、吸光係数βと反射率rと
を算定することができふ。前記式6)を変形すれば次式
が得られ石。
In addition, when setting the calibration conditions based on the output signal of the logarithmic converter 18, the output signal of the logarithmic converter 18 is determined by the above formula 6).
The relationship between v2 and electric current is a linear equation (straight line). By transforming the above equation 6), the following equation can be obtained.

・・−〇−3) 前記式η)において A# 2.3026       °°°°°σ)−・φ・・
■ hすれば、(V2.t)の2組以上のデータより回帰直
Sを求め、得られたa、b  より吸光係数μおよび反
射率rを次式により求めることができる。
・・・-〇-3) In the above formula η), A# 2.3026 °°°°°σ)-・φ・・
(2) h, the regression line S is determined from two or more sets of data (V2.t), and the extinction coefficient μ and reflectance r can be determined from the obtained a and b using the following equations.

2.5026罎 μ=−−λ−・・・・・e9) ・・・Q・(10) 以上の演算結果に、基づいて、直流増幅器20の校正条
件を設定すれば、直流増幅器20の出力特性は、第5図
に示すようになり、次式の関係が成立する。
2.5026μ=−−λ−························································································ι The characteristics are as shown in FIG. 5, and the following relationship holds true.

Vao : l (AtopVto+B ) 十す、、
、、、(11) 従って、破測定物14[対する直流増幅器20の出力信
号をA/D変換器22を介して得られる出力特性は、第
6図に示すように、厚さtK比例したディジタル信号り
を表示器24に表示するこメができる。
Vao: l (AtopVto+B) 10s...
,,,(11) Therefore, as shown in FIG. The signal can be displayed on the display 24.

前述した実施例から明らかなように1本発明によれば、
厚さ既知のサンプルを少なくと42枚使用して光検出器
による検出信号t11次直流増または対数変換し、得ら
れた信号を直接A/DJ換して吸光係数μおよび反射率
rの算定を行うことにより、直流増幅による校正条件を
適正に設定することができる。
As is clear from the embodiments described above, according to the present invention,
Using at least 42 samples of known thickness, the detection signal from the photodetector is subjected to 11th DC multiplication or logarithmic conversion, and the obtained signal is directly A/DJ converted to calculate the extinction coefficient μ and reflectance r. By doing so, the calibration conditions using DC amplification can be appropriately set.

しかも、これらの校正条件の設定は、簡単な構成により
夾現することができると共に、手動または自動により確
実に達成することができす。
Furthermore, these calibration conditions can be set with a simple configuration and can be reliably achieved manually or automatically.

以上、本発明の好適な実施例について説明したが、本発
明の稽神會逸脱しない範d内において種々の設計変更を
なし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made within the scope d of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

縞1図は本発明に係る光学式厚み針における計器校正方
法の一実施例を示す計測システムのブロック回路図、諺
2図乃至第6図は第1図に示す回路の各構成要素の動作
特性を示す波形図である。
Figure 1 is a block circuit diagram of a measurement system showing an embodiment of the method for calibrating an optical thickness needle according to the present invention, and Figures 2 to 6 show the operating characteristics of each component of the circuit shown in Figure 1. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)被測定物に対し光源より透過された光量を検出し
、得られた検出信号を増幅し対数変換5ft介して線形
住処mt行った後A/D変換して被測定物の゛厚さt−
11′測する光学式厚み針を応用した計測システムにお
いて、検出信号を増幅しまえは対数変換して得られた信
号を直接A/D変換して厚さ既知のサンプルによる吸光
係数および反射率全算定し、これらの算定値に基づいて
対数変換された出力信号を直流増幅する場合の校正条件
を手動または自動的に設定することを特徴とする光学式
厚み計r(よる計器校正方法。 (21%許精求の範囲第1項記載の計器校正方法におい
て、対数変換された出力信号管直流増゛ 幅する場合の
校正条件の設定は、対数変換器の後段に接続した直流増
幅器の零調整シよびスパン調整を行うことからなる光学
式厚み計における計器校正方法。 ■ 被測定物に対し光源と光検出器とを対向配置し、光
検出器の出力ラインに1次直流増幅益、対数変換器、直
流増幅器シよびA/D変換器を介して表示器を接続して
なる光学式厚み針を応用した計−jシステムにおいて、
直流増幅器とA/D変換器との関に切換スイッチ全41
ML、1次直流増幅器および対数変換器の出力ラインを
直接A/Di換器管介してCPUK@続すbよう構成す
ゐことを特徴とすb光学式厚み計における計器校正装置
(1) Detect the amount of light transmitted from the light source to the object to be measured, amplify the obtained detection signal, perform linear conversion through 5ft logarithmic conversion, and then perform A/D conversion to determine the thickness of the object to be measured. t-
11' In a measurement system using an optical thickness needle, the detection signal is amplified and then logarithmically converted and the resulting signal is directly A/D converted to completely calculate the extinction coefficient and reflectance using a sample of known thickness. An instrument calibration method using an optical thickness gauge r (21% Scope of Permission Required In the instrument calibration method described in item 1, the calibration conditions when amplifying the logarithmically converted output signal tube DC are the zero adjustment and span adjustment of the DC amplifier connected after the logarithm converter. A method for calibrating an optical thickness gauge using an optical thickness gauge. ■ A light source and a photodetector are arranged opposite to the object to be measured, and a primary DC amplification gain, a logarithmic converter, and a DC amplifier are connected to the output line of the photodetector. In the gauge-j system that applies an optical thickness needle that is connected to a display via a dial and an A/D converter,
A total of 41 selector switches between the DC amplifier and A/D converter
An instrument calibration device for an optical thickness gauge, characterized in that the output lines of the ML, the primary DC amplifier, and the logarithmic converter are directly connected to the CPUK via an A/Di converter tube.
JP5896982A 1982-04-10 1982-04-10 Method and device for calibrating meter in optical thickness gage Pending JPS58176508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5896982A JPS58176508A (en) 1982-04-10 1982-04-10 Method and device for calibrating meter in optical thickness gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5896982A JPS58176508A (en) 1982-04-10 1982-04-10 Method and device for calibrating meter in optical thickness gage

Publications (1)

Publication Number Publication Date
JPS58176508A true JPS58176508A (en) 1983-10-17

Family

ID=13099669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5896982A Pending JPS58176508A (en) 1982-04-10 1982-04-10 Method and device for calibrating meter in optical thickness gage

Country Status (1)

Country Link
JP (1) JPS58176508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396332A (en) * 1993-02-08 1995-03-07 Ciszek; Theodoer F. Apparatus and method for measuring the thickness of a semiconductor wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396332A (en) * 1993-02-08 1995-03-07 Ciszek; Theodoer F. Apparatus and method for measuring the thickness of a semiconductor wafer

Similar Documents

Publication Publication Date Title
US3955086A (en) Radiation thickness gauge
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
EP0250959B1 (en) Method of calibrating reflectance measuring devices
US4128339A (en) Automatically-adjusting photometer
JP2019002791A (en) Calculation method for output correction computing equation of photodetector, and output correction method for photodetector
JPS58176508A (en) Method and device for calibrating meter in optical thickness gage
JPS58176509A (en) Method and device for calibrating meter in optical thickness gage
JPH04313007A (en) Film inspecting device
JPH01235834A (en) Signal processing system of laser system gas sensor
JPH063135A (en) Intensity correction method of reflected light
CN111678594B (en) Logarithmic calibration method for response linearity of laser power tester
CN211121620U (en) Device for measuring beer standard color filter value
JPS6173006A (en) Thickness measuring method of transmission attenuation type thickness gauge
JPS623609A (en) Range finder
JPS63277910A (en) Detection signal processing method for infrared thickness gauge
JPH05209717A (en) Position detector signal processing circuit for semiconductor
JPH0321837A (en) Distributed optical fiber temperature sensor and temperature measuring method
JPH0113527B2 (en)
JPH0357407B2 (en)
JPH05141944A (en) Radiation thickness gauge
JPH04160348A (en) Infrared measuring apparatus for moisture
RU1807348C (en) Absolute reflection coefficient measuring method
JPH0815134A (en) Measuring method
JPS6243126B2 (en)
JP3296223B2 (en) Method and apparatus for measuring temperature of object