JPH07260684A - Accurate reflectivity measurement method and instrument - Google Patents

Accurate reflectivity measurement method and instrument

Info

Publication number
JPH07260684A
JPH07260684A JP5687494A JP5687494A JPH07260684A JP H07260684 A JPH07260684 A JP H07260684A JP 5687494 A JP5687494 A JP 5687494A JP 5687494 A JP5687494 A JP 5687494A JP H07260684 A JPH07260684 A JP H07260684A
Authority
JP
Japan
Prior art keywords
light
frequency
waves
measurement
light waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5687494A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
亮 高橋
Taketaka Kohama
剛孝 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5687494A priority Critical patent/JPH07260684A/en
Publication of JPH07260684A publication Critical patent/JPH07260684A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To provide an accurate reflectivity measurement method and instrument by accurately measuring a sample with a high reflectivity. CONSTITUTION:Light from a light source 1 is branched into two light waves of a measurement wave (s) and a reference wave (r) and is chopped so that the light waves are in opposite phases at a frequency f1. Further, light for reference is chopped at a frequency f2 which is different from the frequency f1, the light is transmitted through a reflection mirror 17 with 90% reflection factor, and the transmitted light is received by one zero-point adjustment light reception element 19. The value is adjusted to be zero by light attenuators 13 and 14, light reflected by the reflection mirror is received by one light reception element through a standard sample and a measurement sample, and then a signal with f1 as a signal component and that with f2 as a reference signal are measured. The signals are processed by a division operator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信・光情報処理シ
ステムへの応用が期待されている半導体面発光レーザを
構成するDBR(ブラッグ反射)ミラー等の反射率を高
精度に評価する反射率測定方法及び測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a reflection for highly accurately evaluating the reflectance of a DBR (Bragg reflection) mirror or the like which constitutes a semiconductor surface emitting laser expected to be applied to an optical communication / optical information processing system. A rate measuring method and a measuring instrument.

【0002】[0002]

【従来の技術】光学系にあって、ミラー等光学部品の反
射率側定法としては、従来、例えば図2に示す分光光度
計による方法があげられる。この分光光度計による反射
率測定系は、参照用光路と測定用光路とを交互に切替え
て、測定用光路内に測定試料を挿入して試料の反射率を
みようとするものである。すなわち図2において、波長
可変光源1からの光を反射率が1、0で繰り返されてい
る回転鏡2により、参照用の光路Rと測定用の光路Sに
交互に切り替える。それぞれの光路R,Sを通った光は
再び1つの受光素子3で受光され、電気信号に変換され
た後、信号処理系4により、透過率及び反射率が得られ
る。この場合、測定試料5は測定用光路S内に挿入され
る。
2. Description of the Related Art In an optical system, a conventional method for determining the reflectance of an optical component such as a mirror is a method using a spectrophotometer shown in FIG. The reflectance measuring system using this spectrophotometer is intended to check the reflectance of the sample by alternately switching the reference optical path and the measuring optical path and inserting a measurement sample into the measuring optical path. That is, in FIG. 2, the light from the wavelength tunable light source 1 is alternately switched to the reference optical path R and the measurement optical path S by the rotating mirror 2 whose reflectance is repeated at 1 and 0. The light passing through the respective optical paths R and S is again received by one light receiving element 3 and converted into an electric signal, and then the signal processing system 4 obtains the transmittance and the reflectance. In this case, the measurement sample 5 is inserted into the measurement optical path S.

【0003】かかる分光光度計にあっては、測定に先立
ち最初に波長及び光路による光強度の違いを校正する必
要がある。すなわち、図3に示すように、校正時試料な
しの状態で受光素子により変換された電気信号は、回転
鏡2と同期したゲート信号によりサンプリングされる。
このときのサンプリング信号が信号処理系4のRAMに
記憶される。そして、実際の測定時には、この信号がR
AMから読みだされ、あらかじめ設定されている基準値
と比較され、その差が、フォトマルチプライヤ3のダイ
ノード印加電圧にフィードバックされる。それにより、
校正後試料のない場合は、図3中段に示すように、光路
及び波長の違いにかかわらず、サンプリングされた信号
は常に一定値になる。次に試料5を入れた場合、波長に
よる透過率及び反射率の変化により光路Sからの信号は
変化する。そして、最終的に、透過率および反射率は、
それぞれの光路R,Sからのサンプリングされた信号
r,sの比として得られる。
In such a spectrophotometer, it is necessary to calibrate the difference in light intensity depending on the wavelength and the optical path before the measurement. That is, as shown in FIG. 3, the electrical signal converted by the light receiving element without the sample during calibration is sampled by the gate signal synchronized with the rotating mirror 2.
The sampling signal at this time is stored in the RAM of the signal processing system 4. And at the time of actual measurement, this signal is R
It is read from the AM and compared with a preset reference value, and the difference is fed back to the dynode applied voltage of the photomultiplier 3. Thereby,
When there is no sample after calibration, as shown in the middle part of FIG. 3, the sampled signal always has a constant value regardless of the difference in the optical path and the wavelength. Next, when the sample 5 is put in, the signal from the optical path S changes due to changes in the transmittance and the reflectance depending on the wavelength. And finally, the transmittance and reflectance are
It is obtained as the ratio of the sampled signals r, s from the respective optical paths R, S.

【0004】[0004]

【発明が解決しようとする課題】上述の分光光度計によ
る反射率測定にあっては、その反射率が0%〜100%
にて大きく変化する試料に対する評価については、問題
がない。しかし、半導体DBRミラーの如き100%に
極めて近い反射率のものを0.01%程の精度で測定す
ることは、不可能である。このことは、測定に当り、周
波数軸にて信号と雑音とを考察した場合、雑音成分はど
の周波数帯域にも存在して積分することにより大きな値
となり、つまり光源からの過剰雑音の影響を大きく受け
るという問題、更に100%に近い部品どおしを比較す
るに際しては、高精度の測定のため雑音に対して極めて
敏感にならざえるを得ないという問題、あるいは、従来
では測定前に全波長に対し校正する必要があって時間が
かかり複雑な処理系が必要になるという問題があるから
である。
In the reflectance measurement by the above-mentioned spectrophotometer, the reflectance is 0% to 100%.
There is no problem with the evaluation of the sample that changes significantly at. However, it is impossible to measure a semiconductor DBR mirror having a reflectance extremely close to 100% with an accuracy of about 0.01%. This means that, when considering the signal and noise on the frequency axis in the measurement, the noise component becomes a large value by existing in any frequency band and integrating, that is, the influence of excess noise from the light source becomes large. The problem of receiving, moreover, when comparing parts that are close to 100%, it is very sensitive to noise due to high-precision measurement, or in the past it was the whole wavelength before measurement. On the other hand, it is necessary to calibrate, and there is a problem that it takes time and requires a complicated processing system.

【0005】本発明は上述の問題を解決すべく高反射率
の部品を高精度に測定できる高精度反射率測定方法及び
測定器の提供を目的とする。
An object of the present invention is to provide a high-accuracy reflectance measuring method and measuring instrument capable of highly accurately measuring a high-reflectance component in order to solve the above problems.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成する本
発明は、(1) 光源からの光を測定光と参照光の2光
波に分岐し、前記2光波を周波数f1 で互いに逆相とな
るようにチョッピングし、更に参照光をf1 と異なる周
波数f2 でチョッピングした後、前記2光波を反射鏡に
入射させ、前記2光波の大部分は反射させると同時にそ
れぞれの1部を透過させ、前記反射鏡を透過した2光波
を1つのゼロ点調整用受光素子で受光し、前記受光信号
がゼロになるように光路に挿入した光アッテネータでゼ
ロ点調整を行い、前記反射鏡で反射された2光波をそれ
ぞれ測定試料と標準試料に垂直に入射させ、前記測定試
料と標準試料からの反射光を1つの受光素子で受け、信
号成分として周波数f1 の成分を測定し、参照信号とし
ての周波数f2 の成分を測定し、前記信号成分と参照信
号を割算演算器で処理することにより反射率を測定する
ことを特徴とし、また (2) 光源からの光を測定光と参照光の2光波に分岐
する第1の光分岐手段と、前記2光波を周波数f1 で互
いに逆相となるようにチョッピングし、更に参照光をf
1 と異なる周波数f2 でチョッピングするチョッピング
手段と、前記2光波を同じ割合でそれぞれ2つに分岐す
る第2の光分岐手段と、前記第2の光分岐手段を通過し
た一方の2光波を1つのゼロ点調整用受光素子で受光
し、前記受光信号がゼロになるように光路に挿入した光
アッテネータでゼロ点調整を行うゼロ点調整手段と、前
記第2の光分岐手段を通過した他方の2光波をそれぞれ
測定試料と標準試料に垂直に入射させる光入射手段と、
前記測定試料と標準試料からの反射光を1つの受光素子
で受け、信号成分として周波数f1 の成分を測定し、参
照信号としての周波数f2 の成分を測定受光手段と、前
記信号成分と参照信号を割算演算器で処理することによ
り反射率を算出する演算手段とを有することを特徴とす
る、ことを基本とする。
Means for Solving the Problems The present invention that achieves the above-mentioned object is as follows. (1) The light from a light source is split into two light waves, a measurement light and a reference light, and the two light waves are opposite in phase with each other at a frequency f 1. Then, the reference light is chopped at a frequency f 2 different from f 1, and then the two light waves are incident on a reflecting mirror, and most of the two light waves are reflected and at the same time transmitted through a part of each. Then, the two light waves transmitted through the reflecting mirror are received by one light receiving element for zero point adjustment, the zero point is adjusted by the optical attenuator inserted in the optical path so that the received light signal becomes zero, and the light is reflected by the reflecting mirror. The generated two light waves are vertically incident on the measurement sample and the standard sample, respectively, and the reflected light from the measurement sample and the standard sample is received by one light receiving element, and the component of the frequency f 1 is measured as a signal component, and as a reference signal. component of the frequency f 2 It is characterized in that the reflectance is measured by measuring and processing the signal component and the reference signal with a division calculator, and (2) the light from the light source is split into two light waves of the measurement light and the reference light. 1 optical branching means and the two light waves are chopped at a frequency f 1 so as to have mutually opposite phases, and the reference light is f
A chopping means for chopping at a frequency f 2 different from 1 , a second light branching means for branching the two light waves into two at the same ratio, and one of the two light waves passing through the second light branching means Zero-point adjusting means for receiving light by one zero-point adjusting light-receiving element and performing zero-point adjustment by an optical attenuator inserted in the optical path so that the light-receiving signal becomes zero, and the other of the second optical branching means passing through the second optical branching means. Light incident means for vertically injecting two light waves into the measurement sample and the standard sample, respectively,
The reflected light from the measurement sample and the standard sample is received by one light receiving element, the component of frequency f 1 is measured as a signal component, the component of frequency f 2 as a reference signal is measured by the light receiving means, and the signal component and the reference are referred to. It is characterized in that it has an arithmetic means for calculating the reflectance by processing the signal with a division arithmetic unit.

【0007】[0007]

【作用】測定光と参照光とが全て同じ光学部品を通り、
しかも周波数f1 による逆相チョッピングにて標準試料
との差を測定することにより、高反射率の試料に対して
も雑音の影響を受けにくく、また、f1 ,f2 である狭
帯域検波であるロックイン方式を用いているため、光源
の過剰雑音の影響を受けにくく、更には、参照光及び測
定光の差を常にモニタしているため、ゼロ点の基準が極
めて正確であり、さらに、参照用の光は周波数f2 でチ
ョッピングされているため、その信号をモニタすること
により、測定前の全波長に対する校正が不必要となる。
[Operation] The measurement light and the reference light all pass through the same optical component,
Moreover, by measuring the difference from the standard sample by the reverse-phase chopping with the frequency f 1, the sample with high reflectance is hardly affected by noise, and the narrow band detection of f 1 and f 2 is performed. Since a certain lock-in method is used, it is not easily affected by excess noise of the light source, and since the difference between the reference light and the measurement light is constantly monitored, the zero point reference is extremely accurate. Since the reference light is chopped at the frequency f 2 , by monitoring the signal, calibration for all wavelengths before measurement is unnecessary.

【0008】[0008]

【実施例】ここで、図1を参照して本発明の実施例を説
明する。図1において、光源1及び光出力部としては、
波長可変な半導体レーザのファイバモジュールがあり、
更に偏波コントローラ10を介してファイバカプラにて
参照光rと測定光sとに分岐される。因に、この分岐は
ファイバカップリングやビームスプリッタにて行なわれ
る。この分岐された参照光rと測定光sとは、コリメー
タ11a,11bにより平行光とされる。ついで、この
平行光r,sは、両方共図1に示す拡大図の如き第1チ
ョッパ12aにて互いに逆相の周波数f1 の変調を受
け、更に第2チョッパ12bにて参照用光rのみf1
異なる周波数f2 の強度変調を受ける。
EXAMPLE An example of the present invention will now be described with reference to FIG. In FIG. 1, as the light source 1 and the light output unit,
There is a tunable semiconductor laser fiber module,
Further, via a polarization controller 10, it is split into a reference light r and a measurement light s by a fiber coupler. Incidentally, this branch is performed by a fiber coupling or a beam splitter. The branched reference light r and measurement light s are collimated by the collimators 11a and 11b. Next, the parallel lights r and s are both modulated by the first chopper 12a as shown in the enlarged view of FIG. 1 at frequencies f 1 of opposite phases, and only the reference light r is further received by the second chopper 12b. Intensity modulation of frequency f 2 different from f 1 is performed.

【0009】ついで、第1アッテネータ13a、第2ア
ッテネータ13bが存在し、これは、後述のロックイン
アンプ20からの出力を受けて参照光と測定光との光路
等による光強度の差を校正するためのものである。第1
偏光ビームスプリッタ(PSB)14では偏光純度を上
げ、第2PSB15,第1λ/4波長板16を介して9
0%反射ミラー17にて参照光rと測定光sとの2光波
の反射及び一部透過が行なわれる。
Next, there is a first attenuator 13a and a second attenuator 13b, which receives an output from a lock-in amplifier 20 which will be described later and calibrates the difference in light intensity between the reference light and the measurement light due to an optical path or the like. It is for. First
The polarization beam splitter (PSB) 14 raises the polarization purity, and the polarization beam splitter (PSB) 14 passes through the second PSB 15 and the first λ / 4 wave plate 16 to
The 0% reflection mirror 17 reflects and partially transmits the two light waves of the reference light r and the measurement light s.

【0010】90%反射ミラー17を透過した光は、集
光レンズ18、受光素子19を介してロックインアンプ
20にてf1 周波数成分のみが狭帯域検波され、その信
号が零となるよう光アッテネータ13a,13bが調整
される。つまり参照光rと測定光sとの光路の違いが校
正される。
The light transmitted through the 90% reflection mirror 17 is narrow-band detected only in the f 1 frequency component by the lock-in amplifier 20 via the condenser lens 18 and the light receiving element 19 so that the signal becomes zero. The attenuators 13a and 13b are adjusted. That is, the difference in the optical path between the reference light r and the measurement light s is calibrated.

【0011】90%反射ミラー17を反射した光は、第
1λ/4波長板16による光の往復にて直線偏光が90
°回転され第2PBSを戻って左方向に反射され、第2
λ/4波長板21に出されて反射率99.96%の標準
サンプル22、及び測定サンプル23にて反射され、更
に第2λ/4波長板21、第2PSB15を戻り、集光
レンズ24を経て受光素子25に到る。この場合、90
%ミラーは一部透過残り反射の一例を示したものであ
る。受光素子25への受光強度は、f1 用ロックインア
ンプ26とf2 用ロックインアンプ27にて各周波数成
分のみが狭帯域検波され、割算演算器28にて処理され
る。この割算演算器28では測定サンプル23が無い状
態での標準サンプル22のみの反射いいかえれば100
%に近い反射に基づくロックインアンプ26,27によ
るf1 とf2 の比の逆数に当る換算係数が求められ、測
定サンプル23が存在するときのf1 とf2 との比に乗
算されて反射率が求められる。換算係数は測定サンプル
23を取付ける前の割算演算器28の出力の逆数であ
る。
The light reflected by the 90% reflection mirror 17 is linearly polarized by the reciprocal movement of the light by the first λ / 4 wavelength plate 16.
Rotated and returned to the 2nd PBS and reflected to the left,
The light is emitted to the λ / 4 wavelength plate 21, reflected by the standard sample 22 having a reflectance of 99.96%, and the measurement sample 23, further returned from the second λ / 4 wavelength plate 21 and the second PSB 15, and passed through the condenser lens 24. It reaches the light receiving element 25. In this case 90
The% mirror shows an example of partial transmission and residual reflection. With respect to the intensity of light received by the light receiving element 25, only the respective frequency components are narrow-band detected by the lock-in amplifier 26 for f 1 and the lock-in amplifier 27 for f 2 and processed by the division calculator 28. This division calculator 28 reflects only the standard sample 22 without the measurement sample 23.
A conversion factor, which is the reciprocal of the ratio of f 1 and f 2 by the lock-in amplifiers 26 and 27 based on reflection close to%, is calculated, and is multiplied by the ratio of f 1 and f 2 when the measurement sample 23 is present. The reflectance is required. The conversion coefficient is the reciprocal of the output of the division calculator 28 before the measurement sample 23 is attached.

【0012】本実施例では次のような効果を得る。 (1)参照用光rと測定用光sが試料以外では、全て同
一の素子を通過し、しかも逆相チョッパによる差動法を
採用しているため、試料の反射率の差のみが正確に抽出
されることになる。例えば、99%の試料を測るとき、
従来の方法ではそのまま99%を測るため、何かの影響
で1%の誤差があると、そのまま測定誤差は1%程度と
なるのに対し、この差動法では、差の1%の信号を測る
ため、誤差1%の変動はこの誤差を100%としたとき
の1%となって反射率に対し0.01%となり、極めて
変動に強くなる。 (2)f1 ,f2 に限った狭帯域検波方式を採用してい
るため、光源の1/f雑音等の過剰雑音を大幅に除去す
ることが可能となり、極めて高感度に測定することがで
きる。 (3)90%反射鏡から一部の光を取り出し、ゼロ点調
整をするため、標準試料の基準を正確に設定できる。 (4)参照信号をダブルチョップすることにより、参照
信号を常にモニターできるため、測定前に換算係数を求
めて置くだけで、従来のような全波長に対する校正をす
る必要がない。このとき、周波数f1 とf2 の成分同士
のクロストークが考えられるが、f2 をf1 より高く、
しかもf2 がf1 の整数倍と等しくならないように設定
すれば、クロストークは大幅に防げる。又、若干のクロ
ストークがあったとしても、その上でロックインアンプ
1の信号が0となるように設定すれば、何ら問題はな
い。
In this embodiment, the following effects are obtained. (1) Except for the sample, the reference light r and the measurement light s all pass through the same element, and since the differential method using the anti-phase chopper is adopted, only the difference in reflectance of the sample is accurate. Will be extracted. For example, when measuring 99% of the sample,
Since the conventional method measures 99% as it is, if there is an error of 1% due to some influence, the measurement error will be about 1% as it is. Because of the measurement, the fluctuation of the error of 1% is 1% when the error is 100%, which is 0.01% with respect to the reflectance, which is extremely strong against the fluctuation. (2) Since the narrow band detection method limited to f 1 and f 2 is adopted, it is possible to significantly remove excess noise such as 1 / f noise of the light source, and it is possible to perform measurement with extremely high sensitivity. it can. (3) Part of the light is extracted from the 90% reflecting mirror and the zero point is adjusted, so that the standard of the standard sample can be set accurately. (4) Since the reference signal can be constantly monitored by double-chopping the reference signal, it is not necessary to calibrate for all wavelengths, which is required only by obtaining the conversion coefficient before measurement and setting it. At this time, crosstalk between the components of the frequencies f 1 and f 2 can be considered, but f 2 is higher than f 1 ,
Moreover, crosstalk can be largely prevented by setting f 2 so as not to be equal to an integral multiple of f 1 . Further, even if there is some crosstalk, there is no problem if the signal of the lock-in amplifier 1 is set to 0 after that.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、高
反射率の試料に対しても、極めて高精度な反射率を測定
できる。
As described above, according to the present invention, it is possible to measure reflectance with extremely high precision even for a sample with high reflectance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来例の構成図。FIG. 2 is a configuration diagram of a conventional example.

【図3】従来の測定原理の説明図。FIG. 3 is an explanatory diagram of a conventional measurement principle.

【符号の説明】[Explanation of symbols]

1 光源 11a,11b ファイバコリメータ 12a,12b チョッパ 13a,13b アッテネータ 14,15 偏光ビームスプリッタ 16,21 λ/4波長板 17 90%反射ミラー 18,24 集光レンズ 19,25 受光素子 20,26,27 ロックインアンプ 22 標準サンプル 23 測定用サンプル 28 割算演算器 DESCRIPTION OF SYMBOLS 1 light source 11a, 11b fiber collimator 12a, 12b chopper 13a, 13b attenuator 14, 15 polarization beam splitter 16, 21 λ / 4 wavelength plate 17 90% reflection mirror 18, 24 condenser lens 19, 25 light receiving element 20, 26, 27 Lock-in amplifier 22 Standard sample 23 Measurement sample 28 Division calculator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光を測定光と参照光の2光波
に分岐し、前記2光波を周波数f1 で互いに逆相となる
ようにチョッピングし、更に参照光をf1 と異なる周波
数f2 でチョッピングした後、前記2光波を反射鏡に入
射させ、前記2光波の大部分は反射させると同時にそれ
ぞれの1部を透過させ、 前記反射鏡を透過した2光波を1つのゼロ点調整用受光
素子で受光し、前記受光信号がゼロになるように光路に
挿入した光アッテネータでゼロ点調整を行い、 前記反射鏡で反射された2光波をそれぞれ測定試料と標
準試料に垂直に入射させ、前記測定試料と標準試料から
の反射光を1つの受光素子で受け、信号成分として周波
数f1 の成分を測定し、参照信号としての周波数f2
成分を測定し、前記信号成分と参照信号を割算演算器で
処理することにより反射率を測定することを特徴とする
高精度反射率測定方法。
1. A light from a light source is split into two light waves, a measurement light and a reference light, and the two light waves are chopped so as to have mutually opposite phases at a frequency f 1 , and the reference light has a frequency f different from f 1. After chopping at 2 , the two light waves are made incident on a reflecting mirror, most of the two light waves are reflected, and at the same time, a part of each is transmitted, and the two light waves transmitted by the reflecting mirror are used for one zero point adjustment. The light is received by the light receiving element, the zero point is adjusted by the optical attenuator inserted in the optical path so that the received light signal becomes zero, and the two light waves reflected by the reflecting mirror are vertically incident on the measurement sample and the standard sample, respectively. One light receiving element receives reflected light from the measurement sample and the standard sample, measures a component of frequency f 1 as a signal component, measures a component of frequency f 2 as a reference signal, and measures the signal component and the reference signal. Processing with division calculator A high-accuracy reflectance measuring method, characterized in that the reflectance is measured by measuring the reflectance.
【請求項2】 光源からの光を測定光と参照光の2光波
に分岐する第1の光分岐手段と、前記2光波を周波数f
1 で互いに逆相となるようにチョッピングし、更に参照
光をf1 と異なる周波数f2 でチョッピングするチョッ
ピング手段と、前記2光波を同じ割合でそれぞれ2つに
分岐する第2の光分岐手段と、前記第2の光分岐手段を
通過した一方の2光波を1つのゼロ点調整用受光素子で
受光し、前記受光信号がゼロになるように光路に挿入し
た光アッテネータでゼロ点調整を行うゼロ点調整手段
と、前記第2の光分岐手段を通過した他方の2光波をそ
れぞれ測定試料と標準試料に垂直に入射させる光入射手
段と、前記測定試料と標準試料からの反射光を1つの受
光素子で受け、信号成分として周波数f1 の成分を測定
し、参照信号としての周波数f2 の成分を測定受光手段
と、前記信号成分と参照信号を割算演算器で処理するこ
とにより反射率を算出する演算手段とを有することを特
徴とする高精度反射率測定器。
2. A first light splitting means for splitting light from a light source into two light waves of a measurement light and a reference light, and the two light waves having a frequency f.
Chopping to opposite phases at 1, and chopping means for chopping further reference light f 1 frequency different f 2, a second light branching means for branching into two respectively the two light waves at the same rate , One of the two light waves that has passed through the second optical branching means is received by one zero-point adjusting light receiving element, and the zero point is adjusted by an optical attenuator inserted in the optical path so that the received light signal becomes zero. Point adjusting means, light incidence means for vertically injecting the other two light waves that have passed through the second light splitting means into the measurement sample and the standard sample, respectively, and one reflected light from the measurement sample and the standard sample is received. The element receives and measures the component of frequency f 1 as a signal component, measures the component of frequency f 2 as a reference signal, and measures the reflectance by processing the signal component and the reference signal by a division calculator. Calculate Precision reflectance measuring instrument and having an arithmetic unit.
【請求項3】 測定光と参照光の2光波を周波数f1
て互いに逆相となるようにチョッピングする手段として
は、前記2光波の一方の光路と交わる孔と他方の光路と
交わる孔とを交互に逆相となるように内側と外側とに配
列して開口させた回転可能な板体であることを特徴とす
る請求項2記載の高精度反射率測定器。
3. A means for chopping the two light waves of the measurement light and the reference light so as to have mutually opposite phases at the frequency f 1 is a hole intersecting with one optical path of the two light waves and a hole intersecting with the other optical path. The high-precision reflectance measuring device according to claim 2, wherein the plate is a rotatable plate body that is arranged so as to be alternately in an opposite phase and is opened inside and outside.
【請求項4】 光入射手段としては、第2の光分岐手段
からの2光波を測定試料と標準試料に向けて直角に曲げ
ると共にこの測定試料と標準試料からの反射光を透過さ
せる偏光ビームスプリッタと、この偏光ビームスプリッ
タと前記測定試料及び標準試料との間に配置されたλ/
4波長板と、を有することを特徴とする請求項2記載の
高精度反射率測定器。
4. The light incident means includes a polarization beam splitter that bends two light waves from the second light branching means at right angles toward the measurement sample and the standard sample and transmits reflected light from the measurement sample and the standard sample. And λ / disposed between the polarization beam splitter and the measurement sample and the standard sample.
The high-precision reflectance measuring device according to claim 2, further comprising a four-wave plate.
【請求項5】 第2の光分岐手段は、光を一部透過させ
る反射鏡としたことを特徴とする請求項2記載の高精度
反射率測定器。
5. The high-precision reflectance measuring instrument according to claim 2, wherein the second light splitting means is a reflecting mirror that partially transmits light.
【請求項6】 光源からの測定光と参照光とに分岐され
た2光波を平行光とするコリメータと、このコリメータ
からの2光波を周波数f1 にてチョッピングする第1チ
ョッパと、この第1チョッパからの参照光のみを周波数
2 にてチョッピングする第2のチョッパと、この第
1、第2チョッパを通過した2光波につきゼロ点調整を
行なう光アッテネータと、この光アッテネータからの2
光波の編波純度を上げる第1偏光ビームスプリッタと、
この第1偏光ビームスプリッタからの2光波を直進させ
直進後の戻り反射光を直角に曲げ、この直角に曲げた後
の戻り反射光を直進させる第2偏光ビームスプリッタ
と、この第2偏光ビームスプリッタからの直進した出力
光が第1λ/4波長板を介して入射する90°反射ミラ
ーと、この90°反射ミラーの透過2光波を受光する受
光素子と、この受光素子にて受光した2光波のうち周波
数f1 成分を検波するロックインアンプ1と、前記90
°反射ミラーからの戻り反射光を前記第2ビームスプリ
ッタを介して測定試料及び標準試料に入射させる第2λ
/4波長板と、前記測定試料及び標準試料からの戻り反
射光を前記第2ビームスプリッタを介して受光する受光
素子と、この受光素子の2光波を周波数f1 にて検波す
るロックインアンプ2と周波数f 2 にて検波するロック
インアンプ3と、このロックインアンプ2,3の出力を
演算処理する割算演算器と、を有することを特徴とする
請求項2記載の高精度反射率測定器。
6. The measurement light from the light source and the reference light are branched.
Collimator that converts two light waves into parallel light, and this collimator
2 light waves from the frequency f1First chopping at
Only the reference light from the chopper and the first chopper is frequency
f2The second chopper to chop at
Zero adjustment for the two light waves that passed through the first and second choppers
Optical attenuator to perform and 2 from this optical attenuator
A first polarization beam splitter for increasing the purity of the light wave
The two light waves from this first polarization beam splitter are made to go straight.
After returning straight, bend the reflected light at a right angle, and after bending at a right angle
Second polarization beam splitter that straightens the return reflected light of
And the straight output from this second polarization beam splitter
90 ° reflection mirror where light is incident through the first λ / 4 wave plate
And a receiver that receives the two transmitted light waves of this 90 ° reflection mirror.
The optical element and the frequency of the two light waves received by this light receiving element
Number f1The lock-in amplifier 1 for detecting the component,
° The second reflected beam from the reflection mirror
The second λ incident on the measurement sample and the standard sample via the shutter
/ 4 wave plate and return reflection from the measurement sample and standard sample
Receiving the incident light through the second beam splitter
The two light waves of the element and this light receiving element are1Detect at
Lock-in amplifier 2 and frequency f 2Lock to detect at
The output of the in-amp 3 and the lock-in amps 2 and 3
And a division arithmetic unit for performing arithmetic processing.
The high precision reflectance measuring instrument according to claim 2.
JP5687494A 1994-03-28 1994-03-28 Accurate reflectivity measurement method and instrument Withdrawn JPH07260684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5687494A JPH07260684A (en) 1994-03-28 1994-03-28 Accurate reflectivity measurement method and instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5687494A JPH07260684A (en) 1994-03-28 1994-03-28 Accurate reflectivity measurement method and instrument

Publications (1)

Publication Number Publication Date
JPH07260684A true JPH07260684A (en) 1995-10-13

Family

ID=13039577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5687494A Withdrawn JPH07260684A (en) 1994-03-28 1994-03-28 Accurate reflectivity measurement method and instrument

Country Status (1)

Country Link
JP (1) JPH07260684A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1902281A1 (en) * 2005-07-08 2008-03-26 Woollam Co. Inc. J.A. Sample orientation system and method
JP2013532819A (en) * 2010-07-21 2013-08-19 アベンゴア ソーラー ニュー テクノロジーズ ソシエダ アノニマ Portable reflectometer and method for measuring mirror characteristics of solar power plant
CN109520620A (en) * 2018-12-28 2019-03-26 深圳市太赫兹科技创新研究院有限公司 Terahertz time-domain spectroscopy instrument
JPWO2018008070A1 (en) * 2016-07-04 2019-04-11 パイオニア株式会社 Inspection apparatus and method
CN112229605A (en) * 2020-09-22 2021-01-15 中国科学院上海光学精密机械研究所 Device and method for measuring reflectivity and transmissivity of optical component
CN116222984A (en) * 2023-05-09 2023-06-06 上海隐冠半导体技术有限公司 Grating ruler reflectivity measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1902281A1 (en) * 2005-07-08 2008-03-26 Woollam Co. Inc. J.A. Sample orientation system and method
EP1902281A4 (en) * 2005-07-08 2013-01-09 J A Woollam Co Inc Sample orientation system and method
JP2013532819A (en) * 2010-07-21 2013-08-19 アベンゴア ソーラー ニュー テクノロジーズ ソシエダ アノニマ Portable reflectometer and method for measuring mirror characteristics of solar power plant
JPWO2018008070A1 (en) * 2016-07-04 2019-04-11 パイオニア株式会社 Inspection apparatus and method
CN109520620A (en) * 2018-12-28 2019-03-26 深圳市太赫兹科技创新研究院有限公司 Terahertz time-domain spectroscopy instrument
CN109520620B (en) * 2018-12-28 2024-05-10 深圳市华讯方舟光电技术有限公司 Terahertz time-domain spectrometer
CN112229605A (en) * 2020-09-22 2021-01-15 中国科学院上海光学精密机械研究所 Device and method for measuring reflectivity and transmissivity of optical component
CN116222984A (en) * 2023-05-09 2023-06-06 上海隐冠半导体技术有限公司 Grating ruler reflectivity measuring device

Similar Documents

Publication Publication Date Title
JP3335205B2 (en) Optical system calibration method
EP0875743B1 (en) A wavemeter and an arrangement for the adjustment of the wavelength of an optical source
US6522406B1 (en) Correcting the system polarization sensitivity of a metrology tool having a rotatable polarizer
WO2019029163A1 (en) Apparatus and method for eliminating polarization fading in ofdr
US20120154815A1 (en) Apparatus and method for measuring reflectance of optical laser components
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
JP2002116089A (en) Highly accurate wavemeter
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
CA2086046C (en) Apparatus for measuring the effective refractive index in optical fibres
CN107655599A (en) A kind of measuring method of optical element minimal stress
EP1593955A2 (en) Wavelength-tuned intensity measurement with a surface plasmon resonance sensor
US4671660A (en) Dual-beam-real-time polarimeter
EP0168182B1 (en) Optical measurement apparatus
CA1141190A (en) Apparatus for determining the refractive index profile of optical fibres
JPH07260684A (en) Accurate reflectivity measurement method and instrument
AU6022896A (en) Measurement of polarization mode dispersion
CN111157127A (en) System for measuring laser wavelength in real time
JPS6344136A (en) Heterodyne michelson interferometer related to polarimetry
JP3241857B2 (en) Optical rangefinder
US6870617B2 (en) Accurate small-spot spectrometry systems and methods
EP0600636A1 (en) Self-calibrated power meter
US6654124B2 (en) Signal modulation compensation for wavelength meter
KR102380250B1 (en) Apparatus for measuring reflectivity and incident light
EP4279940A1 (en) Detection device, system and method for determination of incidence angle of an optical beam
US20220196381A1 (en) Interferometer and optical instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605