JPH0357407B2 - - Google Patents

Info

Publication number
JPH0357407B2
JPH0357407B2 JP3018185A JP3018185A JPH0357407B2 JP H0357407 B2 JPH0357407 B2 JP H0357407B2 JP 3018185 A JP3018185 A JP 3018185A JP 3018185 A JP3018185 A JP 3018185A JP H0357407 B2 JPH0357407 B2 JP H0357407B2
Authority
JP
Japan
Prior art keywords
wavelength
curve
film thickness
value
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3018185A
Other languages
Japanese (ja)
Other versions
JPS61191906A (en
Inventor
Hidema Uchishiba
Juji Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3018185A priority Critical patent/JPS61191906A/en
Publication of JPS61191906A publication Critical patent/JPS61191906A/en
Publication of JPH0357407B2 publication Critical patent/JPH0357407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔概 要〕 膜厚測定装置であつて、基板上に作成された透
明薄膜を光の干渉を利用して干渉波形を測定し、
任意の2つのピークの波長とその間のピーク数を
求め、その測定値から膜厚を求める計算をマイク
ロコンピユータを用いて行うことにより膜厚測定
の全自動化を可能とする。
[Detailed Description of the Invention] [Summary] This is a film thickness measuring device that measures the interference waveform of a transparent thin film created on a substrate using light interference.
By determining the wavelengths of any two peaks and the number of peaks between them, and calculating the film thickness from the measured values using a microcomputer, it is possible to fully automate the film thickness measurement.

〔産業上の利用分野〕[Industrial application field]

本発明は膜厚測定装置に関するものであり、特
に基板上に形成された透明膜厚を全自動で測定す
る自動膜厚測定装置に関するものである。
The present invention relates to a film thickness measuring device, and more particularly to an automatic film thickness measuring device that fully automatically measures the thickness of a transparent film formed on a substrate.

最近の半導体装置、例えば磁気バブルメモリ装
置においては、情報量の増加に伴つて記憶密度が
高度化されて来ている。このため磁気バブルメモ
リ素子において基板上に形成される磁性ガーネツ
ト膜の厚さも次第に薄く(1μm以下)なり、その
厚さも精密にコントロールする必要が生じ、その
膜厚測定を正確に行う装置が要求される。
2. Description of the Related Art In recent semiconductor devices, such as magnetic bubble memory devices, storage densities have become more sophisticated as the amount of information increases. For this reason, the thickness of the magnetic garnet film formed on the substrate in magnetic bubble memory devices has gradually become thinner (less than 1 μm), and it has become necessary to precisely control the thickness, creating a need for a device that can accurately measure the film thickness. Ru.

〔従来の技術〕[Conventional technology]

第6図の如く基板1の上に形成された透明な薄
膜2の膜厚測定は、光源3よりの光を入射角θで
入射し、薄膜2の表面及び裏面から反射した光
L1,L2の干渉を利用して干渉波形を測定し、任
意の2つのピークの波長λiとその間のピークの数
を求め、以下の計算式によつて膜厚hを求めるこ
とができる。
To measure the thickness of a transparent thin film 2 formed on a substrate 1 as shown in FIG.
The interference waveform is measured using the interference of L 1 and L 2 , the wavelength λ i of any two peaks and the number of peaks between them are determined, and the film thickness h can be determined using the following calculation formula. .

Fi=√n2 i−sin2θ/λi θ=45゜ h=N/2|F1−F2|N=(ピークの数)−1 ここで薄膜の屈折率niは ni=a+b/λ2 i+c/λ4 i(コーシーの式) で求められる。 F i =√n 2 i −sin 2 θ/λ i θ=45゜ h=N/2|F 1 −F 2 |N=(number of peaks)−1 Here, the refractive index n i of the thin film is n i =a+b/λ 2 i +c/λ 4 i (Cauchy's formula).

第7図は従来の膜厚測定装置であり、4は光
源、5はピンホール、6は対物レンズ、7は試
料、8はコンデンサレンズ、9は分光器、10は
ホトマル(光電子増倍管)、11はX−Yレコー
ダをそれぞれ示している。この装置を用いた膜厚
測定は、分光器9内の回折格子を回転させること
により波長掃引を行い波形12を得、この波形1
2からバツクグラウンドを補正した後、(この操
作を自動的に行うものである。)波形曲線のピー
ク形状を判定してデータとして採用するかどうか
を決定し、この曲線の最初と最後のピークの波長
を読み取つてこれらの波長の間にあるピークの個
数から膜厚を計算していた。
Fig. 7 shows a conventional film thickness measuring device, where 4 is a light source, 5 is a pinhole, 6 is an objective lens, 7 is a sample, 8 is a condenser lens, 9 is a spectrometer, and 10 is a photomultiplier tube. , 11 indicate X-Y recorders, respectively. Film thickness measurement using this device involves scanning the wavelength by rotating the diffraction grating in the spectrometer 9 to obtain waveform 12.
After correcting the background from step 2 (this operation is performed automatically), the peak shape of the waveform curve is determined and whether or not to be adopted as data is determined, and the first and last peaks of this curve are determined. The film thickness was calculated by reading the wavelengths and using the number of peaks between these wavelengths.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、上記の作業は全て測定者が行うために、
波形がノイズ等により変形した場合、ピークの位
置決定が不正確になり、波長の読み取りの際に誤
りが発生し、解析の時間が長くなるという欠点が
あつた。
Traditionally, all of the above work was done by the measurer.
If the waveform is distorted by noise or the like, the position of the peak becomes inaccurate, errors occur when reading the wavelength, and the analysis time becomes longer.

本発明はこのような点にかんがみ全自動で高信
頼且つ短時間で処理できる自動膜厚測定装置を提
供することを目的としている。
In view of these points, it is an object of the present invention to provide an automatic film thickness measuring device that is fully automatic, highly reliable, and capable of processing in a short time.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため、本発明において
は、被測定試料をセツトした分光器の光の掃引波
長を一定の間隔毎に検出する手段と、波長の信号
を受信した際にその波長での光の電気信号を読み
取る手段と、各波長−光強度の値を組にして記憶
する手段と、あらかじめ記憶してある基板等で測
定した波長−光強度の値の組で前記各波長−光強
度の値を補正し、補正値の平均位置に基準線を引
く手段と前記補正値を記憶する手段と、補正値に
よる光の干渉波形曲線の基準線の正側又は負側の
曲線の一つ一つについてその形状を調べ、データ
として採用するかどうかを判定する手段と、該手
段で採用された曲線のデータから最小2乗法によ
り2次曲線(放物線)に回帰する手段と、前記放
物線の根を求め、その1/2を曲線のピーク波長と
する手段と、正側曲線の最初と最後のピークの波
長およびピークの数より1を減じた値から膜厚を
求め、さらに負側の曲線からも同様にして膜厚を
求め、双方を平均してこれを薄膜の膜厚とする手
段から成ることを特徴としている。
In order to solve the above problems, the present invention provides a means for detecting the swept wavelength of light of a spectrometer in which a sample to be measured is set at regular intervals, and a means for detecting at regular intervals the swept wavelength of light of a spectrometer in which a sample to be measured is set, means for reading the electric signal of the above, means for storing each wavelength-light intensity value pair, and a means for storing each wavelength-light intensity value pair by a pre-stored set of wavelength-light intensity values measured on a board, etc. means for correcting the values and drawing a reference line at the average position of the correction values; means for storing the correction values; and each curve on the positive side or negative side of the reference line of the light interference waveform curve based on the correction values. means for examining the shape of the curve and determining whether to adopt it as data; means for regressing to a quadratic curve (parabola) using the method of least squares from the data of the curve adopted by the means; and determining the roots of the parabola. , calculate the film thickness from the wavelength of the first and last peaks of the positive side curve and the value obtained by subtracting 1 from the number of peaks, and also from the negative side curve. The method is characterized in that it consists of a means for determining the film thickness by calculating the film thickness, and averaging both values to determine the film thickness of the thin film.

〔作 用〕[Effect]

まず補正のためのホトマル(光電子増倍管)の
感度曲線を得るために薄膜の形成されていない基
板を装置にセツトし、波長−出力信号のデータの
組A()を測定して各波長−光強度の値を組に
して記憶する手段に記憶させ、次に被測定薄膜を
セツトし、同様にして波長−出力信号のデータB
()を取り、このB()をA()で補正し各
波長−光強度の値を組にして記憶する手段に記憶
させ、これらの値からマイクロコンピユータによ
り膜厚計算を行うことができる。
First, in order to obtain the sensitivity curve of a photomultiplier tube for correction, a substrate on which a thin film is not formed is set in the device, and the wavelength-output signal data set A() is measured. The light intensity values are stored in the storage means as a set, and then the thin film to be measured is set, and the wavelength-output signal data B is stored in the same manner.
() is taken, B() is corrected by A(), each wavelength-light intensity value is stored in a storage unit, and the film thickness can be calculated from these values by a microcomputer.

本発明では波長−出力信号の補正と膜厚計算を
マイクロコンピユータに行わせることにより全自
動で高信頼及び高速な薄膜測定が可能となる。
In the present invention, by having a microcomputer perform wavelength-output signal correction and film thickness calculation, fully automatic, highly reliable, and high-speed thin film measurement is possible.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す構成図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

本実施例は図に示す如く、光の掃引波長を一定
間隔毎に検出する手段としての波長マーカー20
1を有する分光器20と、分光器からの波長の信
号を受信した際、その波長での光の電気信号を読
み取る手段としてのホトマル(光電子増倍管)2
02と、該ホトマル202及び波長マーカー20
1の信号をA/D変換するA/Dコンバータ2
1,22と、該A/Dコンバータ21,22にイ
ンターフエイス23を介して接続したマイクロコ
ンピユータ24と、該マイクロコンピユータに接
続したデイスプレイ25及びプリンタ26とを具
備して構成されている。そしてマイクロコンピユ
ータ24はCPU241とRAM242とROM2
43とを有し、RAM242は試料を測定した各
波長−光強度の値を組にして記憶する手段を有
し、CPU241は、あらかじめ記憶してある基
板等で測定した波長−光強度の値の組で前記の試
料の各波長−光強度の値を補正し、補正値の平均
位置に基準線を引く手段と、該補正値による光の
干渉波形曲線の一つ一つについてその形状を調
べ、データとして採用するかどうかを判定する手
段と、基準線の正側、負側の曲線のデータから最
小2乗法により2次曲線(放物線)に回帰する手
段と、該放物線の根を求めその1/2を曲線のピー
ク波長とする手段と、正側曲線の最初と最後のピ
ークの波長およびピークの数より1を減じた値か
ら膜厚を求め、さらに負側の曲線からも同様にし
て膜厚を求め、双方を平均してこれを薄膜の膜厚
とする手段とを有している。
As shown in the figure, this embodiment uses a wavelength marker 20 as a means for detecting the swept wavelength of light at regular intervals.
1, and a photomultiplier tube 2 as a means for reading an electrical signal of light at that wavelength when a signal at that wavelength is received from the spectroscope.
02, the photomul 202 and the wavelength marker 20
A/D converter 2 that A/D converts the signal of 1
1 and 22, a microcomputer 24 connected to the A/D converters 21 and 22 via an interface 23, and a display 25 and a printer 26 connected to the microcomputer. The microcomputer 24 has a CPU 241, RAM 242, and ROM 2.
43, the RAM 242 has a means for storing the wavelength-light intensity values measured on the sample as a pair, and the CPU 241 stores the wavelength-light intensity values measured on a board, etc. that have been stored in advance. means for correcting each wavelength-light intensity value of the sample as a set and drawing a reference line at the average position of the correction values, and examining the shape of each light interference waveform curve based on the correction values, A means for determining whether or not to be adopted as data, a means for regressing to a quadratic curve (parabola) using the least squares method from the data of the curves on the positive and negative sides of the reference line, and a means for determining the root of the parabola and 1/ 2 as the peak wavelength of the curve, calculate the film thickness from the wavelength of the first and last peak of the positive curve, and the value obtained by subtracting 1 from the number of peaks, and then calculate the film thickness in the same way from the negative curve. and averages both values to determine the thickness of the thin film.

このように構成された本実施例の膜厚測定手順
を次に説明する。
The film thickness measurement procedure of this embodiment configured as described above will be explained next.

まず補正のためのホトマル感度曲線を得るため
に薄膜の形成されていない基板を装置にセツトし
分光器20を作動させる。分光器20の作動によ
り波長マーカー201から掃引波長の一定間隔毎
に信号が出力される。この信号はA/Dコンバー
タ22に入力されデイジタル値に変換され、イン
ターフエイス23よりマイクロコンピユータ24
のCPU241に出力される。これを受信した
CPU241はその時のホトマル202の出力信
号をA/Dコンバータ21、インターフエイス2
3を介して読み取る。波長の掃引に伴いこの動作
を繰返し、波長−出力信号のデータの組A()
をRAM242に記憶してゆく。この場合第2図
の如き補正曲線A()が得られる。
First, in order to obtain a photosensitive sensitivity curve for correction, a substrate on which a thin film is not formed is set in the apparatus and the spectrometer 20 is operated. As the spectrometer 20 operates, a signal is output from the wavelength marker 201 at regular intervals of the swept wavelength. This signal is input to the A/D converter 22, converted to a digital value, and sent to the microcomputer 24 via the interface 23.
is output to the CPU 241 of. I received this
The CPU 241 transmits the output signal of the photomultiplier 202 at that time to the A/D converter 21 and the interface 2.
Read through 3. This operation is repeated as the wavelength is swept, and the wavelength-output signal data set A() is
is stored in the RAM 242. In this case, a correction curve A( ) as shown in FIG. 2 is obtained.

次に被測定薄膜試料をセツトし、同様にして波
長−出力信号のデータB()を取る。この場合
は例えば第3図の如き曲線B()が得られる。
ここで〔B()/{A()×(1+C×)}〕×
d(但しc,dは定数)としてB()をA()
で補正し、これをRAM242に記憶する。なお
定数Cは、B()の波形をA()で補正したと
き、基準線に対して右上がり又は右下がりの曲線
となる場合があり、これを補正するために用い
る。例えば右上がりの場合はCを正のある値にと
ればが大きくなるほど補正が強く働き、B()
の値を小さくする。従つてが大になるに伴つて
増大するB()を引き下げる。またB()が右
下がりの場合はCを負のある値にとればが大に
なるほど補正強度が弱くなり、共に基準線に対す
る傾きが補正される。そしてCの値の大きさは測
定値から実験的に求める。またdは倍率で上記の
ように補正した値を計算処理しやすい値に拡大す
るもので、その値の大きさは経験的に定める。
Next, a thin film sample to be measured is set, and wavelength-output signal data B() is obtained in the same manner. In this case, for example, a curve B( ) as shown in FIG. 3 is obtained.
Here, [B()/{A()×(1+C×)}]×
d (where c and d are constants), convert B() to A()
This is corrected and stored in the RAM 242. The constant C is used to correct the fact that when the waveform of B() is corrected by A(), it may become a curve upward to the right or downward to the right with respect to the reference line. For example, in the case of an upward slope, if C is set to a positive value, the larger the value, the stronger the correction will be, and B()
Decrease the value of Therefore, B(), which increases as B becomes larger, is lowered. Further, when B( ) is downward to the right, if C is set to a certain negative value, the correction strength becomes weaker as C becomes larger, and in both cases, the inclination with respect to the reference line is corrected. The magnitude of the value of C is determined experimentally from the measured value. Further, d is a magnification that enlarges the value corrected as described above to a value that is easy to calculate, and the magnitude of this value is determined empirically.

次に、B()の総和を測定点数(N点)で割
つた波形の平均値をB()から差引いて 〔B′()=B()−{NI=1 B()}/N〕 補正値の平均位置に基準線を引く。この場合第4
図の如き曲線B′()が得られる。これをRAM
242に記憶する。このデータからCPU241
において膜厚hが計算される。その計算手順を第
5図のフローチヤートに示す。
Next, the average value of the waveform obtained by dividing the sum of B() by the number of measurement points (N points) is subtracted from B(), [B′()=B()−{ NI=1 B()}/ N] Draw a reference line at the average position of the correction values. In this case the fourth
A curve B'() as shown in the figure is obtained. Add this to RAM
242. From this data, CPU241
The film thickness h is calculated in . The calculation procedure is shown in the flowchart of FIG.

第5図において補正されたデータB′()は波
形のほぼ中央にくるように基準線が引かれる(a
図)。次にR=0とし、負の部分を切りすてる
(b図)。次に波形の形状を読みデータとして採用
するかどうかを判定する(c図)。判定基準は各
データの組の曲線が基準線と2点で交差しない場
合(c図の1番、5番が相当する)、このデータ
の組を不採用とする。次に正の部分を最小2乗法
により放物線に回帰する(d図)。次に2次方程
式の根の和の1/2よりピークの位置を求める(e
図)。次に最初と最後のピークの波長λ1,λ2、N
=(λ1,λ2間のピークの数)−1を求める(f図)。
次に膜厚を前述の計算式により計算し、この膜厚
をh1とおく。次に負の部分を計算するためB′()
=−B′()とおきR=1とする。これを前に戻
し正の部分と同様に計算し、この膜圧h2とする。
次いで h=h1+h2/2を計算し膜厚hを出力するのである。
In Fig. 5, a reference line is drawn so that the corrected data B'() is located approximately in the center of the waveform (a
figure). Next, set R=0 and cut off the negative part (Figure b). Next, it is determined whether the shape of the waveform is to be read and adopted as data (Figure c). The determination criterion is that if the curve of each data set does not intersect with the reference line at two points (corresponding to numbers 1 and 5 in figure c), this data set is rejected. Next, the positive part is regressed to a parabola using the least squares method (Figure d). Next, find the peak position from 1/2 of the sum of the roots of the quadratic equation (e
figure). Next, the wavelengths of the first and last peaks λ 1 , λ 2 , N
= (number of peaks between λ 1 and λ 2 ) −1 is determined (Figure f).
Next, the film thickness is calculated using the above formula, and this film thickness is set as h1 . Next, to calculate the negative part, B′()
=-B'() and R=1. Return this and calculate it in the same way as the positive part, and use it as the membrane pressure h2 .
Next, h=h 1 +h 2 /2 is calculated and the film thickness h is output.

このように本実施例によれば被測定薄膜試料を
セツトして装置をスタートさせれば、後の作業は
全て装置自身が行うために、従来の手作業による
データ解析の際に生ずるミスがなくなり、高信頼
性が得られる。またノイズ等による波形の変形が
あつても2次曲線に回帰する際、誤差を打ち消す
効果があり、従つてくりかえし精度を1%以下
(従来方では3%)に抑えることができ、さらに
測定解析時間が従来の約半分となる。
In this way, according to this embodiment, once the thin film sample to be measured is set and the apparatus is started, all subsequent work is done by the apparatus itself, eliminating mistakes that occur during conventional manual data analysis. , high reliability can be obtained. In addition, even if the waveform is deformed due to noise, etc., it has the effect of canceling out the error when regressing to the quadratic curve. Therefore, it is possible to suppress the repetition accuracy to 1% or less (3% with the conventional method), and further improve measurement analysis. The time is about half that of the conventional method.

なおホトマル感度曲線は測定条件を一定にして
おけばデータの値はほとんど変化しないので、あ
らかじめこのデータA()をフアイルメモリ
(例えば磁気テープ)に記憶しておき、計算の際
にこれを読み出して処理することもできる。この
ようにすれば毎回基板を測定する操作が省略で
き、測定時間をさらに短縮することができる。
Note that the data value of the photomal sensitivity curve hardly changes if the measurement conditions are kept constant, so store this data A() in advance in a file memory (for example, magnetic tape) and read it out during calculation. It can also be processed. In this way, the operation of measuring the substrate every time can be omitted, and the measurement time can be further shortened.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、極め
て簡易な構成で薄膜の膜厚を迅速且つ精度良く自
動的に測定することができ、実用的には極めて有
用である。
As described above, according to the present invention, the thickness of a thin film can be automatically measured quickly and accurately with an extremely simple configuration, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、第2図はホ
トマルの感度曲線を示す図、第3図は被測定薄膜
の光干渉波形を示す図、第4図は第3図の波形を
第2図の感度曲線で補正した波形を示す図、第5
図はマイクロコンピユータのソフトウエアを示す
フローチヤート図、第6図は光の干渉の説明図、
第7図は従来の膜厚測定装置を示す図である。 第1図において、20…分光器、201…波長
マーカー、202…ホトマル、21,22…A/
Dコンバータ、23…インターフエイス、24…
マイクロコンピユータ、241…CPU、242
…RAM、243…ROM、25…CRT、26…
プリンタである。
Fig. 1 is a diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a diagram showing the sensitivity curve of the photomultiplier, Fig. 3 is a diagram showing the optical interference waveform of the thin film to be measured, and Fig. 4 is a diagram showing the waveform of Fig. 3. Figure 5 shows the waveform corrected using the sensitivity curve in Figure 2.
The figure is a flowchart showing the software of the microcomputer, and Figure 6 is an illustration of light interference.
FIG. 7 is a diagram showing a conventional film thickness measuring device. In FIG. 1, 20...spectroscope, 201...wavelength marker, 202...photometer, 21, 22...A/
D converter, 23...interface, 24...
Microcomputer, 241...CPU, 242
...RAM, 243...ROM, 25...CRT, 26...
It's a printer.

Claims (1)

【特許請求の範囲】 1 a) 被測定試料をセツトした分光器の光の
掃引波長を一定の間隔毎に検出する手段、 b) 波長の信号を受信した際、その波長での光
の電気信号を読み取る手段、 c) 各波長−光強度の値を組にして記憶する手
段、 d) あらかじめ記憶してある基板等で測定した
波長−光強度の値の組で前記c)の値を補正
し、補正値の平均位置に基準線を引く手段、 e) 前記d)で計算した値を記憶する手段、 f) 補正値による光の干渉波形曲線の基準線の
正側又は負側の曲線の一つ一つについてその形
状を調べ、データとして採用するかどうかを判
定する手段、 g) 前記f)で採用された曲線のデータから最
小2乗法により2次曲線(放物線)に回帰する
手段、 h) 前記g)の放物線の根を求めその1/2を曲
線のピーク波長とする手段、 i) 正側曲線の最初と最後のピークの波長およ
びこれらの波長の間にあるピークの数より1を
減じた値から膜厚を求め、さらに負側の曲線か
らも同様にして膜厚を求め、双方を平均してこ
れを薄膜の膜厚とする手段、から成ることを特
徴とする自動膜厚測定装置。
[Scope of Claims] 1 a) Means for detecting at regular intervals the swept wavelength of light of a spectrometer in which a sample to be measured is set; b) When receiving a signal at that wavelength, an electric signal of light at that wavelength c) Means for storing each wavelength-light intensity value pair; d) Correcting the value of c) with a pre-stored wavelength-light intensity value pair measured on a board, etc. , means for drawing a reference line at the average position of the correction values; e) means for storing the value calculated in step d); f) one of the positive or negative side curves of the reference line of the optical interference waveform curve based on the correction values; g) means for regressing the curve data adopted in step f) to a quadratic curve (parabola) using the method of least squares, h) Means for finding the root of the parabola in g) above and setting 1/2 of it as the peak wavelength of the curve, i) Subtracting 1 from the wavelength of the first and last peaks of the positive curve and the number of peaks between these wavelengths; An automatic film thickness measuring device characterized by comprising means for determining the film thickness from the obtained value, further determining the film thickness in the same manner from the negative side curve, and averaging both to determine the film thickness of the thin film. .
JP3018185A 1985-02-20 1985-02-20 Automatic film thickness measuring apparatus Granted JPS61191906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018185A JPS61191906A (en) 1985-02-20 1985-02-20 Automatic film thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018185A JPS61191906A (en) 1985-02-20 1985-02-20 Automatic film thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JPS61191906A JPS61191906A (en) 1986-08-26
JPH0357407B2 true JPH0357407B2 (en) 1991-09-02

Family

ID=12296588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018185A Granted JPS61191906A (en) 1985-02-20 1985-02-20 Automatic film thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61191906A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085101B2 (en) * 2012-06-05 2017-02-22 株式会社東光高岳 Film thickness measuring apparatus and film thickness measuring method
CN106706639B (en) * 2016-12-19 2019-11-22 清华大学 A method of by scanning the real-time oxidation rate of the topography measurement whole audience

Also Published As

Publication number Publication date
JPS61191906A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
US5101111A (en) Method of measuring thickness of film with a reference sample having a known reflectance
EP0250959B1 (en) Method of calibrating reflectance measuring devices
JPH0352885B2 (en)
JP2980493B2 (en) Measurement method of flying height of magnetic head
JPH0357407B2 (en)
CN109632087B (en) On-site calibration method and device suitable for imaging brightness meter
US6388756B1 (en) Optical method of measuring trench depth
JP3048164B2 (en) X-ray CT system
JP4233423B2 (en) Quantitative method and spectrum measuring apparatus
KR920004214B1 (en) Optical type displacement testing apparatus
CN112557435A (en) Glass thermal shrinkage rate measuring system, method, storage medium and electronic device
US4338033A (en) Densitometer
JP2021081192A (en) Linearity correction method of optical measuring device, optical measuring method and optical measuring device
JPH063135A (en) Intensity correction method of reflected light
KR100892402B1 (en) Housing for Line Scan Camera and Error Compensation Method in strip width measurement using the same
JPH01319238A (en) X-ray spectrum analyzer
JPH09269305A (en) Method and apparatus for fluorescent x-ray analysis
Buhr et al. Intercomparison of visual diffuse transmission density measurements
GB2179162A (en) Test load machine calibration apparatus
JPS62182612A (en) Apparatus for measuring surface position of specimen
JP3526724B2 (en) Error correction method in shape measuring device
JPH08271213A (en) Edge detector
JPS58176508A (en) Method and device for calibrating meter in optical thickness gage
JPH063364B2 (en) Film thickness measurement method
Andrews et al. A Simultaneous Six-Channel Microphotometer with Computerized Data Acquisition