JPS58175929A - Method of controlling power feeding system using solar battery - Google Patents

Method of controlling power feeding system using solar battery

Info

Publication number
JPS58175929A
JPS58175929A JP57060070A JP6007082A JPS58175929A JP S58175929 A JPS58175929 A JP S58175929A JP 57060070 A JP57060070 A JP 57060070A JP 6007082 A JP6007082 A JP 6007082A JP S58175929 A JPS58175929 A JP S58175929A
Authority
JP
Japan
Prior art keywords
power
output
solar battery
inverter
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060070A
Other languages
Japanese (ja)
Other versions
JPH0261227B2 (en
Inventor
熊野 昌義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57060070A priority Critical patent/JPS58175929A/en
Publication of JPS58175929A publication Critical patent/JPS58175929A/en
Publication of JPH0261227B2 publication Critical patent/JPH0261227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は太陽電池及びエネルギ%積手段として蓄電池
が並設され、これより電力変換器を介して他の交流電源
系統に電力を供給する給電システムの運用制御に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the operational control of a power supply system in which a solar cell and a storage battery are arranged in parallel as energy storage means, and from which power is supplied to another AC power supply system via a power converter. be.

オ1図は、従来のこの種の給電システムの一実施例を示
す構成図である。図に於て11+は太陽電池、(21は
蓄電池、(31はインバータ、(4)は他の交流電源系
統、(5)は上記インバータの電流又は電力制御回路、
(6)は同指令、(7)は電流検出手段である。
FIG. 1 is a configuration diagram showing an example of a conventional power supply system of this type. In the figure, 11+ is a solar cell, (21 is a storage battery, (31 is an inverter, (4) is another AC power supply system, (5) is the current or power control circuit of the inverter,
(6) is the command, and (7) is the current detection means.

次に仙作について説明する。太14電池Il+で発生し
た直流電力をインバータ13)により所定同波数の交流
に変換し、商用系統等地の交流電源系統(4)に電力を
供給するのであるが、太陽電池filは日射量に応しそ
の出力は大巾に変動するため、系統容量に対し、太陽電
池の容量が非常に小さな時は問題ないが、そうでない時
、太陽電池出力はそのまま系統へ供給すると、系統の電
力動揺7′IK生じ問題となる。この為、通常、直流回
路に蓄電池(21を設け、太陽電池出力を一時蓄える。
Next, I will explain Sensaku. The DC power generated by the 14-inch battery Il+ is converted into AC with the same predetermined wave number by the inverter 13), and the power is supplied to the AC power system (4) of the commercial system etc. However, if the capacity of the solar cell is very small compared to the grid capacity, there will be no problem, but if the output of the solar cell is not supplied directly to the grid, the power fluctuation of the grid will occur. 'IK occurs and becomes a problem. For this reason, a storage battery (21) is usually provided in the DC circuit to temporarily store the solar cell output.

インバータ(31は、その供給電力を電流検出手段(7
)、−この場合人力直圧がほぼ一定の為、入力電流は供
給電力に比例する□で検出し、この値が指令値(6)に
等しくなるよう、電力C電流)制御回路(5)にて制御
される。
The inverter (31) detects the supplied power by the current detecting means (7).
), - In this case, since the human direct pressure is almost constant, the input current is detected by □ which is proportional to the supplied power, and the power C current) control circuit (5) is set so that this value is equal to the command value (6). controlled by

ところで、供給電力指令値(6)は、運用の目的によっ
て決められる。例えば、ロードレベリングを行なう場合
は、系統の需給関係に基づく電力運用パターンで決めら
れるが通常、夜間、系統から心力を受け、蓄電池に充′
電、昼間の特定時間帯に急速放電する結果となり、必要
な蓄電j’@ f21の容量も非常に大となる。一方、
発電レベリングと称する運用法がある。これは、交流系
統(41の需給に関係なくこの太陽電池給電システムが
発生する心力の急激な変動を抑制し、前述のごとく、系
統への要影響を防止しようとする方法である。この場合
、指令値(6)には例えば第2図囚で示すごとく、初め
求めら・れる太陽電池の発生電力予想パターンを用いる
が、実際の太陽電池出力は、同図fBlで示すごとく、
雲などの影響を受は大巾に変動すると共に予想より大巾
にずれることもしばしばある。この太陽電池出力(同図
(B))と系統への供給電力(同図tAl)の子は蓄電
池の充放電でまかなわれる。この結果その差の]I瞬時
値が大きいと、JIi電池の充、故電′−流も大となる
。さらに同図+CIに示す差の積分値は、蓄電池の充、
放電の電気量である為、光。
By the way, the power supply command value (6) is determined depending on the purpose of operation. For example, when load leveling is performed, it is determined by the power operation pattern based on the supply and demand relationship of the grid, but normally at night, energy is received from the grid and the storage battery is charged.
As a result, the electricity is rapidly discharged during a specific time period during the day, and the required capacity of the electricity storage j'@f21 becomes extremely large. on the other hand,
There is an operation method called power generation leveling. This is a method of suppressing sudden fluctuations in the power generated by this solar cell power supply system regardless of the supply and demand of the AC system (41), and as described above, to prevent any significant impact on the system. In this case, For the command value (6), for example, as shown in Figure 2, the expected power generation pattern of the solar cell that is initially determined is used, but the actual solar cell output is as shown in Figure 2, fBl.
Influenced by clouds and other factors, the weather fluctuates widely and often deviates much more than expected. The solar cell output ((B) in the same figure) and the power supplied to the grid (tAl in the same figure) are covered by charging and discharging the storage battery. As a result, when the instantaneous value of the difference [I] is large, the charging and waste current of the JIi battery also becomes large. Furthermore, the integral value of the difference shown in +CI in the same figure is the charging of the storage battery,
Light because it is the amount of electricity in a discharge.

放電のバランスがくずれると蓄電池設置容h1が十分で
ない場合、すぐ過充電、過放電等の、−1限出力を完全
に予想することは非常に内錐で、どうしても蓄′邂池容
穢の増1は防げ得なかった。
If the balance of discharge is disrupted and the storage battery installed capacity h1 is not sufficient, overcharging, overdischarging, etc. will occur, and it is extremely naive to completely predict the -1 limit output, and the storage battery capacity will inevitably increase. 1 could not be prevented.

この発明は発電レベリングに属するが上記のような従来
のものの欠点を除去するためになされたもので、太陽電
池の出力を検出し、これを平滑して、インバータ出力制
御の指令値として用いることにより、蓄電池の充放電電
流も比較的小さくなり、且つ、充電放電のバランスが自
動的に敗れる為には、蓄電池設備容量は少なく出来ると
共に、系統への供給電力の急変も防止出来る給電システ
ムの制御法を提供するものである。
This invention belongs to power generation leveling, but was made to eliminate the drawbacks of the conventional ones as described above.It detects the output of solar cells, smooths it, and uses it as a command value for inverter output control. , Since the charging/discharging current of the storage battery becomes relatively small and the charging/discharging balance is automatically lost, the capacity of the storage battery equipment can be reduced, and a power supply system control method that can prevent sudden changes in the power supplied to the grid. It provides:

以下、この発明の一実施例を図について説明する。第8
図に放て、(7a)は太陽電池(1)の出力を検出すべ
く設けられた電流検出手段s  (7b)はインバータ
13)の交流電源系統(4)への出力を検出すべく設け
られた電流検出手段、(8)は(7a)で検出された太
陽電池の出力信号を平滑し、インバータ13)の磁力(
電流)制御回路(5)への指令値とする為の平滑回路(
フィルタ)であり、1…常、−次遅れ回路が用いられる
An embodiment of the present invention will be described below with reference to the drawings. 8th
In the figure, (7a) is a current detection means s provided to detect the output of the solar cell (1). (7b) is a current detection means s provided to detect the output of the inverter 13) to the AC power system (4). The current detection means (8) smoothes the output signal of the solar cell detected in (7a), and calculates the magnetic force (
Smoothing circuit (current) to set the command value to the control circuit (5)
filter), and a -order lag circuit is usually used.

次に動作について、第8図及び第4図を用いて説明する
Next, the operation will be explained using FIGS. 8 and 4.

太陽電池(11の1日の出力変動例をオ邸図と同様第4
図+B)に示す。今、直流電圧は、蓄を池電圧でほぼ一
定となっている為、第1図の場合と同様に直流電流と電
力に比例するため、電流検出手段(7a)Kて、太陽電
池出力(第4図(B))を検出する。これを平滑回路(
8)に於て平滑すれば、第4図■)のごとく、滑らかな
波形が得られる。これを制御回路(5)の指令信号とし
、インノ(−タ(3)の電流(電力)を検出手段(7b
)で検出し、フィードバック制御すれば、インバータの
供給電力も、第4図fD)と同じものが得られる。
Solar cells (11 examples of daily output fluctuations are shown in Figure 4)
Shown in Figure +B). Now, since the DC voltage is almost constant due to the battery voltage, it is proportional to the DC current and power as in the case of Figure 1, so the current detection means (7a) 4 (B)) is detected. This is a smoothing circuit (
If the waveform is smoothed in step 8), a smooth waveform can be obtained as shown in Fig. 4 (■). This is used as a command signal for the control circuit (5), and the current (power) of the inverter (3) is detected by the detection means (7b).
) and performs feedback control, the same power supplied to the inverter as in Fig. 4 fD) can be obtained.

父、蓄電池(2)への”充、放電電流は、太陽′電池出
力(第4図(B))とインバータ出力(オ番図(D))
の差となり、これを積分すれば、蓄1!池の充放電電気
量はオ番図tE)に示すごとく、殆人ど変化せず、もし
損失がないとすれば、最終値と初期値は等しくなる。父
、これらの最大振巾も、平滑回路(8)の時定数で決め
ることが出来る。この結果、渭′に池の充放電電気量を
大巾に減らすことが出来設備容軟の低減が可能となる。
The charging and discharging current to the storage battery (2) is determined by the solar battery output (Figure 4 (B)) and the inverter output (Figure 4 (D)).
If you integrate this, you will get 1! As shown in the diagram tE), the amount of electricity charged and discharged from the pond hardly changes, and if there is no loss, the final value and the initial value will be equal. These maximum amplitudes can also be determined by the time constant of the smoothing circuit (8). As a result, the amount of electricity charged and discharged from the pond can be greatly reduced, and equipment flexibility can be reduced.

なお、上記実施例では、太陽電池の出力を電流検出手段
(7a)Kより検出しているが、直流電圧が変動する場
合は当然、rK力を直接検出してもよい。又、この(7
a)の代りに太陽′電池出力を支配する日射量を日射計
等で検出してもよいO さらに、平滑回路(8)には、−次遅れフィルタに限ら
ず太陽電池出力変動スペクトルに合った欅の平滑回路が
使用出来る。
In the above embodiment, the output of the solar cell is detected by the current detection means (7a)K, but if the DC voltage fluctuates, the rK force may of course be directly detected. Also, this (7
Instead of a), the amount of solar radiation that governs the solar cell output may be detected using a pyranometer, etc. Furthermore, the smoothing circuit (8) is not limited to a -order lag filter, but also has a filter that matches the solar cell output fluctuation spectrum. Keyaki's smoothing circuit can be used.

以上のように、この発明によれば、蓄電1東を並設した
太陽電池の系統への給電システムに於て、太陽電池の出
力を検知、これを平滑して、系統への給電指令とするこ
とにより、系統への供給電力の急変を防止する七共に、
蓄′+1.L池の充放電電気量を少なく抑え、蓄電池設
備容量の低減を図り、放電深度の管理等も容易ならしめ
るものである。
As described above, according to the present invention, in a power supply system to a grid of solar cells in which power storage 1 East is installed in parallel, the output of the solar cells is detected, smoothed, and used as a power supply command to the grid. By doing so, we can prevent sudden changes in the power supplied to the grid.
Accumulation +1. The amount of electricity charged and discharged from the L battery can be kept low, the capacity of storage battery equipment can be reduced, and the depth of discharge can be easily managed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の給電システムの制御法を示す構成図、第
2図は、第1図の幼作説明の為の各部の波形を示す図、
第8図はこの発明の一実施例による給電システムの制御
法を示す構成図、第4図は、第3図の・助作を説明する
為の各部の波形を示す図である。 図において、Ill −−一太陽電池、j21−−一蓄
電池、+31−−−インバータ、+41−−一交流イ源
系統、+5+−−−インバータの′成力C心流)制御回
路、(7+ −−一電流(1力)検出手段、+8+−−
−平滑回路Cフィルター)。 なお、図中、同一符号は同一、又は相当部分を示す。 代理人  葛 野  信 − 第1図 第2図
Fig. 1 is a configuration diagram showing a conventional power supply system control method, Fig. 2 is a diagram showing waveforms of each part to explain the work in Fig. 1,
FIG. 8 is a block diagram showing a method of controlling a power feeding system according to an embodiment of the present invention, and FIG. 4 is a diagram showing waveforms of various parts for explaining the supplementary work of FIG. In the figure, Ill--one solar cell, j21--one storage battery, +31--inverter, +41--one current source system, +5+--inverter's ′component C heart flow) control circuit, (7+-- −One current (one force) detection means, +8+−−
- smoothing circuit C filter). In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Shin Kuzuno - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  太陽電池及びこれに並列に蓄電池よりインバ
ータを介して、他の交流電源に電力を供給する給電シス
テムに於て、上記太陽電池の出力又は日射量を検出し、
これを平滑して、この値に応じて上記インバータの出力
を制御することを特徴とする給電システムの制御法。
(1) In a power supply system that supplies power from a solar battery and a storage battery parallel to the solar battery to another AC power source via an inverter, detecting the output or amount of solar radiation of the solar battery,
A method for controlling a power supply system, characterized in that the output of the inverter is controlled according to this value by smoothing this value.
JP57060070A 1982-04-08 1982-04-08 Method of controlling power feeding system using solar battery Granted JPS58175929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060070A JPS58175929A (en) 1982-04-08 1982-04-08 Method of controlling power feeding system using solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060070A JPS58175929A (en) 1982-04-08 1982-04-08 Method of controlling power feeding system using solar battery

Publications (2)

Publication Number Publication Date
JPS58175929A true JPS58175929A (en) 1983-10-15
JPH0261227B2 JPH0261227B2 (en) 1990-12-19

Family

ID=13131449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060070A Granted JPS58175929A (en) 1982-04-08 1982-04-08 Method of controlling power feeding system using solar battery

Country Status (1)

Country Link
JP (1) JPS58175929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164236A (en) * 1987-12-19 1989-06-28 Sanyo Electric Co Ltd Control method of solar photovoltaic power generating system
US6911593B2 (en) * 2002-09-24 2005-06-28 Board Of Trustees Of The University Of Arkansas Transparent self-cleaning dust shield
WO2007086472A1 (en) * 2006-01-27 2007-08-02 Sharp Kabushiki Kaisha Power supply system
WO2018109827A1 (en) * 2016-12-13 2018-06-21 東芝三菱電機産業システム株式会社 Power conversion device and solar power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164236A (en) * 1987-12-19 1989-06-28 Sanyo Electric Co Ltd Control method of solar photovoltaic power generating system
US6911593B2 (en) * 2002-09-24 2005-06-28 Board Of Trustees Of The University Of Arkansas Transparent self-cleaning dust shield
WO2007086472A1 (en) * 2006-01-27 2007-08-02 Sharp Kabushiki Kaisha Power supply system
US8310094B2 (en) 2006-01-27 2012-11-13 Sharp Kabushiki Kaisha Power supply system
WO2018109827A1 (en) * 2016-12-13 2018-06-21 東芝三菱電機産業システム株式会社 Power conversion device and solar power generation system

Also Published As

Publication number Publication date
JPH0261227B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US6380715B1 (en) Electric power system
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
EP2545632B1 (en) Regulation of contribution of secondary energy sources to power grid
US10811900B2 (en) Uninterruptible power supply system and uninterruptible power supply apparatus
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
JP5541982B2 (en) DC power distribution system
KR102074686B1 (en) A hybrid energy storage system
JPH09233710A (en) Charger and discharger for transformation of storage battery
JPH06266457A (en) Photovoltaic power generating equipment capable of jointly using battery
JPH11262186A (en) Controller of power storage system
KR20200086835A (en) Customer load management system using Uninterruptible Power Supply
JPS58175929A (en) Method of controlling power feeding system using solar battery
JPS6290984A (en) Solar photovoltaic generation control system
JPS60256824A (en) Controller of solar power generating system
JP7051157B2 (en) Power control system
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
KR20230034412A (en) uninterruptible power supply
JPH04308431A (en) Control method for photovoltaic power generation linking system
JPS6337585B2 (en)
JP6993300B2 (en) Power storage system
EP4027476A1 (en) Power energy storage system and energy storage power supply system
JP6229777B1 (en) Electric power leveling device
JPS6289435A (en) Charger
Tadayonnia et al. Control strategy for DC micro grid to supply AC loads
JP2020036481A (en) Power generating system