JPS58175925A - Defect detecting system for solar light generating system - Google Patents

Defect detecting system for solar light generating system

Info

Publication number
JPS58175925A
JPS58175925A JP57060071A JP6007182A JPS58175925A JP S58175925 A JPS58175925 A JP S58175925A JP 57060071 A JP57060071 A JP 57060071A JP 6007182 A JP6007182 A JP 6007182A JP S58175925 A JPS58175925 A JP S58175925A
Authority
JP
Japan
Prior art keywords
solar cell
generation system
power generation
solar
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57060071A
Other languages
Japanese (ja)
Other versions
JPS642011B2 (en
Inventor
熊野 昌義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57060071A priority Critical patent/JPS58175925A/en
Publication of JPS58175925A publication Critical patent/JPS58175925A/en
Publication of JPS642011B2 publication Critical patent/JPS642011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Photovoltaic Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は複数個直並列接続され太陽電池より、共通直
流母線にて電力を取り出す発電システムの、故障検出方
式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a failure detection method for a power generation system that extracts power from a plurality of solar cells connected in series and parallel to a common DC bus.

太陽電池単体はたかだかIW程度である為、非常に多数
直並列され発電システムが構成される。
Since a single solar cell is approximately IW at most, a large number of solar cells are connected in series and parallel to form a power generation system.

従来この種の発電システムとして、第1図に示すものが
あった。(1a)〜(1n)はそれぞれ複数個直列接続
された太陽電池のパネル又1同パネルの複数個の直列体
からなる太陽電池ユニット、(2a)名太陽電池ユニッ
トに直列接続され、太陽電池の逆方向電池を防止する逆
流阻止ダイオード、(3a)(3b)は直流共通母線、
(4a)+ (41))は直流しゃ断器、(5)はこの
発電システムに対する負荷で、通常のインピーダンス負
荷以外に、他の直流電源や、インバータを介した、交流
電源系統の場合もある。
A conventional power generation system of this type is shown in FIG. (1a) to (1n) are a solar cell unit consisting of a plurality of solar cell panels connected in series, or a plurality of solar cell panels connected in series; (2a); Reverse current blocking diodes to prevent reverse battery, (3a) and (3b) are DC common busbars,
(4a) + (41)) is a DC breaker, and (5) is a load for this power generation system.In addition to the normal impedance load, it may be another DC power source or an AC power system via an inverter.

次に動作について説明する。太陽電池の電圧−電流特性
は第2図(A)又は(B)に示すごとく非線形特性を示
す。ここで、第1図の太陽を池ユニツ)(la)〜l(
計1)までの特性が第2図(A)、ユニツ) (In)
の特性が同の)と仮定する。今もし逆流阻止ダイオード
(2a)〜(2n)がなければ、しゃ断器(4)の開放
時、太陽電池は電流が零となり開放電圧を示そうとする
が、並列接続されている為、VOでバランスする。
Next, the operation will be explained. The voltage-current characteristics of the solar cell exhibit nonlinear characteristics as shown in FIG. 2 (A) or (B). Here, the sun in Figure 1 is ike units) (la) ~ l (
The characteristics up to 1) in total are shown in Figure 2 (A). (In)
(with the same characteristics). Now, if there were no backflow blocking diodes (2a) to (2n), when the breaker (4) is opened, the solar cell's current would be zero and it would try to show an open circuit voltage, but since it is connected in parallel, the VO balance.

この時、ユニット(1a)〜(〉l)は工aなる順方向
電流が流れ、(1n)にはItlなる逆方向電流が流れ
る。この時当然rb=−(n−1)Iaなる関係が成立
し、並列数が多い時、仮え特性差が小さく共大きな逆電
流が流れ、太陽電池を損傷することがある、又太陽電池
の接地や短絡事故時には、バランスがくずれ、他の太陽
電池ユニットから大きな逆電流が供給され破損すること
になる。この為、第1図では、逆流阻止ダイオード(2
a)〜(2n)を各太陽電池ユニット(la)〜(In
)に設け、上記問題を解決していた。
At this time, a forward current A flows through the units (1a) to (>l), and a reverse current Itl flows through the units (1n). At this time, the relationship rb=-(n-1)Ia naturally holds true, and when there are many parallels, even if the difference in characteristics is small, a large reverse current flows, which may damage the solar cell. In the event of a grounding or short-circuit accident, the balance will be disrupted and a large reverse current will be supplied from other solar cell units, resulting in damage. For this reason, in Figure 1, a backflow blocking diode (2
a) to (2n) to each solar cell unit (la) to (In
) to solve the above problem.

しかし、もし万一、上記逆流阻止ダイオードが破損し、
逆阻能力を失えば、前述のごとく太陽電池破損へ結びつ
ぐ可能性があった。(前述のごとく、ダイオードが故障
し、且他の条件が満足して・初めて太陽電池破損となる
) 処で、この種のシステムでは、多数のユニット太陽電池
間でエネルギの授受が行なわれる為、各ユニット毎にし
ゃ断器を設けない限シ、異常電流が流れてからでは、太
陽電池の破損を防止することが出来なかった。父、ダイ
オードの直列接続により信傾性の向上を図ることは、損
失の増加をまねいた0さらにダイオードを1つづつチェ
ックしてまわることも非常に手間のかかる問題であった
However, in the unlikely event that the above-mentioned backflow blocking diode is damaged,
If the reverse blocking ability were lost, there was a possibility that it would lead to solar cell damage as mentioned above. (As mentioned above, the solar cell will only be damaged when the diode fails and other conditions are satisfied.) However, in this type of system, energy is transferred between many unit solar cells, so Unless a circuit breaker is provided for each unit, damage to the solar cells cannot be prevented once abnormal current flows. However, trying to improve the reliability by connecting diodes in series led to an increase in loss, and it was also extremely time-consuming to check each diode one by one.

この発明は、問題を解決すべくなさhたもので、直流母
線から一括して試験電圧を印加することにより、逆流阻
止ダイオードの故障を発見し、太陽電池の破損につなが
るのを未然に防止しようとするものである。
This invention was made to solve the problem. By applying a test voltage all at once from the DC bus, it is possible to discover failures in reverse blocking diodes and prevent damage to the solar cells. That is.

以下、この発明の一実施例を図について説明する。第3
図に於て、(1)〜(5)までは、先の第1図と同じで
ある。(6)は太陽電池ユニノ) (la)〜(1n)
の開放電圧(無負荷電圧)より高い電圧値を有する直流
電源、(7)は直流電源(6)に直列接続された抵抗、
(8)は、直流電源(6)が供給する電流の供を測定す
る手段、(9)はこれら(6)〜(8)を、直流共通母
線(3)に接続するだめのスイッチ。αQは必要に応じ
て設けられる上記直流母線(3a)−(3b)間を短絡
するしゃ断器である。
An embodiment of the present invention will be described below with reference to the drawings. Third
In the figure, (1) to (5) are the same as in FIG. 1 above. (6) is solar cell unino) (la) ~ (1n)
(7) is a resistor connected in series with the DC power supply (6),
(8) is means for measuring the current supplied by the DC power supply (6), and (9) is a switch for connecting these (6) to (8) to the DC common bus (3). αQ is a breaker provided as necessary to short-circuit between the DC buses (3a) and (3b).

次に動作について説明する。今、直流しゃ断器(4a)
+ (41))が開放され、このシステムが無負荷状態
の時、スイッチ(9)を閉じる。今、逆流阻止ダイオー
ド(2a)〜(2n)が全て健全に逆方向阻止能力を有
していれば、印加された直流電源(6)から供給される
電流は、上記ダイオードのもれ電流を初めとするシステ
ムのもれ電流しか流れない。一方、上記ダイオードの内
1つでも逆方向阻止能力がなければ、上記直流電源(6
)の電圧と太陽電池二ニットの開放電圧の差により逆方
向電流が流れ、この値は、直列抵抗(7)により制限さ
れる為、太陽電池が破損することはない。
Next, the operation will be explained. Now, the DC breaker (4a)
+ (41)) is opened and the switch (9) is closed when the system is under no load. Now, if all the reverse blocking diodes (2a) to (2n) have a healthy reverse blocking ability, the current supplied from the applied DC power supply (6) will be Only the leakage current of the system will flow. On the other hand, if even one of the diodes does not have reverse blocking ability, the DC power supply (6
) A reverse current flows due to the difference between the voltage of 2 nits and the open circuit voltage of the solar cell, and since this value is limited by the series resistance (7), the solar cell will not be damaged.

この場合、ダイオードのもれ電流は定格電流の数桁少な
く、又、太陽電池が許容される逆方向電流は、短時間な
ら定格の十倍以上である為、仮え、並列接続数nが大き
く共、実用的範凹では、両者の値に差があり十分判別可
能である〇 この結果、電流測定手段(8)にて、この逆電流を検知
することにより、逆流阻止ダイオードの破損を一括して
発見することが出来る。
In this case, the leakage current of the diode is several orders of magnitude lower than the rated current, and the allowable reverse current of the solar cell is more than 10 times the rated value for a short time, so if the number of parallel connections n is large, In the practical range, there is a difference between the two values and it is possible to distinguish them sufficiently.As a result, by detecting this reverse current with the current measuring means (8), damage to the reverse current blocking diode can be detected at once. can be discovered.

この方法によれば、前述のごとく、開放電圧のバラツキ
や、接地、短絡条件等、太陽電池の2次破損粂件を満足
する以前にダイオードの破損のみで検出出来る為、太陽
電池の2次破損防止には有効である。
According to this method, as mentioned above, secondary damage to the solar cell can be detected only by damage to the diode before the conditions for secondary damage to the solar cell are satisfied, such as variations in open circuit voltage, grounding, short circuit conditions, etc. Effective in prevention.

又、日射量がない状態に於ても、太陽電池に電圧を印加
すれば、太陽電池はダイオード特性を示すため、この検
出法はそのまま適用出来るので、夜間等システムが稼動
しない時に故障検知が行え、システム運用に影響なく処
置出来る。
Furthermore, even when there is no solar radiation, if a voltage is applied to the solar cell, the solar cell exhibits diode characteristics, so this detection method can be applied as is, so failures can be detected when the system is not operating, such as at night. This can be done without affecting system operation.

さらに、もし、昼間日射量がある時ダイオードが故障し
、これを発見しても、前に述べたごとくすぐに太陽電池
が2次破損する確率は比較的少ないが、これを完全に防
止するには、直流共通母線(3a)−(3b)間をしゃ
断器αQ等にて短絡するか、もし、負荷(5)への間に
電力変換器等が設けられている場合には、これによシ、
直流母線電圧が低くなる様に連転制御すれば仮え、この
期間中に接地、短絡事故が重なっても、太陽電池に逆電
流が流れず、2次破損は生じない。
Furthermore, even if a diode fails during the day when there is high solar radiation and this is discovered, the probability of immediate secondary damage to the solar cell is relatively small, but it is impossible to completely prevent this. , short-circuit the DC common bus (3a) and (3b) using a circuit breaker αQ, etc., or if a power converter etc. is installed between the load (5), C,
If continuous control is performed so that the DC bus voltage is lowered, even if a grounding or short-circuit accident occurs repeatedly during this period, no reverse current will flow to the solar cells and no secondary damage will occur.

なお、第3図の実施例では、直流電源として太陽電池ユ
ニットの開放電圧よシ高い固定電圧としているが、可変
電圧源を用い、除去に電圧を1げてもよい。又、電流測
定手段(8)は、図の構成に限らず、抵抗(7)の電圧
降下を初め直流電源(6)の電流が測定、検出出来るも
のであれば、いずれの方法でもよい。
In the embodiment shown in FIG. 3, a fixed voltage higher than the open circuit voltage of the solar cell unit is used as the DC power source, but a variable voltage source may be used to increase the voltage for removal. Further, the current measuring means (8) is not limited to the configuration shown in the figure, but may be any method as long as it can measure and detect the voltage drop of the resistor (7) and the current of the DC power source (6).

さらにスイッチ(9)は必らずしも必要なものでなく、
多少の損失さえ許されれば、常時接続し、故障判定は、
しゃ断器(4a)+ (4b)との論理で行なうことも
可能である。
Furthermore, the switch (9) is not necessarily necessary;
If even some loss is allowed, it can be connected all the time and failure detection can be done by
It is also possible to use the logic of circuit breaker (4a) + (4b).

以上の様に、この発明によれば、無負荷時、開放電圧よ
り高い電圧を、抵抗を介して、直流母線に印加し、この
時の給給電流により、逆流阻止ダイオードの破損を一括
して検知したので、上記逆流阻止ダイオードの破損に基
づく太陽電池の2次破損を、簡単に防止することが出来
る。
As described above, according to the present invention, when there is no load, a voltage higher than the open circuit voltage is applied to the DC bus through the resistor, and the supplied current at this time prevents damage to the reverse current blocking diode at once. Since this is detected, secondary damage to the solar cell due to damage to the backflow blocking diode can be easily prevented.

$1図は従来の太(易電池発藏システムの構成を示す図
、第2図は、第1図の説明の為の太陽電池の特性側、第
3図はこの発明の〜実施例による太陽電池発電システム
の故障検出方式の本成図である0 図において、(la)〜(In)−太陽電池ユニット、
(2a)〜(2n)−逆流阻止ダイオード、(3a)+
 (3b) −直流共通母線、(4a)、 (4b)−
直流しゃ断器、(5) −負荷、(6)−直流電源、(
7)−抵抗、(8)−電流測定手段、(9)・−スイッ
チ、0*−短絡しゃ断器。
Figure 1 is a diagram showing the configuration of a conventional solar battery generation system, Figure 2 is a diagram showing the characteristics of a solar cell for explaining Figure 1, and Figure 3 is a diagram showing the solar cell characteristics according to embodiments of the present invention. In Figure 0, which is a complete diagram of a failure detection method for a battery power generation system, (la) to (In) - solar cell units,
(2a)-(2n)-backflow blocking diodes, (3a)+
(3b) - DC common bus, (4a), (4b) -
DC breaker, (5) - load, (6) - DC power supply, (
7) - resistance, (8) - current measuring means, (9) - switch, 0* - short circuit breaker.

なお、図中、同一符号は同−又は相当部分を示す。In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

代理人  葛野信− 第1図 第2図 第3図Agent Shin Kuzuno Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  複数個の直列接続された太陽電池及び該太陽
電池に対逆方向電流を阻止する方向に直列接続されたダ
イオードからなる直列体を共通母線に複数個並列接続し
た太陽電池発電システムに於て、該発電システムが無負
荷時、上記システムの開放電圧より高い直流電圧を抵抗
を通じて、上記共通母線間に印加し、この時の電流を持
って故障検出する事を特徴とする太陽光発電システムの
故障検出方式。
(1) In a solar cell power generation system in which a plurality of series bodies consisting of a plurality of series-connected solar cells and diodes connected in series to the solar cells in a direction that blocks reverse current are connected in parallel to a common bus bar. A solar power generation system characterized in that when the power generation system is under no load, a DC voltage higher than the open circuit voltage of the system is applied between the common bus bars through a resistor, and a failure is detected using the current at this time. fault detection method.
(2)  直流母線間に短絡しゃ断器を設け、故障検出
時、該しゃ断器を短絡させることを特徴とする特許請求
の範囲第1項記載の太陽光発電システムの故障検出方式
(2) A failure detection method for a solar power generation system according to claim 1, characterized in that a short-circuit breaker is provided between the DC bus bars, and the breaker is short-circuited when a failure is detected.
(3)故障検出時、直流母線電圧を低い値に保つことを
特徴とする特許請求の範囲第1項記載の太陽光発電シス
テムの故障検出方式。
(3) A failure detection method for a solar power generation system according to claim 1, characterized in that when a failure is detected, the DC bus voltage is maintained at a low value.
JP57060071A 1982-04-08 1982-04-08 Defect detecting system for solar light generating system Granted JPS58175925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060071A JPS58175925A (en) 1982-04-08 1982-04-08 Defect detecting system for solar light generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060071A JPS58175925A (en) 1982-04-08 1982-04-08 Defect detecting system for solar light generating system

Publications (2)

Publication Number Publication Date
JPS58175925A true JPS58175925A (en) 1983-10-15
JPS642011B2 JPS642011B2 (en) 1989-01-13

Family

ID=13131478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060071A Granted JPS58175925A (en) 1982-04-08 1982-04-08 Defect detecting system for solar light generating system

Country Status (1)

Country Link
JP (1) JPS58175925A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177823A (en) * 1987-12-29 1989-07-14 Shikoku Electric Power Co Inc Protection of solar cell circuit
JPH053628A (en) * 1991-06-26 1993-01-08 Takaoka Electric Mfg Co Ltd Solar power generating equipment
WO2009157368A1 (en) * 2008-06-26 2009-12-30 日清紡ホールディングス株式会社 Apparatus and method for inspecting solar cell module
JP2011019365A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Power control device and power control method
JP2013145888A (en) * 2008-04-23 2013-07-25 Sharp Corp Power line for photovoltaic power generation system, and photovoltaic power generation system and failure inspection method for photovoltaic power generation system
WO2014007261A1 (en) * 2012-07-03 2014-01-09 Jx日鉱日石エネルギー株式会社 Failure detection device, failure detection system, and failure detection method
WO2014007255A1 (en) * 2012-07-03 2014-01-09 Jx日鉱日石エネルギー株式会社 Current control apparatus for solar cell inspection
JP2014011428A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Failure detection device, failure detection system, and failure detection method
JP2015018838A (en) * 2013-07-08 2015-01-29 木谷電器株式会社 Fault detector of backflow prevention diode for solar cell, fault detection system of backflow prevention diode for solar cell, and fault detection method of backflow prevention diode for solar cell
WO2015182740A1 (en) * 2014-05-29 2015-12-03 住友電気工業株式会社 Abnormality-detecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457905A (en) * 1990-06-25 1992-02-25 Yutatsukusu:Kk Core material for clothing

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177823A (en) * 1987-12-29 1989-07-14 Shikoku Electric Power Co Inc Protection of solar cell circuit
JPH053628A (en) * 1991-06-26 1993-01-08 Takaoka Electric Mfg Co Ltd Solar power generating equipment
JP2013145888A (en) * 2008-04-23 2013-07-25 Sharp Corp Power line for photovoltaic power generation system, and photovoltaic power generation system and failure inspection method for photovoltaic power generation system
WO2009157368A1 (en) * 2008-06-26 2009-12-30 日清紡ホールディングス株式会社 Apparatus and method for inspecting solar cell module
JP2011019365A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Power control device and power control method
WO2014007255A1 (en) * 2012-07-03 2014-01-09 Jx日鉱日石エネルギー株式会社 Current control apparatus for solar cell inspection
WO2014007261A1 (en) * 2012-07-03 2014-01-09 Jx日鉱日石エネルギー株式会社 Failure detection device, failure detection system, and failure detection method
JP2014011427A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Failure detection device, failure detection system, and failure detection method
JP2014011430A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Current controller for solar cell inspection
JP2014011428A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Failure detection device, failure detection system, and failure detection method
JP2015018838A (en) * 2013-07-08 2015-01-29 木谷電器株式会社 Fault detector of backflow prevention diode for solar cell, fault detection system of backflow prevention diode for solar cell, and fault detection method of backflow prevention diode for solar cell
WO2015182740A1 (en) * 2014-05-29 2015-12-03 住友電気工業株式会社 Abnormality-detecting device
JP2015226430A (en) * 2014-05-29 2015-12-14 住友電気工業株式会社 Abnormality detection device
CN106256085A (en) * 2014-05-29 2016-12-21 住友电气工业株式会社 Abnormal detector
CN106256085B (en) * 2014-05-29 2018-09-18 住友电气工业株式会社 Abnormal detector

Also Published As

Publication number Publication date
JPS642011B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
US8502416B2 (en) Method and circuit arrangement for connecting at least one string of a photovoltaic system to an inverter
JP6112687B2 (en) Method and apparatus for protecting multiple strings of photovoltaic generators from return current
US6593520B2 (en) Solar power generation apparatus and control method therefor
CN207543025U (en) The tandem photovoltaic electricity generation system that controllable photovoltaic module is accessed or bypassed
KR20130006622A (en) Converter cell for cascaded converters, control system and method for bypassing a faulty converter cell
JPS58175925A (en) Defect detecting system for solar light generating system
Chappa et al. A fault-tolerant multilevel inverter topology with preserved output power and voltage levels under pre-and postfault operation
CN113826302B (en) Protection device and protection method of photovoltaic power generation system and photovoltaic power generation system
CN107529683A (en) A kind of semibridge system MMC submodules and its upper switch tube short circuit guard method
KR20210036044A (en) Fault diagnosis method for bypass-diode of solar cell
KR20220131617A (en) Control units of combiner-box which has a function with detecting the fault current by algorithm and disconnecting the circuit of PV plants
KR20220036022A (en) Diagnosis method and system of photovoltaic string faults
US4717996A (en) Gated parallel power switching devices protection circuit
Laamami et al. Investigation on Protection Diodes in PV Generator
Firdous et al. Investigation Of Fault-Tolerant Capabilities Of a Reduced Device Multilevel Inverter
US6633092B2 (en) Protection of a dynamic voltage restorer
CN114640168A (en) Parallel DC power supply freewheeling circuit diode fault judgment method and circuit thereof
KR102532842B1 (en) Converter device and its assembly, reactive power compensation device, converter and its control method
CN209642587U (en) A kind of photovoltaic system for preventing photovoltaic module hot spot effect based on microprocessor
JP2014033519A (en) Power conditioner
JPS6222542B2 (en)
JPH10285965A (en) Photovoltaic power generation system
Mahesh et al. A Novel Method for Fault Detection and Protection in Solar Photo Voltaic Arrays
JP2991106B2 (en) Grid connection equipment
Kreveld Solar smarts: Offering a complete solar solution