WO2009157368A1 - Apparatus and method for inspecting solar cell module - Google Patents

Apparatus and method for inspecting solar cell module Download PDF

Info

Publication number
WO2009157368A1
WO2009157368A1 PCT/JP2009/061147 JP2009061147W WO2009157368A1 WO 2009157368 A1 WO2009157368 A1 WO 2009157368A1 JP 2009061147 W JP2009061147 W JP 2009061147W WO 2009157368 A1 WO2009157368 A1 WO 2009157368A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
current
disconnection
circuit
Prior art date
Application number
PCT/JP2009/061147
Other languages
French (fr)
Japanese (ja)
Inventor
俊緒 渋谷
博宣 西牟田
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Publication of WO2009157368A1 publication Critical patent/WO2009157368A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an apparatus and method for easily and reliably inspecting disconnection of a solar cell module.
  • disconnection confirmation (hereinafter also referred to as energization confirmation) in a solar cell module has been performed with a crystalline solar cell module and a thin film solar cell module as follows. Both are done before laminating and after laminating.
  • the inspection environment is generally a factory room where normal illumination light is irradiated.
  • Solar cell panel which is a member of the solar cell module (a plurality of solar cells connected in series with tab leads and connected in multiple rows of strings)
  • the tester or multimeter terminal was brought into contact with the positive and negative electrodes, the resistance value was measured, and the disconnection was confirmed.
  • Figure 7 shows a conventional method for confirming the energization of a solar cell module ⁇ .
  • a conventional method for confirming energization of a solar cell module will be described.
  • the conventional method of confirming the energization of a solar cell module is performed by connecting a digital multimeter B to the solar cell module A as shown in the figure.
  • the resistance value is measured with a digital multimeter B or the like to determine whether the solar cell module A is disconnected. For example, it was judged on the basis of judgment criteria such as determining that the measured resistance value exceeded a certain level and that it was a disconnection.
  • a solar cell module manufactured by laminating and laminating members constituting the solar cell module is disposed with the glass surface through which light is transmitted facing downward and the back material side that does not transmit light is disposed at the upper side.
  • the resistance value is measured by bringing the terminals of the tester and digital multimeter into contact with the positive and negative electrodes of the solar cell module.
  • the glass plate After attaching the power generation element to the glass plate and attaching the electrodes, the glass plate is turned downward, and the rest is performed in the same manner as for the crystalline solar cell module.
  • the method is the same as the method after laminating the crystalline solar cell module.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2 0 0 1-8 5 7 1 6 Disclosure of the Invention Problems to be Solved by the Invention
  • the conventional method for confirming the energization of the solar cell module and the inspection device have the power generation surface of the solar cell module or solar cell panel facing downward so that light is not directly irradiated to the power generation surface side. Again, since the reflected light is irradiated to the power generation surface side, the solar cell module generates power and generates electromotive force, which causes the following problems.
  • the tester or digital multimeter terminal is brought into contact with the electrode of the solar cell module or solar cell panel and the resistance value is measured from the flowing current value by applying voltage, the voltage by the tester or digital multimeter is Since the electromotive force generated on the solar cell module side or the solar cell panel side is about 6 to 7 V, for example, the resistance value of the measurement results fluctuates greatly.
  • the wire is disconnected (defective product) even though it is normal (good product) without being disconnected.
  • a defective product may be judged as a non-defective product. If such a defective product flows into a subsequent process and is laminated, the solar cell cannot be regenerated.
  • the solar cell is made of silicon and is expensive, and the solar cell module itself in which a plurality of such cells are used becomes a defective product, so the yield deteriorates.
  • an object of the present invention is to provide an inspection device for easily and reliably inspecting disconnection of a solar cell module and a method for confirming disconnection thereof.
  • a solar cell module inspection apparatus includes a solar cell module, a DC power source connected to a positive terminal and a negative terminal of the solar cell module, and forming a predetermined circuit. And a current measuring device for measuring a current flowing through the circuit.
  • the inspection apparatus for a solar cell module according to the second aspect of the present invention is the inspection apparatus according to the first aspect, wherein the current value measured from the current measuring instrument, the current value measured from the current measuring instrument, and the current of the DC power source It further includes a display for displaying at least one of the presence or absence of disconnection of the solar cell module determined by comparing the set values.
  • the inspection apparatus for a solar cell module according to the third aspect of the present invention is the inspection apparatus according to the first aspect or the second aspect of the present invention, further comprising a computer connected to at least one of the current measuring instrument and the display. It is characterized by including.
  • the solar cell module inspection apparatus according to any one of the first aspect to the third aspect of the present invention, wherein the inspection apparatus is connected to the computer, The apparatus further includes a marking device that marks all or part of the data transferred to the solar cell module.
  • the disconnection confirmation method for a solar cell module of the fifth aspect of the present invention includes a step of forming a circuit of a solar cell module and a DC power source, a step of applying a current to the solar cell module by the DC power source, The method includes a determination step of comparing the applied current setting value with the current flowing through the circuit and determining whether the solar cell module is disconnected based on the difference. Here, if the difference is 5% or less, it is determined that there is no disconnection (non-defective product). Furthermore, the determination step displays at least one of a current value flowing through the circuit and a disconnection quality.
  • energization confirmation (disconnection confirmation) can be accurately performed without shading the solar cell module in a dark room or the like. Therefore, the inspection apparatus for confirming energization does not require the solar cell module to be shielded from light in a dark room or the like, so the structure is simple and inexpensive.
  • FIG. 1 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the first embodiment.
  • Fig. 2 is a diagram for explaining the connection of a solar cell module, a DC power source, and a current measuring device.
  • FIG. 3 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the second embodiment.
  • FIG. 4 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the third embodiment.
  • FIG. 5 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the fourth embodiment.
  • FIG. 6A and 6B are diagrams for explaining the constituent members of the crystalline solar cell module.
  • FIG. 6A is a plan view illustrating the solar cells inside the solar cell
  • FIG. 6B is a cross-sectional view thereof.
  • Fig. 7 shows a conventional method for confirming the energization of a solar cell module.
  • FIG. 1 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the first embodiment.
  • the inspection apparatus (disconnection confirmation method) of the present invention includes a DC power source 1 that applies a constant current, a solar cell module 2, and a current measuring device 3 such as a digital multimeter.
  • the DC power source is connected to the positive terminal and the negative terminal of the solar cell module to form a predetermined circuit, and the current measuring device is installed to measure the current flowing through the circuit.
  • Fig. 6 is a diagram for explaining the configuration of the crystalline solar cell module.
  • Fig. 6 (a) is a plan view showing the solar cells inside the solar cell, and
  • Fig. 6 (b) is a cross-sectional view thereof. is there.
  • the solar cell as the solar cell module 2 forms a string 25 in which a plurality of square solar cell cells 28 are connected in series by lead wires 29. Further, the solar cell panel 30 is formed by connecting the strings with a plurality of lead wires 29.
  • the cross-sectional structure of the solar cell module is as shown in Fig. 6 (b).
  • a plurality of strings 25 are sandwiched between fillers 2 3 and 2 4 between 2 2 and a transparent cover glass 21 disposed on the lower side.
  • the back material 22 is made of, for example, PET or a fluorine resin
  • the fillers 23, 24 are made of, for example, EVA resin (polyethylene butyl acetate resin).
  • the string 25 has a configuration in which the solar cells 28 are connected via the lead wires 29 between the electrodes 26 and 27 as described above.
  • Such a solar cell module is obtained by laminating components by laminating constituent members as described above, applying a pressure under a vacuum heating condition by using a laminating apparatus, etc., and subjecting EVA to a crosslinking reaction.
  • EVA is usually translucent, but becomes transparent during the laminating process or subsequent cross-linking reaction.
  • a power generating element consisting of a transparent electrode, a semiconductor, and a back electrode is pre-deposited on the transparent power per glass arranged on the lower side.
  • a thin-film solar cell module has a structure in which a transparent cover glass is arranged downward, a filler is covered on the solar cell element on the glass, and a back material is covered on the filler. It can be obtained by laminating in the same manner as described above.
  • the thin-film solar cell as the solar cell module 2 is simply changed to a power generation element on which a crystal cell is deposited, and the basic sealing structure is the same as that of the crystal cell described above.
  • a DC power source Connect the positive electrode 26 of the solar cell module 2 to one terminal of the current measuring device 3, and connect the other terminal of the current measuring device 3 to the positive electrode of the DC power source 1.
  • the negative electrode 27 of the solar cell module 2 and the negative terminal of the DC power source 1 are connected. In this way, a measurement circuit is formed.
  • the current measuring device 3 Measure the current value. At this time, if almost the same current value is measured with respect to the current setting value applied to the solar cell module 2 from the DC power source 1, this can be determined as a non-defective product.
  • the set current applied from the DC power supply is compared with the current flowing through the circuit, and if the difference is 5% or less, it can be judged as a non-defective product.
  • the current value and voltage value of the digital multimeter were measured in the same manner as in Experimental Example 1 except that the cover glass surface was facing upward. The results are shown in Table 2. The description in the remarks column in the table indicates how many times the current setting current is I s c (short-circuit current) of the measurement solar cell module.
  • the current value and voltage value of the digital multimeter were measured in the same manner as in Experimental Example 1 except that the entire thin film module was shielded from light. The results are shown in Table 3. The description in the remarks column in the table indicates how many times the current setting current is I s c (short circuit current) of the measurement solar cell module.
  • the current and voltage values of the digital multimeter were measured in the same manner as in Experimental Example 1. Table 4 shows the results.
  • the current setting current is I sc (short-circuit current) of the measurement solar cell module. It shows how many times.
  • the current value and voltage value of the digital multimeter were measured in the same manner as in Experimental Example 2 except that the solar cell module was changed from the thin film module to the single crystal module. The results are shown in Table 5. The description in the remarks column in the table shows how many times the current setting current is I s c (short circuit current) of the measurement solar cell module.
  • the resistance of the thin film module was measured with a digital multimeter as shown in Fig. 7 under the fluorescent lamp with the cover glass facing downward under the fluorescent lamp as in Experimental Example 1, and the entire thin film module was measured as in Experimental Example 3.
  • the resistance value was measured with a digital multimeter in a light-shielded state. The results are shown in Table 7. When the solar cell module is oriented downward under a fluorescent lamp, the measured resistance value is infinite and exceeds the measurement limit (100 Mohm) of the digital multimeter.
  • the measured resistance varies greatly depending on the attitude of the solar cell module.
  • the solar cell module being measured is a good product without disconnection, but cannot be distinguished from a defective product with disconnection.
  • the resistance value was measured with a digital multimeter as shown in Fig. 7 in the same manner as in Comparative Experimental Example 1 except that the solar cell module was changed from the thin film module to the single crystal module. The results are shown in Table 8.
  • the measured resistance varies greatly depending on the orientation of the solar cell module.
  • the solar cell module being measured is a good product without disconnection, but cannot be distinguished from a defective product with disconnection.
  • the disconnection confirmation method of the present invention has almost the same current value with respect to the current setting value applied from the DC power source 1 to the solar cell module 2 regardless of the attitude of the solar cell module 2. It has been measured. Although not described in the experimental example, if a similar test is performed on a solar cell module with poor electrical conductivity, the current value displayed on the current measuring device 3 is almost zero.
  • the disconnection confirmation method of the present invention is an effective method for accurately determining the distinction between the poorly energized product and the non-energized product.
  • the display 4 is added to the first embodiment.
  • FIG. 3 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the second embodiment.
  • the display 4 has the following functions. It has a function to display the current value measured by the current measuring device 3 numerically with L E D etc. In addition, the current value measured from the current measuring device 3 is compared with a preset current set value, and a function of displaying “OK”, “NG”, etc., indicating whether the solar cell module 2 is disconnected or not is provided. ing. These indications such as “OK” and “NG” can be displayed visually or auditorily. It can also be output to external devices as electronic information or electrical signals.
  • the operator always needs to monitor the display of the current measuring device 3 and the display result of the display device 4.
  • a computer 5 is added.
  • FIG. 4 is a block diagram of a solar cell module inspection device (disconnection confirmation method) according to the third embodiment.
  • the computer 5 is connected to the current measuring device 3, and when the solar cell module is inspected one by one, the history data of pass / fail is recorded and stored. By doing so, product quality control becomes easier.
  • the computer 5 can be connected to the display 4 in FIG.
  • the marking device 6 is used in comparison with the third embodiment.
  • FIG. 5 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the fourth embodiment.
  • the marking device 6 receives the inspection result from the computer 5 and laser-marks the measured current value on the back material of the solar cell module 2. This As a result, the data stored in the computer 5 and the information on the product (solar cell module 2) are linked, making history management and the like more convenient.

Abstract

Provided are a method for easily and surely checking disconnection in a solar cell module, and an inspecting apparatus used in the method. The disconnection checking method and the inspecting apparatus includes: a solar cell module (2); a DC power supply (1) which is connected to the positive electrode terminal and the negative electrode terminal of the solar cell module so as to form a predetermined circuit; and a current measuring instrument (3) for measuring a current flowing in the circuit.  The solar cell module is judged as a conforming product when a current set by the DC power supply and a current measured by the current measuring instrument are compared with each other and the both currents are substantially the same.

Description

明 細 書  Specification
太陽電池モジュールの検査装置および検査方法 技術分野  Solar cell module inspection apparatus and inspection method
本発明は太陽電池モジュールの断線確認を容易にかつ確実に検査する装置および方法に関 するものである。 背景技術  The present invention relates to an apparatus and method for easily and reliably inspecting disconnection of a solar cell module. Background art
従来、 結晶系の太陽電池モジュールと薄膜系の太陽電池モジュールとで以下のように太陽 電池モジュール内の断線確認 (以下通電確認ともいう) を行っていた。 両者ともにラミネー ト加工前でも行っているしラミネート加工後でも行っている。 また検査環境としては、 通常 の照明光が照射される工場室内等が一般的である。  Conventionally, disconnection confirmation (hereinafter also referred to as energization confirmation) in a solar cell module has been performed with a crystalline solar cell module and a thin film solar cell module as follows. Both are done before laminating and after laminating. The inspection environment is generally a factory room where normal illumination light is irradiated.
1 . 結晶系の太陽電池モジュールのラミネート加工前での断線確認方法。  1. How to check disconnection before laminating crystalline solar cell module.
太陽電池モジュールを構成する部材である太陽電池パネル (太陽電池セルの複数枚をタブ リードにて直列に接続し、 ストリング状にしたものを更に複数列接続したもの) を太陽電池 セルの発電面側を下向きとし、 その正極と負極にテスターやマルチメーターの端子を接触さ せて抵抗値を測定して断線の確認を行っていた。  Solar cell panel, which is a member of the solar cell module (a plurality of solar cells connected in series with tab leads and connected in multiple rows of strings) The tester or multimeter terminal was brought into contact with the positive and negative electrodes, the resistance value was measured, and the disconnection was confirmed.
図 7は太陽電池モジュー^^の通電確認方法の従来例である。 図 7を参照して、 従来の太陽 電池モジュ一ルの通電確認方法を説明する。 従来の太陽電池モジュ一ルの通電確認方法は、 太陽電池モジュール Aに、 デジタルマルチメーター Bなどを図のように接続して行われてい る。 ここで、 デジタルマルチメーター Bなどによって抵抗値を測定して、 太陽電池モジユー ル Aの断線有無を判断する。 たとえば、 測定された抵抗値が一定程度を超えると断線と判断 するなどの判定基準により判断していた。  Figure 7 shows a conventional method for confirming the energization of a solar cell module ^^. With reference to FIG. 7, a conventional method for confirming energization of a solar cell module will be described. The conventional method of confirming the energization of a solar cell module is performed by connecting a digital multimeter B to the solar cell module A as shown in the figure. Here, the resistance value is measured with a digital multimeter B or the like to determine whether the solar cell module A is disconnected. For example, it was judged on the basis of judgment criteria such as determining that the measured resistance value exceeded a certain level and that it was a disconnection.
2 . 結晶系の太陽電池モジュールのラミネ一ト加工後での断線確認方法 9 2. Confirmation of disconnection after laminating of crystalline solar cell module 9
太陽電池モジュールを構成する部材を積層してラミネ一ト加工して製造された太陽電池モ ジュールを光が透過するガラス面を下向きにし、光を透過しない裏面材側を上側に配置する。 この状態にて太陽電池モジュールの正極と負極にテスタ一やデジタルマルチメ一ターの端子 を接触させて抵抗値を測定する。  A solar cell module manufactured by laminating and laminating members constituting the solar cell module is disposed with the glass surface through which light is transmitted facing downward and the back material side that does not transmit light is disposed at the upper side. In this state, the resistance value is measured by bringing the terminals of the tester and digital multimeter into contact with the positive and negative electrodes of the solar cell module.
3 . 薄膜系の太陽電池モジュールのラミネート加工前での断線確認方法。  3. Method for confirming disconnection of thin film solar cell module before laminating.
ガラス板に発電素子を 付けし、 電極を付けた後、 ガラス板を下向きとし、 後は結晶系の 太陽電池モジュールと同様の方法で行う。  After attaching the power generation element to the glass plate and attaching the electrodes, the glass plate is turned downward, and the rest is performed in the same manner as for the crystalline solar cell module.
4 . 薄膜系の太陽電池モジュールのラミネート加工後での断線確認方法。  4. Method for checking disconnection after lamination of thin film solar cell module.
結晶系の太陽電池モジュールのラミネート加工後の方法と同様に行う。  The method is the same as the method after laminating the crystalline solar cell module.
. またこのような太陽電池モジュールの製造工程において断線確認する関連技術を開示した 特許文献は無い。 類似技術として、 太陽電池モジュールにおいて発電中に発生する電流を監 視する技術が、 特許文献 1に開示されている。 しかしこの技術は、 屋根などに設置した太陽 電池モジュール內の絶縁不良により人が太陽電池モジュールに触れた場合の感電事故を防止 するために、 太陽電池モジュール内の各ストリングの電流値を監視する技術であり、 太陽電 池モジュールの製造工程における断線確認 (通電確認) という技術分野とは異なるものであ る。 In addition, there is no patent document that discloses related technology for confirming disconnection in the manufacturing process of such a solar cell module. As a similar technology, the current generated during power generation in solar cell modules A technique to be viewed is disclosed in Patent Document 1. However, this technology monitors the current value of each string in the solar cell module in order to prevent an electric shock accident when a person touches the solar cell module due to poor insulation of the solar cell module 內 installed on the roof. Therefore, it is different from the technical field of disconnection confirmation (conduction check) in the manufacturing process of solar cell modules.
[特許文献 1 ] 特開 2 0 0 1— 8 5 7 1 6 発明の開示 発明が解決しょうとする課題  [Patent Document 1] Japanese Unexamined Patent Application Publication No. 2 0 0 1-8 5 7 1 6 Disclosure of the Invention Problems to be Solved by the Invention
しかしながら、 前記従来の太陽電池モジュールの通電確認する方法やその検査装置は、 太 陽電池モジュールや太陽電池パネルの発電面を下向きとして、 光が直接発電面側に照射しな いようにしているが、 やはり反射光が発電面側に照射されるので、 太陽電池モジュールにて 発電され起電力が発生して、 以下のような問題が発生する。  However, the conventional method for confirming the energization of the solar cell module and the inspection device have the power generation surface of the solar cell module or solar cell panel facing downward so that light is not directly irradiated to the power generation surface side. Again, since the reflected light is irradiated to the power generation surface side, the solar cell module generates power and generates electromotive force, which causes the following problems.
太陽電池モジュールや太陽電池パネルの電極にテスタ一やデジタルマルチメ^"タ一の端子 を接触させ、 電圧をかけて流れる電流値から抵抗値を測定しても、 テスターやデジタルマル チメーターによる電圧は、 わずか 0 . 5 Vから数 V程度であり、 太陽電池モジュール側や太 陽電池パネル側の発電した起電力は、 例えば 6〜 7 V程度あるので測定結果の抵抗値が大き く変動する。  Even if the tester or digital multimeter terminal is brought into contact with the electrode of the solar cell module or solar cell panel and the resistance value is measured from the flowing current value by applying voltage, the voltage by the tester or digital multimeter is Since the electromotive force generated on the solar cell module side or the solar cell panel side is about 6 to 7 V, for example, the resistance value of the measurement results fluctuates greatly.
しかも周囲からの光量の時間変動などによりパラツキが大きいので正確な断線確認ができ ない。  In addition, due to large variations due to temporal fluctuations in the amount of light from the surroundings, accurate disconnection confirmation cannot be performed.
前記のような問題のため、断線がなくて正常(良品)であるにも拘わらず断線している(不 良品) と判断してしまうことがある。 また、 不良品を良品と判定してしまうこともあり、 そ のような不良品が後工程に流れてラミネート加工されると太陽電池セルの再生ができない。 さらに、 太陽電池セルは、 シリコンでできていて高価であり、 そのようなものが複数枚使用 されている太陽電池モジュールそのものが不良品となるので歩留まりが悪化する。  Due to the problems described above, it may be judged that the wire is disconnected (defective product) even though it is normal (good product) without being disconnected. In addition, a defective product may be judged as a non-defective product. If such a defective product flows into a subsequent process and is laminated, the solar cell cannot be regenerated. Furthermore, the solar cell is made of silicon and is expensive, and the solar cell module itself in which a plurality of such cells are used becomes a defective product, so the yield deteriorates.
このような問題を解決するため、 本発明は、 太陽電池モジュールの断線確認を容易にかつ 確実に検査する検査装置およびその断線確認方法を提供することを目的としている。  In order to solve such a problem, an object of the present invention is to provide an inspection device for easily and reliably inspecting disconnection of a solar cell module and a method for confirming disconnection thereof.
課題を解決するための手段  Means for solving the problem
前記の目的を達成するために第 1の本発明の太陽電池モジュールの検査装置は、 太陽電池 モジュールと、 前記太陽電池モジュールの正極端子および負極端子に接続され、 所定の回路 を形成する D C電源と、 前記回路を流れる電流を測定する電流測定器と、 を含むことを特徴 とする。  In order to achieve the above object, a solar cell module inspection apparatus according to a first aspect of the present invention includes a solar cell module, a DC power source connected to a positive terminal and a negative terminal of the solar cell module, and forming a predetermined circuit. And a current measuring device for measuring a current flowing through the circuit.
第 2の本発明の太陽電池モジュールの検査装置は、 第 1の本発明において、 前記電流測定 器から測定された電流値と、 前記電流測定器から測定された電流値と、 前記 D C電源の電流 設定値を比較して判断した前記太陽電池モジュールの断線有無の少なくともいずれか一方を 表示する表示器をさらに含むことを特徴とする。 The inspection apparatus for a solar cell module according to the second aspect of the present invention is the inspection apparatus according to the first aspect, wherein the current value measured from the current measuring instrument, the current value measured from the current measuring instrument, and the current of the DC power source It further includes a display for displaying at least one of the presence or absence of disconnection of the solar cell module determined by comparing the set values.
第 3の本発明の太陽電池モ^ュールの検査装置は、 第 1の発明または第 2の本発明におい て、 少なくても前記電流測定器と表示器とのいずれかに接続されるコンピュータをさらに含 むことを特徴とする。  The inspection apparatus for a solar cell module according to the third aspect of the present invention is the inspection apparatus according to the first aspect or the second aspect of the present invention, further comprising a computer connected to at least one of the current measuring instrument and the display. It is characterized by including.
第 4の本発明の太陽電池モジュールの検査装置は、 第 1の発明から第 3の本癸明のいずれ かにおいて、 前記コンピュータに接続され、 前記電流測定器と表示器とのいずれかから前記 コンピュータに転送されたデータの全て叉は一部を前記太陽電池モジュールにマ一キングす るマ一キング装置をさらに含むことを特徴とする。  According to a fourth aspect of the present invention, there is provided the solar cell module inspection apparatus according to any one of the first aspect to the third aspect of the present invention, wherein the inspection apparatus is connected to the computer, The apparatus further includes a marking device that marks all or part of the data transferred to the solar cell module.
第 5の本発明の太陽電池モジュールの断線確認方法は、 太陽電池モジュールと D C電源と の回路を形成する工程と、 前記 D C電源によつて前記太陽電池モジュールへ電流が印加され る工程と、 前記印加される電流設定値と、 前記回路を流れる電流とを比較してその差によつ て太陽電池モジュールの断線の良否を判断する判断工程を含むことを特徴とする。 ここで、 前記差が 5 %以內であれば断線無し (良品) と判断することを特徴とする。 さらに、 前記判 断工程は、 前記回路を流れる電流値と断線の良否の少なくともいずれか一方を表示すること を特徴とする。 発明の効果  The disconnection confirmation method for a solar cell module of the fifth aspect of the present invention includes a step of forming a circuit of a solar cell module and a DC power source, a step of applying a current to the solar cell module by the DC power source, The method includes a determination step of comparing the applied current setting value with the current flowing through the circuit and determining whether the solar cell module is disconnected based on the difference. Here, if the difference is 5% or less, it is determined that there is no disconnection (non-defective product). Furthermore, the determination step displays at least one of a current value flowing through the circuit and a disconnection quality. The invention's effect
本発明の太陽電池モジュールの検査装置および断線確認方法 によれば、暗室等により太陽 電池モジュールを遮光しなくても通電確認 (断線確認) を正確に行うことができる。 したが つて通電確認をするための検査装置は、 太陽電池モジュールを暗室等で遮光する必要が無い ので、 構造が間単で安価とすることができる。  According to the solar cell module inspection apparatus and disconnection confirmation method of the present invention, energization confirmation (disconnection confirmation) can be accurately performed without shading the solar cell module in a dark room or the like. Therefore, the inspection apparatus for confirming energization does not require the solar cell module to be shielded from light in a dark room or the like, so the structure is simple and inexpensive.
図面の簡単な説明  Brief Description of Drawings
図 1は、第 1実施例による 太陽電池モジュールの検査装置(断線確認方法) のブロック図 である。  FIG. 1 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the first embodiment.
図 2は、 太陽電池モジュールと D C電源と電流測定器の接続を説明する図である。  Fig. 2 is a diagram for explaining the connection of a solar cell module, a DC power source, and a current measuring device.
図 3は、第 2実施例による 太陽電池モジュールの検査装置(断線確認方法) のブロック図 である。  FIG. 3 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the second embodiment.
図 4は、 第 3実施例による太陽電池モジュールの検査装置 (断線確認方法) のブロック図 である。  FIG. 4 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the third embodiment.
図 5は、 第 4実施例による太陽電池モジュールの検査装置 (断線確認方法) のブロック図 である。  FIG. 5 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the fourth embodiment.
図 6は、 結晶系太陽電池モジュールの構成部材を説明する図で、 (a ) は太陽電池の内部 の太陽電池セルが分かるように記載した平面図で、 (b ) はその断面図である。  6A and 6B are diagrams for explaining the constituent members of the crystalline solar cell module. FIG. 6A is a plan view illustrating the solar cells inside the solar cell, and FIG. 6B is a cross-sectional view thereof.
図 7は、 太陽電池モジュールの通電確認方法の従来例である。 符号の説明 Fig. 7 shows a conventional method for confirming the energization of a solar cell module. Explanation of symbols
D C電源  DC power supply
太陽電池モジュール  Solar cell module
電流測定器  Current measuring instrument
表示器  display
コンピュータ  Computer
マーキング装置  Marking device
裏面材  Back material
充填材  Filler
ストリング  A string
電極  Electrode
太陽電池セル  Solar cells
リード線  Lead
太陽電池パネル  Solar panel
太陽電池モジュール  Solar cell module
デジタルマルチメー 発明を実施するための最良の形態  Digital Multimer Best Mode for Carrying Out the Invention
以下、 本発明による太陽電池モジュールの検査装置 (断線確認方法) を添付図面を参照し て説明する。 .  Hereinafter, a solar cell module inspection device (disconnection confirmation method) according to the present invention will be described with reference to the accompanying drawings. .
[ 実施例 1 ] ,  [Example 1],
図 1は第 1実施例による 太陽電池モジュールの検査装置(断線確認方法)のブロック図で ある。  FIG. 1 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the first embodiment.
図 1を参照すると、 本発明の検査装置 (断線確認方法) には定電流を印加する D C電源 1 と、 太陽電池モジュール 2と、 デジタルマルチメーターなどの電流測定器 3とが含まれる。 ここで、 D C電源は太陽電池モジュールの正極端子および負極端子に接続され、 所定の回路 を形成し、 電流測定器は前記回路を流れる電流を測定するように設置される。  Referring to FIG. 1, the inspection apparatus (disconnection confirmation method) of the present invention includes a DC power source 1 that applies a constant current, a solar cell module 2, and a current measuring device 3 such as a digital multimeter. Here, the DC power source is connected to the positive terminal and the negative terminal of the solar cell module to form a predetermined circuit, and the current measuring device is installed to measure the current flowing through the circuit.
ここで被測定物である結晶系太陽電池モジュールの構成を概略説明する。  Here, the structure of the crystalline solar cell module as the object to be measured will be schematically described.
図 6は結晶系太陽電池モジュールの構成を説明する図で、 図 6 ( a ) は太陽電池の内部の 太陽電池セルが分かるように記載した平面図で、 図 6 ( b ) はその断面図である。  Fig. 6 is a diagram for explaining the configuration of the crystalline solar cell module. Fig. 6 (a) is a plan view showing the solar cells inside the solar cell, and Fig. 6 (b) is a cross-sectional view thereof. is there.
図 6 ( a ) の平面図に示す様に、 太陽電池モジュール 2である太陽電池は、 角型の太陽電 池セル 2 8がリード線 2 9により複数個直列に接続されたストリング 2 5を形成し、 さらに そのストリングを複数列リード線 2 9により接続した太陽電池パネル 3 0より構成されてい る。  As shown in the plan view of FIG. 6 (a), the solar cell as the solar cell module 2 forms a string 25 in which a plurality of square solar cell cells 28 are connected in series by lead wires 29. Further, the solar cell panel 30 is formed by connecting the strings with a plurality of lead wires 29.
また太陽電池モジュールの断面構造は、 図 6 ( b ) に示す様に、 上側に配置された裏面材 2 2と下側に配置された透明カバーガラス 2 1の間に、 充填材 2 3 , 2 4を介して複数列の ストリング 2 5をサンドイッチした構成である。 ここで、 裏面材 2 2は例えば P E Tあるい は、 フッ素系樹脂などの材料が使用されて、 充填材 2 3、 2 4には例えば E V A樹脂 (ポリ エチレンビュルアセテート樹脂) などが使用される。 ストリング 2 5は、 前記のように電極 2 6、 2 7の間に、 太陽電池セル 2 8をリード線 2 9を介して接続した構成である。 The cross-sectional structure of the solar cell module is as shown in Fig. 6 (b). In this configuration, a plurality of strings 25 are sandwiched between fillers 2 3 and 2 4 between 2 2 and a transparent cover glass 21 disposed on the lower side. Here, the back material 22 is made of, for example, PET or a fluorine resin, and the fillers 23, 24 are made of, for example, EVA resin (polyethylene butyl acetate resin). The string 25 has a configuration in which the solar cells 28 are connected via the lead wires 29 between the electrodes 26 and 27 as described above.
このような太陽電池モジュールは、 前記のように構成部材を積層しラミネ一ト装置などに より、真空の加熱状態下で圧力を加え、 E VAを架橋反応させてラミネート加工して得られ る。 E VAは通常は、 半透明であるが、 ラミネート加工時またはその後の架橋反応により透 明化する。  Such a solar cell module is obtained by laminating components by laminating constituent members as described above, applying a pressure under a vacuum heating condition by using a laminating apparatus, etc., and subjecting EVA to a crosslinking reaction. EVA is usually translucent, but becomes transparent during the laminating process or subsequent cross-linking reaction.
次に被測定物である薄膜系太陽電池モジュールの構成を概略説明する。  Next, the structure of the thin film solar cell module as the object to be measured will be schematically described.
' 薄膜式の代表的な構造例では、 下側に配置された透明力パーガラスには、 予め透明電極、 半導体、 裏面電極からなる発電素子が蒸着してある。 そして、 このような薄膜型太陽電池モ ジュールは、 透明カバーガラスを下向きに配置し、 ガラス上の太陽電池素子の上に充填材を 被せ、 更に、 充填材の上に裏面材を被せた構造で、 前記と同じようにラミネート加工するこ とにより得られる。 'In a typical thin-film structure example, a power generating element consisting of a transparent electrode, a semiconductor, and a back electrode is pre-deposited on the transparent power per glass arranged on the lower side. Such a thin-film solar cell module has a structure in which a transparent cover glass is arranged downward, a filler is covered on the solar cell element on the glass, and a back material is covered on the filler. It can be obtained by laminating in the same manner as described above.
このように太陽電池モジュール 2としての薄膜式の太陽電池は、 結晶系セルが蒸着された 発電素子に変わるだけで、 基本的な封止構造は前記した結晶系セルの場合と同じである。 ' 前記のような太陽電池モジュールが D C電源に結線される一例を、 図 2により説明する。 太陽電池モジュール 2の正電極 2 6と電流測定器 3の一方の端子を接続し、 電流測定器 3の 他方の端子と D C電源 1の正極の *子を接続する。 さらに太陽電池モジュール 2の負電極 2 7と D C電源 1の負極端子を接続する。 このようにして測定回路は、 形成される。  As described above, the thin-film solar cell as the solar cell module 2 is simply changed to a power generation element on which a crystal cell is deposited, and the basic sealing structure is the same as that of the crystal cell described above. 'An example in which the above solar cell module is connected to a DC power source will be described with reference to FIG. Connect the positive electrode 26 of the solar cell module 2 to one terminal of the current measuring device 3, and connect the other terminal of the current measuring device 3 to the positive electrode of the DC power source 1. Furthermore, the negative electrode 27 of the solar cell module 2 and the negative terminal of the DC power source 1 are connected. In this way, a measurement circuit is formed.
本発明の太陽電池モジュールの断線確認方法によれば、 前記のように回路を形成した後、 D C電源 1より一定電流を供給し、 太陽電池モジュール 2を通電確認した際に、 電流測定器 3により電流値を測定する。 この時、 D C電源 1から太陽電池モジュール 2に印加された電 流設定値に対してほぼ同じ電流値が測定されると、 これは、 良品と判断できる。  According to the disconnection confirmation method for a solar cell module of the present invention, when a circuit is formed as described above, when a constant current is supplied from the DC power source 1 and the energization of the solar cell module 2 is confirmed, the current measuring device 3 Measure the current value. At this time, if almost the same current value is measured with respect to the current setting value applied to the solar cell module 2 from the DC power source 1, this can be determined as a non-defective product.
例えば、 D C電源から印加される設定電流と前記回路を流れる電流とを比較して、 その差 が 5 %以內であれば良品と判断することができる。  For example, the set current applied from the DC power supply is compared with the current flowing through the circuit, and if the difference is 5% or less, it can be judged as a non-defective product.
その結果は、 以下のような、 様々の実験によって検証されている。 ここで、 電流測定器と しては、 デジタルマルチメーター 3 2 3 8 (日置電機製) 、 D C電源としては PWR 4 0 0 M (菊水電子製) が使用された。 また実験に使用した太陽電池モジュールは、 実験例および 比較実験例ともに、 断線の無いものとした。  The results have been verified by various experiments such as the following. Here, a digital multimeter 3 2 3 8 (manufactured by Hioki Electric) was used as the current measuring device, and a PWR 400 M (manufactured by Kikusui Electronics) was used as the DC power source. In addition, the solar cell module used in the experiment was assumed not to be disconnected in both the experimental example and the comparative experimental example.
[実験例 1 ]  [Experiment 1]
薄膜モジュールを、 蛍光灯下 1?カバーガラス面を下向きとした状態にて、 D C電源の通電 設定電流値を変化させて、 その時のデジタルマルチメーターの電流値と電圧値を測定した。 その結果を表 1に示している。 表中の備考欄の記載は、 通電設定電流が測定太陽電池モジュ ールの I s c (短絡電流) の何倍かを示している。 [表 1 ] With the thin film module placed under the fluorescent lamp 1? With the cover glass facing down, the current setting and current value of the digital multimeter were measured while changing the current setting of the DC power supply. The results are shown in Table 1. The description in the remarks column in the table indicates how many times the current setting current is I sc (short-circuit current) of the measurement solar cell module. [table 1 ]
下向き、 蛍光灯下  Down, under fluorescent light
Figure imgf000007_0001
Figure imgf000007_0001
[実験例 2 ]  [Experiment 2]
カバーガラス面を上向きとする以外は、 実験例 1と同様にしてデジタルマルチメーターの 電流値と電圧値を測定した。 その結果を表 2に示している。.表中の備考欄の記載は、 通電設 定電流が測定太陽電池モジュールの I s c (短絡電流) の何倍かを示している。  The current value and voltage value of the digital multimeter were measured in the same manner as in Experimental Example 1 except that the cover glass surface was facing upward. The results are shown in Table 2. The description in the remarks column in the table indicates how many times the current setting current is I s c (short-circuit current) of the measurement solar cell module.
[表 2 ]  [Table 2]
上向き、 蛍光灯下  Upward, under fluorescent light
Figure imgf000007_0002
Figure imgf000007_0002
[実験例 3 ]  [Experiment 3]
薄膜モジュール全体を遮光する以外は、 実験例 1と同様にしてデジタルマルチメーターの 電流値と電圧値を測定した。 その結果を表 3に示している。 表中の備考欄の記載は、 通電設 定電流が測定太陽電池モジュールの I s c (短絡電流) の何倍かを示している。  The current value and voltage value of the digital multimeter were measured in the same manner as in Experimental Example 1 except that the entire thin film module was shielded from light. The results are shown in Table 3. The description in the remarks column in the table indicates how many times the current setting current is I s c (short circuit current) of the measurement solar cell module.
[表 3 ]  [Table 3]
遮光状  Shading
Figure imgf000007_0003
Figure imgf000007_0003
[実験例 4 ]  [Experiment 4]
太陽電池モジュールを薄膜モジ一ルから単結 モジュ "ルに変更する以外は、 実験例 1と 同様にしてデジタルマルチメーターの電流値と電圧値を測定した。 その結果を表 4に示して いる。表中の備考欄の記載は、通電設定電流が測定太陽電池モジュールの I s c (短絡電流) の何倍かを示している。 Except for changing the solar cell module from a thin film module to a single module, the current and voltage values of the digital multimeter were measured in the same manner as in Experimental Example 1. Table 4 shows the results. In the remarks column in the table, the current setting current is I sc (short-circuit current) of the measurement solar cell module. It shows how many times.
[表 4 ]  [Table 4]
下向き、 蛍光灯下  Down, under fluorescent light
Figure imgf000008_0001
Figure imgf000008_0001
[実験例 5 ] [Experiment 5]
太陽電池モジュールを薄膜モジールから単結晶モジュールに変更する以外は、 実験例 2と 同様にしてデジタルマルチメーターの電流値と電圧値を測定した。 その結果を表 5に示して いる。表中の備考欄の記載は、通電設定電流が測定太陽電池モジュールの I s c (短絡電流) の何倍かを示している。  The current value and voltage value of the digital multimeter were measured in the same manner as in Experimental Example 2 except that the solar cell module was changed from the thin film module to the single crystal module. The results are shown in Table 5. The description in the remarks column in the table shows how many times the current setting current is I s c (short circuit current) of the measurement solar cell module.
[表 5 ]  [Table 5]
上向き、 蛍光灯下  Upward, under fluorescent light
Figure imgf000008_0002
Figure imgf000008_0002
[実験例 6 ] [Experiment 6]
太陽電池モジュールを薄膜モジールから単結晶キジユールに変更する以外は、 実験例 3と 同様にしてデジタルマルチメーターの電流値と 値を測定した。 その結果を表 6に示して いる。表中の備考欄の記載は、通電設定電流が測定太陽電池モジュールの I s c (短絡電流) の何倍かを示している。 [表 6 ] 遮光状態 The current value and value of the digital multimeter were measured in the same manner as in Experimental Example 3 except that the solar cell module was changed from the thin film module to the single crystal module. The results are shown in Table 6. The description in the remarks column in the table indicates how many times the current setting current is I sc (short-circuit current) of the measurement solar cell module. [Table 6] Shading condition
Figure imgf000009_0001
Figure imgf000009_0001
[比較実験例 1 ] [Comparative Experiment Example 1]
薄膜モジュールを実験例 1と同様に蛍光灯下でカバーガラス面を下向きとした状態にて図 7のようにデジタルマルチメ一ターで抵抗値を測定し、 実験例 3と同様に薄膜モジュール全 体を遮光した状態にてデジタルマルチメ一ターで抵抗値を測定した。 その結果を表 7に示し ている。 太陽電池モジュールの姿勢を蛍光灯下で下向きとした場合は、 測定抵抗値が無限大 となりデジタルマルチメーターの測定限界 (1 0 0 Mオーム) を越えている。  The resistance of the thin film module was measured with a digital multimeter as shown in Fig. 7 under the fluorescent lamp with the cover glass facing downward under the fluorescent lamp as in Experimental Example 1, and the entire thin film module was measured as in Experimental Example 3. The resistance value was measured with a digital multimeter in a light-shielded state. The results are shown in Table 7. When the solar cell module is oriented downward under a fluorescent lamp, the measured resistance value is infinite and exceeds the measurement limit (100 Mohm) of the digital multimeter.
この結果から太陽電池モジュールの姿勢によって測定抵抗値が大きく変動していることが 分かる。 蛍光灯下で下向きとした場合は、 測定している太陽電池モジュールが断線の無い良 品であるが断線した不良品と区別することができない。  From this result, it can be seen that the measured resistance varies greatly depending on the attitude of the solar cell module. When facing downward under a fluorescent lamp, the solar cell module being measured is a good product without disconnection, but cannot be distinguished from a defective product with disconnection.
7 ]
Figure imgf000009_0002
7]
Figure imgf000009_0002
[比較実験例 2 ]  [Comparative Experiment 2]
太陽電池モジュールを薄膜モジ一ルから単結晶モジュールに変更する以外は、 比較実験例 1と同様にして図 7のようにデジタルマルチメーターで抵抗値を測定した。 その結果を表 8 に示している。  The resistance value was measured with a digital multimeter as shown in Fig. 7 in the same manner as in Comparative Experimental Example 1 except that the solar cell module was changed from the thin film module to the single crystal module. The results are shown in Table 8.
この結果力 ら、 表 7と同様に太陽電池モジュールの姿勢によって測定抵抗値が大きく変動 していることが分かる。 蛍光灯下で下向きとした場合は、 測定している太陽電池モジュール が断線の無い良品であるが断線した不良品と区別することができない。  As a result, it can be seen that, as in Table 7, the measured resistance varies greatly depending on the orientation of the solar cell module. When facing downward under a fluorescent lamp, the solar cell module being measured is a good product without disconnection, but cannot be distinguished from a defective product with disconnection.
[表 8 ] 太陽電池モジユーノレの姿勢 測定抵抗値 ( Ω)  [Table 8] Solar cell module attitude measurement resistance (Ω)
下向き、 蛍光灯下 57M  Downward, under fluorescent light 57M
遮光状態 1120 前記実験の結果をまとめると、 以下のようになる。 Shading condition 1120 The results of the experiment are summarized as follows.
実験例 1〜実験例 6の結果から本発明の断線確認方法は、 太陽電池モジュール 2の姿勢に よらず D C電源 1から太陽電池モジュール 2に印加された電流設定値に対してほぼ同じ電流 値が測定されている。 実験例に記載はしないが、 通電性が不良の太陽電池モジュールに対し て同様の試験を行うと、 電流測定器 3には電流値の表示はほぼゼロと表示される。  From the results of Experimental Example 1 to Experimental Example 6, the disconnection confirmation method of the present invention has almost the same current value with respect to the current setting value applied from the DC power source 1 to the solar cell module 2 regardless of the attitude of the solar cell module 2. It has been measured. Although not described in the experimental example, if a similar test is performed on a solar cell module with poor electrical conductivity, the current value displayed on the current measuring device 3 is almost zero.
一方、 比較実験例 1および 2における従来の方法により測定した結果では、 断線の無い通 電性が良好な太陽電池モジュールであるが、 太陽電池モジュールの姿勢によってデジダルマ ルチメーターに表示される抵抗値の値が安定しない。 従って、 従来の通電確認の方法では通 電不良品と通電良品の区別が不可能であることが分かる。  On the other hand, the results measured by the conventional method in Comparative Experimental Examples 1 and 2 show that the solar cell module has good electrical conductivity without disconnection, but the resistance value displayed on the digital multimeter depends on the attitude of the solar cell module. Is not stable. Therefore, it can be seen that the conventional energization confirmation method cannot distinguish between poorly energized products and non-energized products.
また実験例の結果および比較実験例の結果によれば本発明の断線確認方法は、 通電不良品 と通電良品の区別を正確に判定する有効な方法であることが分かる。  Further, according to the result of the experimental example and the result of the comparative experimental example, it is understood that the disconnection confirmation method of the present invention is an effective method for accurately determining the distinction between the poorly energized product and the non-energized product.
[実施例 2 ]  [Example 2]
第 2実施例は、 第 1実施例に対して表示器 4を追カ卩した。  In the second embodiment, the display 4 is added to the first embodiment.
図 3は第 2実施例による 太陽電池モジュールの検査装置(断線確認方法)のブロック図で ある。  FIG. 3 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the second embodiment.
図 3を参照しながら第 2実施例について説明する。 表示器 4は、 次のような機能を備えて いる。 電流測定器 3で測定された電流値を、 L E D等で数値表示する機能備えている。 また 前記電流測定器 3から測定された電流値と予め設定されている電流設定値を比較して、 前記 太陽電池モジュール 2の断線有無を、 「OK」 と 「N G」 等を表示する機能を備えている。 これらの 「OK」 と 「NG」 等の表示は、 視覚や聴覚で表示する事もできる。 また外部の機 器へ電子情報や電気信号として出力することも可能である。  The second embodiment will be described with reference to FIG. The display 4 has the following functions. It has a function to display the current value measured by the current measuring device 3 numerically with L E D etc. In addition, the current value measured from the current measuring device 3 is compared with a preset current set value, and a function of displaying “OK”, “NG”, etc., indicating whether the solar cell module 2 is disconnected or not is provided. ing. These indications such as “OK” and “NG” can be displayed visually or auditorily. It can also be output to external devices as electronic information or electrical signals.
[実施例 3 ]  [Example 3]
第 1実施例および第 2実施例では、 作業者が常に電流測定器 3の表示や表示器 4の表示結 果を監視する必要がある。 第 3実施例では、 コンピュータ 5を追加した。  In the first embodiment and the second embodiment, the operator always needs to monitor the display of the current measuring device 3 and the display result of the display device 4. In the third embodiment, a computer 5 is added.
図 4は第 3実施例による太陽電池モジュールの検查装置 (断線確認方法) のブロック図で ある。  FIG. 4 is a block diagram of a solar cell module inspection device (disconnection confirmation method) according to the third embodiment.
図 4を参照すると、 コンピュータ 5は、 電流測定器 3に接続されて、 太陽電池モジュール が 1個ずつの検査が終わると、 良否の履歴データを記録して保存する。 そうすることにより 製品の品質管理が容易となる。 また図示していないが、 図 3の表示器 4にコンピュータ 5を 接続する構成とすることもできる。  Referring to FIG. 4, the computer 5 is connected to the current measuring device 3, and when the solar cell module is inspected one by one, the history data of pass / fail is recorded and stored. By doing so, product quality control becomes easier. Although not shown, the computer 5 can be connected to the display 4 in FIG.
[実施例 4 ]  [Example 4]
第 4実施例は、 第 3実施例に対してマーキング装置 6を il¾卩している。  In the fourth embodiment, the marking device 6 is used in comparison with the third embodiment.
図 5は第 4実施例による太陽電池モジュールの検査装置 (断線確認方法) のブロック図で ある。  FIG. 5 is a block diagram of a solar cell module inspection apparatus (disconnection confirmation method) according to the fourth embodiment.
図 5を参照すると、 マ一キング装置 6は、 コンピュータ 5から検査結果を受け取って、 そ の太陽電池モジュール 2の裏面材などに測定した電流値などをレーザーマーキングする。 こ れにより、 コンピュータ 5内の保存データと製品 (太陽電池モジュール 2 ) の情報が紐付け されるので履歴管理などがより便利になる。 Referring to FIG. 5, the marking device 6 receives the inspection result from the computer 5 and laser-marks the measured current value on the back material of the solar cell module 2. This As a result, the data stored in the computer 5 and the information on the product (solar cell module 2) are linked, making history management and the like more convenient.

Claims

請 求 の 範 囲 The scope of the claims
1 . 太陽電池モジュールと、  1. With solar cell module,
•前記太陽電池モジュールの正極端子および負極端子に接続され、 所定の回路を形成する • Connected to the positive and negative terminals of the solar cell module to form a predetermined circuit
D C電源と、 DC power supply,
前記回路を流れる電流を測定する電流測定器と、 を含むことを特徴とする太陽電池モジ ユールの検査装置。  An apparatus for inspecting a solar cell module, comprising: a current measuring device that measures a current flowing through the circuit.
2. 前記電流測定器から測定された電流値と、  2. a current value measured from the current measuring instrument;
前記電流測定器から測定された電流値と、 前記 D C電源の電流設定値を比較して判断し た前記太陽電池モジュールの断線有無の少なくともいずれ力—方を表示する表示器を含 むことを特徴とする請求項 1に記載の太陽電池モジュールの検査装置。  And a display for displaying at least either power of the presence or absence of disconnection of the solar cell module determined by comparing the current value measured from the current measuring instrument and the current set value of the DC power source. The solar cell module inspection device according to claim 1.
3 . 少なくとも前記電流測定器と表示器とのいずれかに接続されるコンピュータを含むこ とを特徴とする請求項 1叉は請求項 2に記載の太陽電池モジュールの検査装置。  3. The solar cell module inspection apparatus according to claim 1 or 2, further comprising a computer connected to at least one of the current measuring device and the display device.
4 . 前記コンピュータに接続され、 前記電流測定器と表示器とのレゝずれかから前記コンビ ユータに転送されたデータの全て叉は一部を前記太陽電池モジュールにマーキングする マーキング装置を含むことを特徵とする請求項 1から請求項 3のいずれかに記載の太陽 電池モジュールの検査装置。  4. a marking device connected to the computer and marking all or part of the data transferred to the computer from the difference between the current measuring device and the display device on the solar cell module; The solar cell module inspection apparatus according to any one of claims 1 to 3, which is a special feature.
5 . 太陽電池モジュールと D C電源との回路を形成する工程と、  5. Forming a circuit between the solar cell module and the DC power source;
前記 D c rnによって前記太陽電池モジュールへ電流が印加される工程と、 前記印加された電流設定値と前記回路を流れる電流とを比較し 、 その差によつて太陽 電池モジュールの断線の良否を判断する判断工程を含むことを特徴とする太陽電池モジ ユールの断線確認方法。  The step of applying a current to the solar cell module by the D crn, comparing the applied current setting value with the current flowing through the circuit, and determining whether the solar cell module is disconnected or not based on the difference A method for confirming disconnection of a solar cell module, comprising:
6 . 前記差が 5 %以内であれば断線無し (良品) と判断することを特徴とする請求項 5に 記載の 太陽電池モジュールの断線確認方法。  6. The method for confirming disconnection of a solar cell module according to claim 5, wherein if the difference is within 5%, it is determined that there is no disconnection (good product).
7 . 前記判断工程は、 前記回路を流れる電流値と断線の良否の少なぐともいずれか一方を 表示することを特徼とする請求項 5に記載め 太陽電池モジュールの断線確認方法。  7. The method for confirming disconnection of a solar cell module according to claim 5, wherein the determination step displays at least one of a current value flowing through the circuit and whether the disconnection is good or bad.
PCT/JP2009/061147 2008-06-26 2009-06-12 Apparatus and method for inspecting solar cell module WO2009157368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-166929 2008-06-26
JP2008166929A JP2010010327A (en) 2008-06-26 2008-06-26 Device and method for inspecting solar cell module

Publications (1)

Publication Number Publication Date
WO2009157368A1 true WO2009157368A1 (en) 2009-12-30

Family

ID=41444436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061147 WO2009157368A1 (en) 2008-06-26 2009-06-12 Apparatus and method for inspecting solar cell module

Country Status (2)

Country Link
JP (1) JP2010010327A (en)
WO (1) WO2009157368A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011428A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Failure detection device, failure detection system, and failure detection method
CN106767379A (en) * 2016-12-30 2017-05-31 常州亿晶光电科技有限公司 A kind of testing equipment of solar panel web plate deformation
US10835637B2 (en) 2015-08-24 2020-11-17 3-D Matrix, Ltd. (Tokyo, Japan) Biodegradable injectable gel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098659A1 (en) * 2011-01-20 2012-07-26 シャープ株式会社 Lead-raising method, lead-raising device, and terminal-box-mounting device
JP2013195142A (en) * 2012-03-16 2013-09-30 Dexerials Corp Solar cell output measuring method and solar cell output measuring tool
JP2015188306A (en) * 2014-03-13 2015-10-29 石川県 Inspection device and inspection method of solar cell circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175925A (en) * 1982-04-08 1983-10-15 三菱電機株式会社 Defect detecting system for solar light generating system
JP2001174530A (en) * 1999-12-15 2001-06-29 Maki Mfg Co Ltd Solar battery characteristic measurement device
JP2002111030A (en) * 2000-07-05 2002-04-12 Canon Inc Measurement or prediction method of photoelectric conversion characteristic of photoelectric conversion device, and method and device for determining quantity of spectrum dependency
JP2004047838A (en) * 2002-07-12 2004-02-12 Kanegafuchi Chem Ind Co Ltd Solar cell module inspection apparatus or inspection method
JP2004363196A (en) * 2003-06-02 2004-12-24 Kyocera Corp Inspection method of solar cell module
JP2005317811A (en) * 2004-04-28 2005-11-10 Sharp Corp Measuring device and method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175925A (en) * 1982-04-08 1983-10-15 三菱電機株式会社 Defect detecting system for solar light generating system
JP2001174530A (en) * 1999-12-15 2001-06-29 Maki Mfg Co Ltd Solar battery characteristic measurement device
JP2002111030A (en) * 2000-07-05 2002-04-12 Canon Inc Measurement or prediction method of photoelectric conversion characteristic of photoelectric conversion device, and method and device for determining quantity of spectrum dependency
JP2004047838A (en) * 2002-07-12 2004-02-12 Kanegafuchi Chem Ind Co Ltd Solar cell module inspection apparatus or inspection method
JP2004363196A (en) * 2003-06-02 2004-12-24 Kyocera Corp Inspection method of solar cell module
JP2005317811A (en) * 2004-04-28 2005-11-10 Sharp Corp Measuring device and method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011428A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Failure detection device, failure detection system, and failure detection method
US10835637B2 (en) 2015-08-24 2020-11-17 3-D Matrix, Ltd. (Tokyo, Japan) Biodegradable injectable gel
CN106767379A (en) * 2016-12-30 2017-05-31 常州亿晶光电科技有限公司 A kind of testing equipment of solar panel web plate deformation

Also Published As

Publication number Publication date
JP2010010327A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
WO2009157368A1 (en) Apparatus and method for inspecting solar cell module
US8581598B2 (en) Method for inspecting electrostatic chuck, and electrostatic chuck apparatus
US8603838B2 (en) Method for producing a contact for solar cells
CN110838273B (en) Crack detection method for display panel
US6271462B1 (en) Inspection method and production method of solar cell module
WO2014007261A1 (en) Failure detection device, failure detection system, and failure detection method
JPWO2007125778A1 (en) Solar cell module evaluation apparatus, solar cell module evaluation method, and solar cell module manufacturing method
EP3398209A1 (en) Advanced interconnect method for photovoltaic strings and modules
EP3574373B1 (en) Method for detecting breakage of a substrate of a switchable optical element and switchable optical device
JP2014011428A (en) Failure detection device, failure detection system, and failure detection method
US10833628B2 (en) Failure diagnostic method and failure diagnostic device of solar cell string
JP5540736B2 (en) Manufacturing method of solar cell module
JP2011127983A (en) Insulation resistance measuring method, inspection method and insulation resistance measuring apparatus
JP2004363196A (en) Inspection method of solar cell module
JPH0845538A (en) Insulation testing device of secondary battery
CN114400237A (en) Array substrate, testing device thereof and display panel
WO2014081694A1 (en) Detecting defects within photovoltaic modules
JP2006294695A (en) Withstand voltage testing method of solar cell module
CN109073695A (en) The inspection method and inspection system of the wiring path of substrate
CN112415419A (en) LED module protective adhesive layer detection tool and method
JP4959738B2 (en) Solar cell module manufacturing method and solar cell module manufacturing apparatus
JP4983174B2 (en) Diode element and inspection method of diode element
CN1532557A (en) Fault tracking method and device for electronic measurement and detection configuration of electrochemical element
JP2013098411A (en) Inspection method and inspection apparatus for solar battery
CN110571485B (en) Battery heating film and battery box body water inlet detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770078

Country of ref document: EP

Kind code of ref document: A1