JPS6222542B2 - - Google Patents

Info

Publication number
JPS6222542B2
JPS6222542B2 JP57031994A JP3199482A JPS6222542B2 JP S6222542 B2 JPS6222542 B2 JP S6222542B2 JP 57031994 A JP57031994 A JP 57031994A JP 3199482 A JP3199482 A JP 3199482A JP S6222542 B2 JPS6222542 B2 JP S6222542B2
Authority
JP
Japan
Prior art keywords
neutral point
power generation
solar
solar cell
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57031994A
Other languages
Japanese (ja)
Other versions
JPS58148472A (en
Inventor
Sueo Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57031994A priority Critical patent/JPS58148472A/en
Publication of JPS58148472A publication Critical patent/JPS58148472A/en
Publication of JPS6222542B2 publication Critical patent/JPS6222542B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 この発明は太陽電池の故障個所を検出する太陽
電池の故障検出装置に関するものである。太陽電
池はシリコン単結晶、シリコンリボン結晶、
GaAs等により構成され、太陽光エネルギーを電
力に変換するものであり、クリーンエネルギーで
あること並びに新エネルギーとして用途が拡大さ
れつつある。太陽電池の容量を大きくして、直交
変換装置(DC→AC)に接続し交流に変換し、一
般配電系統又は専用の交流負荷に接続し、電力を
導くいわゆる太陽光発電装置がある。太陽電池は
モジユール化されており、一般に太陽電池パネル
として構成され、この太陽電池パネルを多数設置
し、パネル相互間を直列にしてブロツク化を図
り、このブロツクを更に並列に接続して、太陽電
池の出力としての電圧、容量を決定する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell failure detection device for detecting a failure location of a solar cell. Solar cells are silicon single crystal, silicon ribbon crystal,
It is composed of GaAs, etc., and converts solar energy into electricity, and its uses are expanding as a clean energy and new energy. There is a so-called solar power generation device that increases the capacity of a solar cell, connects it to an orthogonal converter (DC→AC), converts it to alternating current, connects it to a general power distribution system or a dedicated alternating current load, and leads the power. Solar cells are modular, and are generally configured as solar panels.Many solar panels are installed, the panels are connected in series to form blocks, and these blocks are further connected in parallel to form solar cells. Determine the voltage and capacity as the output.

太陽電池パネルは屋外に設置され、各パネルへ
ケーブルで接続していくが、故障が発生し易い環
境にある。例えば、電池パネルの或る所で地絡、
断線、短絡等の事故が発出した場合、どの個所で
あるかを見くける事が必要となる。
Solar panels are installed outdoors and connected to each panel with cables, but this is an environment where failures are likely to occur. For example, if there is a ground fault in a certain part of the battery panel,
If an accident such as a disconnection or short circuit occurs, it is necessary to identify the location.

従来は特に故障を検出する装置がなく、放置し
ており事故が拡大して発見出来るケースとなつて
いた。
In the past, there was no specific equipment to detect failures, and if the failure was left unattended, the accident would spread and be discovered.

事故拡大を防止すること及び太陽電池の出力低
下を防ぐ意味で早く故障個所を発見し修復させる
必要がある。
In order to prevent the accident from spreading and to prevent a decrease in the output of the solar cells, it is necessary to quickly find and repair the malfunctioning part.

この発明は各発電ブロツクの中性点を抵抗器を
介して接地し、中性点と大地との間を流れる電流
を検出することによつて早期に故障個所を検出で
きる太陽電池の故障検出装置を提供する。
This invention is a solar cell failure detection device that can detect failure points early by grounding the neutral point of each power generation block via a resistor and detecting the current flowing between the neutral point and the ground. I will provide a.

以下、図について説明する。第1図及び第5図
において、1は太陽電池パネルで、直列にn個接
続されて1つの発電ブロツク(以下ブロツクと称
す)を構成している。各ブロツクはブロツクA1
からブロツクAmまでm個あり、並列に接続され
ている。太陽電池パネル1は第2図に示すよう
に、太陽電池素子1aが1個又は複数個直列に接
続されており、両端はバイパスダイオード2によ
つてバイパスできるようになつている。3,4は
逆流防止用のダイオードで、各ブロツクA1〜Am
の両端に起電力に対して順方向に接続されてい
る。5,6は負荷が接続される出力端である。7
は各ブロツクA1〜Amの中性点X12〜Xmを接地す
る接地線、8は接地線7に設けられた抵抗器で、
接地線7を流れる電流を制限するために抵抗値が
高いものが使用されている。9は接地線7に設け
られた継電器、10は各中性点X1〜Xmと抵抗器
8との間に設けられたスイツチである。
The figures will be explained below. In FIGS. 1 and 5, numeral 1 denotes a solar cell panel, and n solar panels are connected in series to form one power generation block (hereinafter referred to as a block). Each block is block A 1
There are m blocks from A to A, which are connected in parallel. As shown in FIG. 2, the solar cell panel 1 has one or more solar cell elements 1a connected in series, and both ends can be bypassed by bypass diodes 2. 3 and 4 are diodes for backflow prevention, and each block A 1 ~ Am
is connected at both ends in the forward direction with respect to the electromotive force. 5 and 6 are output terminals to which loads are connected. 7
is a grounding wire that grounds the neutral points X12 to Xm of each block A1 to Am, and 8 is a resistor provided to the grounding wire 7.
In order to limit the current flowing through the grounding wire 7, a wire with a high resistance value is used. Reference numeral 9 represents a relay provided on the grounding wire 7, and reference numeral 10 represents a switch provided between each of the neutral points X 1 to Xm and the resistor 8.

次に第3図〜第5図によつて動作を説明する。
第3〜第5図は第1図と等価な回路図であり、ブ
ロツクA2〜Amの合成抵抗11は記載されている
が、ブロツクA2〜Amの継電器などは省略してあ
る。
Next, the operation will be explained with reference to FIGS. 3 to 5.
3 to 5 are circuit diagrams equivalent to FIG. 1, and although the combined resistance 11 of blocks A 2 to Am is shown, the relays and the like of blocks A 2 to Am are omitted.

第3図はブロツクA1のY点で地絡事故が発生
した例を示している。各ブロツクの両側の電圧を
E0とすれば、ブロツクA1以外は中性点Xの両側
には各太陽電池パネル1の電圧が合成されて
E0/2の電圧がある。また、中性点Xは継電器
(図示せず)の内部インピーダンスを無視すれば
抵抗Z=γ/m−1で接地されていることになる。
Figure 3 shows an example where a ground fault occurred at point Y in block A1 . Voltage on both sides of each block
If E is 0 , the voltages of each solar panel 1 are combined on both sides of the neutral point X except for block A 1 .
There is a voltage of E 0 /2. Furthermore, if the internal impedance of a relay (not shown) is ignored, the neutral point X is grounded through a resistance Z=γ/m-1.

事故が発生していない時はブロツクA1の中性
点X1点の電位もE/2であり、継電器9には電流が 流れない。太陽電池パネルP1とP2間のY点で地絡
が起こると、地絡点Y―太陽電池パネルP2……中
性点X1―抵抗器8―継電器9間に閉ループが構
成される。従つて継電器9を流れる電流IRは次
のようになる。
When no accident occurs, the potential at the neutral point X1 of block A1 is also E 0 /2, and no current flows through relay 9. When a ground fault occurs at point Y between solar panels P1 and P2 , a closed loop is formed between ground fault point Y, solar panel P2 ...neutral point X1 , resistor 8, and relay 9. . Therefore, the current I R flowing through the relay 9 is as follows.

R=(E/2−E/n)×1/γ=(n−2
)E/2n.γ X1点より1パネルずれた点で地絡した時は、
R=E/n.γをなるので、この値で継電器9が動
作 する様にしておけばよい。
I R =(E 0 /2-E 0 /n)×1/γ=(n-2
) E 0 /2n. When a ground fault occurs at a point that is one panel away from the γ
I R =E 0 /n. γ, so the relay 9 should be set to operate at this value.

第4図は太陽電池パネルP2が短絡したケースで
ある。太陽電池パネルP2の両端には電位差を生じ
ない為にX1点の電位EX1′は次のようになる。
Figure 4 shows a case where solar panel P2 is short-circuited. Since there is no potential difference between both ends of the solar cell panel P2 , the potential E X1 ' at point X1 is as follows.

X1′=E×(〓−1)/n−1 継電器9を流れる電流IR′は次のようになるの
で、 このときの電流IR′で継電器9が動作するよう
にしておけばよい。なお、第2図のバイパスダイ
オード2が故障して逆導通の状態になつても、太
陽電池パネルの短絡と同じ条件となり検出可能で
ある。
E X1 ′=E 0 ×(〓-1)/n-1 The current I R ′ flowing through the relay 9 is as follows, so The relay 9 may be operated by the current I R ' at this time. Note that even if the bypass diode 2 in FIG. 2 fails and enters a reverse conduction state, the condition is the same as a short circuit in the solar cell panel, and it can be detected.

第5図は太陽電池パネルP1とP2間で断線したケ
ースである。この場合は各電池パネルが開放電圧
となる。(最大電力を取り出す時の電圧を最適動
作電圧と呼ぶが、開放にすると電圧が高くなり通
常最適動作電圧の1.4〜1.5倍となる)。X1の電位
X1″は初期のE/2より小さくなり、電安EXとEX
1
″の差で断電器9にはE−EX1″/γ+Zなる電流
が流れ る。この電流によつて断電器9は充分動作可能で
ある。なお、継電器9を流れる電流は故障発生状
況によりかなりの差がある事、及び感度をよくす
る事から過電流耐量の大きいものにする必要があ
る。電流の方向は故障個所により極性が変るので
+、−双方向性にする必要がある。また、逆流防
止ダイオード3は地絡故障時に中性点Xより合成
抵抗11を通じて大きな電流が逆流して電池パネ
ル内素子が破壊するのを防止する。
Figure 5 shows a case where a disconnection occurs between solar panels P1 and P2 . In this case, each battery panel has an open circuit voltage. (The voltage when the maximum power is extracted is called the optimal operating voltage, but when it is left open, the voltage increases and is usually 1.4 to 1.5 times the optimal operating voltage.) The potential E X1 ″ of X 1 becomes smaller than the initial E 0 / 2 , and Denan E
With a difference of 1 '', a current of EX - EX1 ''/γ+Z flows through the disconnector 9. This current allows the disconnector 9 to operate satisfactorily. Note that the current flowing through the relay 9 varies considerably depending on the failure occurrence situation, and in order to improve sensitivity, it is necessary to use a relay 9 having a large overcurrent withstand capacity. The polarity of the current changes depending on the location of the fault, so it must be bidirectional. Further, the reverse current prevention diode 3 prevents a large current from flowing backward from the neutral point X through the composite resistor 11 in the event of a ground fault, thereby preventing elements in the battery panel from being destroyed.

又各直列ブロツクA1〜Amの両端に開閉器を設
けて、他の所で運転中にメンテナンスする事も考
えられる。また、抵抗器8や継電器9を個々のブ
ロツクに設けるとコスト高になる為、第3図に示
すスイツチ10によつて各ブロツクA1〜Amの中
性点X1〜Xmと接地線7との切換を行うスキヤナ
(図示せず)を設ければ、1組の抵抗器8や継電
器9などで所望のブロツクをチエツクする事が出
来る。
It is also conceivable to provide switches at both ends of each series block A 1 to Am and perform maintenance at another location during operation. Furthermore, since it would be costly to provide resistors 8 and relays 9 in individual blocks, switches 10 shown in FIG. If a scanner (not shown) for switching is provided, a desired block can be checked using a set of resistors 8, relays 9, etc.

以上のようにこの発明によれば複数個の太陽電
池パネルが直列に接続された各発電ブロツクの中
性点を抵抗器を介して接地し、中性点と大地との
間を流れる電流を検出することによつて故障を検
出するので、故障個所を早期に検出することが可
能である。また、検出信号により装置の停止及び
遠隔での表示等が簡単に行なう事が出来るので、
故障個所を早く修復する事が出来る。又事故の拡
大も防げる効果がある。
As described above, according to the present invention, the neutral point of each power generation block in which a plurality of solar panels are connected in series is grounded via a resistor, and the current flowing between the neutral point and the earth is detected. Since a failure is detected by doing this, it is possible to detect the failure location at an early stage. In addition, the detection signal allows you to easily stop the device and display it remotely.
Malfunctions can be quickly repaired. It also has the effect of preventing the spread of accidents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の太陽電池の故障
検出装置を示す回路図、第2図は第1図に示す太
陽電池パネルの回路図、第3図〜第5図は故障例
を示す第1図と等価な回路図である。図中、1は
太陽電池パネル、A1〜Amは発電ブロツク、7は
接地点、8は抵抗器、9は継電器である。なお各
図中同一符号は同一又は相当部分を示す。
Fig. 1 is a circuit diagram showing a solar cell failure detection device according to an embodiment of the present invention, Fig. 2 is a circuit diagram of the solar cell panel shown in Fig. 1, and Figs. 3 to 5 show failure examples. 2 is a circuit diagram equivalent to FIG. 1. FIG. In the figure, 1 is a solar panel, A 1 to Am are power generation blocks, 7 is a grounding point, 8 is a resistor, and 9 is a relay. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 複数個の太陽電池パネルが直列に接続された
発電ブロツクを並列接続し、上記各発電ブロツク
の中性点を抵抗器を介して接地し、上記中性点と
大地との間を流れる電流を検出することを特徴と
する太陽電池の故障検出装置。 2 複数個の太陽電池パネルが直列に接続された
発電ブロツクを並列接続し、上記各発電ブロツク
の両端に起電力に対して順方向のダイオードを設
け、上記各発電ブロツクの中性点を抵抗器を介し
て接地し、上記中性点と大地との間を流れる電流
を検出することを特徴とする太陽電池の故障検出
装置。
[Claims] 1 Power generation blocks each having a plurality of solar cell panels connected in series are connected in parallel, the neutral point of each power generation block is grounded via a resistor, and the neutral point is connected to the earth. A failure detection device for a solar cell, characterized by detecting a current flowing between the solar cells. 2 Power generation blocks in which multiple solar panels are connected in series are connected in parallel, diodes are provided at both ends of each of the power generation blocks in the forward direction relative to the electromotive force, and the neutral point of each of the power generation blocks is connected to a resistor. A failure detection device for a solar cell, characterized in that the device is grounded through the neutral point and detects a current flowing between the neutral point and the earth.
JP57031994A 1982-02-26 1982-02-26 Fault detecting device for solar battery Granted JPS58148472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57031994A JPS58148472A (en) 1982-02-26 1982-02-26 Fault detecting device for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031994A JPS58148472A (en) 1982-02-26 1982-02-26 Fault detecting device for solar battery

Publications (2)

Publication Number Publication Date
JPS58148472A JPS58148472A (en) 1983-09-03
JPS6222542B2 true JPS6222542B2 (en) 1987-05-19

Family

ID=12346460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031994A Granted JPS58148472A (en) 1982-02-26 1982-02-26 Fault detecting device for solar battery

Country Status (1)

Country Link
JP (1) JPS58148472A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829424B2 (en) * 2001-05-31 2011-12-07 キヤノン株式会社 Solar cell array and photovoltaic power generation system
JP5159569B2 (en) * 2008-11-11 2013-03-06 株式会社日立製作所 Fuel cell system and control method thereof
JP5380646B1 (en) * 2012-07-31 2014-01-08 株式会社システム・ジェイディー Junction box, failure diagnosis system, program, recording medium, and failure diagnosis method
JP6470490B2 (en) * 2013-11-26 2019-02-13 ネクストエナジー・アンド・リソース株式会社 Power generation failure detection method, power generation failure detection device and solar power generation device for solar cell string
JP2016019390A (en) * 2014-07-09 2016-02-01 Jx日鉱日石エネルギー株式会社 Photovoltaic power generation system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUSION TECHOLOGY=1980 *
THE CONFERENCE RECORD OF THE FIFTEENTH IEEE PHOTOVLTAIC SPECIALISTS CONFERENCE=1981 *

Also Published As

Publication number Publication date
JPS58148472A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
CN101981776B (en) System and method for ground fault detection and interruption
US20170279265A1 (en) Disconnection of a string carrying direct current power
EP2587654B1 (en) Power conversion apparatus
US8243408B2 (en) Apparatus and method for preventing reverse power flow of over current relay
EP2834897B1 (en) Backup power system and grounding device for a backup power system
JPS6222542B2 (en)
JPH0681410B2 (en) DC circuit ground fault detector
JPS642011B2 (en)
KR20220059765A (en) Online insulation resistance application and method of DC system
KR100437446B1 (en) Sub-system connecting device in power supply system
JP4463936B2 (en) Solar panel ground fault detector
KR20170120954A (en) Apparatus for fault detection in photovoltaic inverter system
RU2071624C1 (en) Gear for centralized directional protection against fault to ground
JP2001224129A (en) Generation system and its installation method
JPH0834662B2 (en) Solar cell circuit
JPH0536332A (en) Switch operation control circuit
JP3746552B2 (en) Abnormality confirmation method of instantaneous voltage drop countermeasure device
JP3015589B2 (en) Instantaneous voltage drop detection method
KR20220138931A (en) Apparatus for preventing leakage current for solar power generation system and solar power generation system having the same
RU2314618C1 (en) Method for construction and adjustment of current cut-off
JPH0724906Y2 (en) Undervoltage relay
JP2930500B2 (en) Protective relay
JPH02133031A (en) Neutral-conductor open-phase detecting point extension unit in single-phase three-wire system
JPH0729700Y2 (en) Directional short circuit relay
WO2020081002A1 (en) Mining machine with electrical insulation status monitoring