JP2001224129A - Generation system and its installation method - Google Patents

Generation system and its installation method

Info

Publication number
JP2001224129A
JP2001224129A JP2000362832A JP2000362832A JP2001224129A JP 2001224129 A JP2001224129 A JP 2001224129A JP 2000362832 A JP2000362832 A JP 2000362832A JP 2000362832 A JP2000362832 A JP 2000362832A JP 2001224129 A JP2001224129 A JP 2001224129A
Authority
JP
Japan
Prior art keywords
ground
power
generation system
power generation
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000362832A
Other languages
Japanese (ja)
Other versions
JP3728200B2 (en
Inventor
Nobuyoshi Takehara
信善 竹原
Naoki Manabe
直規 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000362832A priority Critical patent/JP3728200B2/en
Publication of JP2001224129A publication Critical patent/JP2001224129A/en
Application granted granted Critical
Publication of JP3728200B2 publication Critical patent/JP3728200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a generation system which does not generate unnecessary interrupt, at external ground faults. SOLUTION: In a generation system, composed at least of a transformerless inverter and a DC power source having grounding capacity, and connected through a power-receiving ground leakage breaker to a low-voltage distribution system which is connected to a plurality of customers, having ground leakage breakers and has one grounded line, the operating time interval of the power- receiving ground leakage breaker of the generation system is set longer than the operating time intervals of the ground leakage breakers fitted for the group of customers. Or the direction of grounding judging means, which judges whether the position of grounding is inside or outside the generation system, is provided with.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電システム及び
その設置方法に関し、詳しくは外部地絡事故による不要
動作を防止できる発電システム及びその設置方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system and a method of installing the same, and more particularly to a power generation system capable of preventing unnecessary operation due to an external ground fault and a method of installing the same.

【0002】[0002]

【従来の技術】一般の低圧配電系統に連系する太陽光発
電システムについて図9を用いて説明する。図9は、従
来の太陽光発電システム及びその低圧配電系統との接続
を示す模式的な概念図である。図中、Aは太陽光発電シ
ステムを有する需要家を示し、太陽電池アレイ1、系統
連系インバータ2、受電用漏電遮断器3が太陽光発電シ
ステムを構成している。直流電源たる太陽電池アレイ1
は、所望の電圧、電流が得られるよう太陽電池モジュー
ルを直列及び/又は並列に接続して構成する。太陽電池
アレイ1は系統連系インバータ2に接続されており、系
統連系インバータ2は受電用漏電遮断器3を介して低圧
配電系統4に接続されている。また、負荷5が系統連系
インバータ2と受電用漏電遮断器3の間に接続されてい
る。太陽電池アレイ1からの直流電力は系統連系インバ
ータ2に入力され、交流電力に変換され、負荷5又は低
圧配電系統4に出力される。需要家A内の配線は、受電
用漏電遮断器3の系統連系インバータ2側および負荷5
側である。受電用漏電遮断器3は、地絡電流を検出する
ことにより需要家A内の地絡事故を検知し、その影響が
需要家Aの外部である低圧配電系統4へ波及しないよう
需要家内外の接続を遮断する。
2. Description of the Related Art A photovoltaic power generation system connected to a general low-voltage distribution system will be described with reference to FIG. FIG. 9 is a schematic conceptual diagram showing a conventional photovoltaic power generation system and its connection to a low-voltage distribution system. In the figure, A indicates a consumer having a photovoltaic power generation system, and a photovoltaic power generation system includes a solar cell array 1, a grid-connected inverter 2, and a power leakage breaker 3 for receiving power. Solar array 1 as DC power supply
Is configured by connecting solar cell modules in series and / or parallel so that a desired voltage and current can be obtained. The solar cell array 1 is connected to a system interconnection inverter 2, and the system interconnection inverter 2 is connected to a low-voltage distribution system 4 via a power leakage breaker 3. Further, a load 5 is connected between the system interconnection inverter 2 and the earth leakage breaker 3 for receiving power. DC power from the solar cell array 1 is input to the grid-connected inverter 2, converted into AC power, and output to the load 5 or the low-voltage distribution system 4. The wiring in the customer A is connected to the system interconnection inverter 2 side of the earth leakage breaker 3 for receiving power and the load 5.
Side. The earth leakage circuit breaker 3 for receiving power detects a ground fault accident in the customer A by detecting a ground fault current, so that the influence does not spread to the low voltage distribution system 4 outside the customer A. Disconnect the connection.

【0003】また、発電設備を有しない他の需要家B
1、B2が、受電用漏電遮断器3を介して低圧配電系統
4に接続されている。
In addition, another customer B who does not have a power generation facility
1 and B2 are connected to a low-voltage distribution system 4 via a power leakage breaker 3 for receiving power.

【0004】ところで、太陽電池アレイ1はその面積が
広いことから対地浮遊容量6が存在する。太陽電池アレ
イ1を構成する太陽電池モジュールとして、近年、建材
一体形のものや薄型化されたものが開発されているが、
補強材として導電性を有する部材(金属板等)が使用さ
れる場合や下地材として金属板等の導電性を有する部材
が葺かれる場合もある。このような場合、太陽電池セル
と金属板とが短い距離で広い面積で対向して対地浮遊容
量6が大きくなるケースがある。特にそのような金属板
が接地されている場合には太陽電池セルもしくは太陽電
池モジュールが安定した対地浮遊容量を持つ事になる。
また、雨などにより太陽電池モジュールの表面などに水
分が付着すると、水分を介して対地浮遊容量6が発生す
る場合もある。
The solar cell array 1 has a floating capacitance 6 to the ground because of its large area. In recent years, as a solar cell module constituting the solar cell array 1, a building material integrated type or a thinned type has been developed.
In some cases, a conductive member (such as a metal plate) is used as a reinforcing material, or a conductive member such as a metal plate is laid as a base material. In such a case, there is a case where the solar cell and the metal plate face each other at a short distance and a large area, and the stray capacitance 6 to the ground increases. In particular, when such a metal plate is grounded, the solar cell or the solar cell module has a stable ground floating capacity.
In addition, if moisture adheres to the surface of the solar cell module due to rain or the like, the ground floating capacitance 6 may be generated via the moisture.

【0005】一方、近年、高効率化、小形化、軽量化お
よび低価格化などのため、系統連系インバータ2は、絶
縁トランスを有しない、いわゆるトランスレス方式を採
用しているものが多くなっている。
On the other hand, in recent years, in order to increase the efficiency, reduce the size, reduce the weight, and reduce the cost, the grid-connected inverter 2 often employs a so-called transformerless system without an insulating transformer. ing.

【0006】[0006]

【発明が解決しようとする課題】ところが、我々は、対
地浮遊容量6が大きく系統連系インバータ2がトランス
レス方式の場合に他の需要家B1やB2で地絡事故が発
生すると、地絡電流Ig2が太陽電池アレイ1の対地浮
遊容量6を通じてシステム内に侵入し、系統連系インバ
ータ2を通過し、これが受電用漏電遮断器3に検出され
て不要動作が生じることを見出した。受電用漏電遮断器
3にこの不要動作が発生すると、需要家A内で事故が発
生した訳でないのに、太陽光発電システムを有する需要
家A内は低圧配電系統4から切り離され、太陽電池が発
電していない場合には需要家A内は停電してしまう。
However, we have found that if a ground fault occurs in another customer B1 or B2 when the stray capacitance 6 to the ground is large and the grid-connected inverter 2 is of a transformerless type, a ground fault current will occur. It has been found that Ig2 intrudes into the system through the ground floating capacitance 6 of the solar cell array 1 and passes through the system interconnection inverter 2, which is detected by the power receiving earth leakage breaker 3 and causes unnecessary operation. When this unnecessary operation occurs in the power receiving circuit breaker 3, the customer A having the photovoltaic power generation system is disconnected from the low-voltage distribution system 4 even though the accident does not necessarily occur in the customer A, and the solar cell is If power is not being generated, the power inside the customer A will be interrupted.

【0007】上記の問題は太陽光発電システムに限られ
るものではない。例えば、風力発電システムや燃料電池
などを用いる発電システムでも対地浮遊容量が大きけれ
ば同様の問題が発生し、外部地絡事故により受電用漏電
遮断器が不要動作し、需要家内に停電が発生する可能性
がある。
[0007] The above problems are not limited to solar power generation systems. For example, even in a power generation system using a wind power generation system or a fuel cell, a similar problem occurs if the floating capacity to the ground is large, and an external ground fault accident may cause unnecessary operation of the earth leakage breaker for power reception, resulting in a power outage within the customer There is.

【0008】本発明は、上述の問題を解決するためのも
のであり、外部地絡事故による受電用漏電遮断器の不要
動作を防止することのできる発電システムを提供するこ
とを目的とする。
An object of the present invention is to solve the above-described problem, and an object of the present invention is to provide a power generation system that can prevent unnecessary operation of a power receiving earth leakage breaker due to an external ground fault.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は、漏電遮
断器を備えた複数の需要家が接続され1線が接地されて
いる低圧配電系統に、受電用漏電遮断器を介して接続さ
れ、少なくともトランスレスインバータと対地浮遊容量
を有する直流電源とからなる発電システムにおいて、発
電システムの受電用漏電遮断器の動作時限が上記需要家
群に備えられた漏電遮断器の動作時限よりも大きく設定
されていることを特徴とする発電システムを提供する。
That is, the present invention is connected to a low-voltage power distribution system to which a plurality of consumers each having an earth leakage breaker are connected and one line is grounded, through an earth leakage breaker for receiving power. In a power generation system including at least a transformerless inverter and a DC power supply having a floating capacitance to the ground, the operation time of the earth leakage breaker for power reception of the power generation system is set to be longer than the operation time of the earth leakage breaker provided in the above-mentioned consumer group. The present invention provides a power generation system characterized in that:

【0010】また、本発明は、1線が接地された低圧配
電系統に受電用漏電遮断器を介して接続され、少なくと
もトランスレスインバータと対地浮遊容量を有する直流
電源とからなる発電システムにおいて、地絡位置が該発
電システムの内部か外部かを判定する地絡方向判定手段
を有することを特徴とする発電システムを提供する。
Further, the present invention relates to a power generation system which is connected to a low-voltage distribution system in which one line is grounded via a ground leakage circuit breaker for power reception and comprises at least a transformerless inverter and a DC power supply having a floating capacity to ground. There is provided a power generation system having a ground fault direction determining means for determining whether a fault position is inside or outside the power generation system.

【0011】さらに、本発明は、1線が接地された低圧
配電系統に受電用漏電遮断器を介して接続され、少なく
ともトランスレスインバータと対地浮遊容量を有する直
流電源とからなる発電システムにおいて、前記受電用漏
電遮断器が、対地電圧検出手段と、零相電流トランス
と、該零相電流トランスに接続された零相電流検出手段
と、該対地電流検出手段と該零相電流検出手段とに接続
された位相比較手段と、該位相比較手段に接続され該位
相手段から出力された信号に応じて異なる時限を選択す
る時限選択器と、前記前記零相電流検出手段に接続され
た零相電流レベル判定手段と、該零相電流レベル判定手
段と該時限選択器とに接続されそれぞれの出力に応じて
接点を駆動する接点駆動手段と、を有することを特徴と
する発電システムを提供する。
Further, the present invention relates to a power generation system which is connected to a low-voltage power distribution system in which one line is grounded via a ground leakage circuit breaker for power reception and comprises at least a transformerless inverter and a DC power supply having a floating capacity to ground. An earth leakage breaker for receiving power is connected to the ground voltage detecting means, the zero-phase current transformer, the zero-phase current detecting means connected to the zero-phase current transformer, and connected to the ground current detecting means and the zero-phase current detecting means. Phase comparing means, a time selector connected to the phase comparing means for selecting a different time period according to a signal output from the phase means, and a zero-phase current level connected to the zero-phase current detecting means. A power generation system comprising: a determination unit; and a contact driving unit connected to the zero-phase current level determination unit and the time selector and driving a contact according to each output. Subjected to.

【0012】また、本発明は、1線が接地された低圧配
電系統に受電用漏電遮断器を介して接続され、少なくと
もトランスレスインバータと対地浮遊容量を有する直流
電源とからなる発電システムにおいて、前記受電用漏電
遮断器が、対地電圧検出手段と、該対地電圧検出手段に
接続された対地電圧レベル判定手段と、零相電流トラン
スと、該零相電流トランスに接続された零相電流検出手
段と、前記前記零相電流検出手段に接続された零相電流
レベル判定手段と、該零相電流レベル判定手段と前記対
地電圧レベル判定手段とに接続されそれぞれの出力に応
じて接点を駆動する接点駆動手段と、を有することを特
徴とする発電システムを提供する。
The present invention also relates to a power generation system which is connected to a low-voltage distribution system in which one line is grounded via a power receiving circuit breaker and comprises at least a transformerless inverter and a DC power supply having a floating capacity to ground. A power receiving earth leakage circuit breaker, a ground voltage detecting means, a ground voltage level determining means connected to the ground voltage detecting means, a zero-phase current transformer, and a zero-phase current detecting means connected to the zero-phase current transformer; A zero-phase current level determining means connected to the zero-phase current detecting means; and a contact driving means connected to the zero-phase current level determining means and the ground voltage level determining means for driving a contact in accordance with respective outputs. And a power generation system.

【0013】さらに、本発明は、1線が接地された低圧
配電系統に受電用漏電遮断器を介して接続され、少なく
ともトランスレスインバータと対地浮遊容量を有する直
流電源とからなる発電システムにおいて、前記受電用漏
電遮断器が、対地電圧検出手段と、該対地電圧検出手段
に接続された対地電圧レベル判定手段と、該対地電圧レ
ベル判定手段に接続され該対地電圧判定手段の出力に応
じて時限を選択する時限選択器と、零相電流トランス
と、該零相電流トランスに接続された零相電流検出手段
と、前記前記零相電流検出手段に接続された零相電流レ
ベル判定手段と、該零相電流レベル判定手と前記時限選
択器とに接続されそれぞれの出力に応じて接点を駆動す
る接点駆動手段と、を有することを特徴とする発電シス
テムを提供する。
Further, the present invention relates to a power generation system which is connected to a low-voltage distribution system in which one line is grounded via a power receiving earth leakage breaker and comprises at least a transformerless inverter and a DC power supply having a floating capacity to ground. An earth leakage circuit breaker for receiving power is connected to the ground voltage detecting means, a ground voltage level determining means connected to the ground voltage detecting means, and a time limit is connected to the ground voltage level determining means and a time limit is set according to an output of the ground voltage determining means. A time selector to be selected; a zero-phase current transformer; zero-phase current detection means connected to the zero-phase current transformer; zero-phase current level determination means connected to the zero-phase current detection means; A power generation system comprising: a phase current level determining means; and a contact driving means connected to the time selector and driving a contact according to each output.

【0014】また、本発明は、漏電遮断器を備えた複数
の需要家が接続され1線が接地されている低圧配電系統
に、少なくともトランスレスインバータと対地浮遊容量
を有する直流電源とからなる発電システムを受電用漏電
遮断器を介して接続する発電システムの設置方法におい
て、前記受電用漏電遮断器として、動作時間が前記需要
家群に備えられた漏電遮断器の動作時限よりも大きく設
定された漏電遮断器を接続することを特徴とする発電シ
ステムの設置方法を提供する。
The present invention also relates to a power generation system comprising at least a transformerless inverter and a DC power supply having a floating capacity to the ground in a low-voltage distribution system to which a plurality of customers each having an earth leakage breaker are connected and one line is grounded. In the installation method of the power generation system connecting the system via the power receiving circuit breaker, as the power receiving circuit breaker, the operation time is set to be longer than the operation time of the circuit breaker provided in the customer group. Provided is a method for installing a power generation system, characterized by connecting an earth leakage breaker.

【0015】さらに、本発明は、1線が接地された低圧
配電系統に、少なくともトランスレスインバータと対地
浮遊容量を有する直流電源とからなる発電システムを、
受電用漏電遮断器を介して接続する発電システムの設置
方法において、地絡位置が該発電システムの内部か外部
かを判定する地絡方向判定手段を設けることを特徴とす
る発電システムの設置方法を提供する。
Further, the present invention provides a power generation system comprising at least a transformerless inverter and a DC power supply having a floating capacity to the ground in a low-voltage distribution system in which one line is grounded.
A method of installing a power generation system connected via a power leakage breaker for receiving power, the method comprising: installing a ground fault direction determining means for determining whether a ground fault position is inside or outside the power generation system. provide.

【0016】本発明の発電システムは、共通接地された
単相低圧配電系統と3相配電系統によって構成されてい
る低圧配電系統に接続されていることが好ましい。
The power generation system of the present invention is preferably connected to a low-voltage distribution system composed of a single-phase low-voltage distribution system and a three-phase distribution system that are commonly grounded.

【0017】また、本発明の発電システムの好ましい態
様としては、前記地絡方向判定手段が地絡位置を内部と
判定した場合に前記受電用漏電遮断器が動作するまでの
時間が、前記地絡方向判定手段が地絡位置を外部と判定
した場合に前記受電用漏電遮断器が動作するまでの時間
よりも短い態様、及び、前記地絡方向判定手段が地絡位
置を内部と判定した場合には前記受電用漏電遮断器が動
作し、前記地絡方向判定手段が地絡位置を外部と判定し
た場合には前記受電用漏電遮断器が動作しない態様、が
挙げられる。
In a preferred aspect of the power generation system according to the present invention, when the ground fault direction determining means determines that the ground fault position is inside, the time required for the power receiving circuit breaker to operate is equal to the ground fault. When the direction determining means determines that the ground fault position is outside, a mode shorter than the time until the power receiving earth leakage breaker operates, and when the ground fault direction determining means determines that the ground fault position is internal. The power receiving earth leakage breaker operates when the ground fault direction determining means determines that the ground fault position is outside, and the power receiving earth leakage breaker does not operate.

【0018】地絡方向判定手段としては、低圧配電系統
の接地側端子の対地電圧と零相電流の位相差から地絡位
置が内部か外部かを判定するものが好適である。また、
前記トランスレスインバータが単相配電系統に連系して
いる場合には、該単相配電系統の接地側端子の対地電圧
が該単相系統における正常値よりも高い時に地絡位置を
外部と判定する地絡方向判定手段も好適に用いられる。
It is preferable that the ground fault direction determining means determines whether the ground fault position is inside or outside based on the phase difference between the ground voltage and the zero-phase current of the ground terminal of the low-voltage distribution system. Also,
If the transformerless inverter is connected to a single-phase distribution system, the ground fault position is determined to be external when the ground voltage of the ground terminal of the single-phase distribution system is higher than a normal value in the single-phase distribution system. The ground fault direction determining means is also preferably used.

【0019】直流電源としては、太陽電池を含むものが
好ましく、該太陽電池が太陽電池素子を金属板とを有す
るものが特に好ましく、該金属板が接地されていること
がさらに好ましい。複数の太陽電池を直列及び/又は並
列に接続した太陽電池アレイからなる直流電源も本発明
に好適に用いられる。
The DC power source preferably includes a solar cell, particularly preferably the solar cell has a solar cell element and a metal plate, and more preferably the metal plate is grounded. A DC power supply composed of a solar cell array in which a plurality of solar cells are connected in series and / or in parallel is also suitably used in the present invention.

【0020】以上の好ましい態様は、本発明の設置方法
についても同様である。
The above preferred embodiments are the same for the installation method of the present invention.

【0021】[0021]

【発明の実施の形態】以下、図面を用いて、本発明の好
適な実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0022】(第1の実施の形態)本実施の形態では、
発電システム側の受電用漏電遮断器の動作時限を、同じ
低圧配電系統に接続された他の需要家群の受電用漏電遮
断器の動作時限よりも遅く設定したシステムについて説
明する。本形態の特徴は、大変簡易かつ安価かつ実質的
に本発明の意図を達成するところにある。
(First Embodiment) In this embodiment,
A system in which the operation time limit of the power receiving earth leakage breaker on the power generation system side is set later than the operation time limit of the power receiving earth leakage breaker of another customer group connected to the same low-voltage distribution system will be described. The feature of this embodiment is that it achieves the purpose of the present invention very simply, inexpensively and substantially.

【0023】ほとんどの場合、発電システムを有する需
要家以外の需要家にも受電用漏電遮断器(以下、単に漏
電遮断器という)が設備されており、需要家の内部で地
絡事故が生じた場合、相応の速度(多くは0.1秒以
内)で漏電遮断器が作動し、低圧配電系統から当該需要
家への電力供給が遮断される。その時に、発電システム
を有する需要家の漏電遮断器が多少の時間動作しないよ
うにして、他の需要家での漏電に起因する遮断を防止す
るというのが、本実施の形態の本質的な技術思想であ
る。以下、具体的に説明する。
In most cases, a customer other than a customer having a power generation system is also provided with a power receiving circuit breaker (hereinafter simply referred to as a circuit breaker), and a ground fault accident occurs inside the customer. In this case, the earth leakage breaker operates at an appropriate speed (often within 0.1 second), and the power supply from the low-voltage distribution system to the customer is cut off. At that time, the essential technology of the present embodiment is to prevent the leakage breaker of the customer having the power generation system from operating for a certain period of time to prevent the interruption caused by the leakage in the other customers. It is an idea. Hereinafter, a specific description will be given.

【0024】本実施の形態にかかる発電システムを図1
を用いて説明する。図1は、本実施の形態にかかる発電
システム及びその低圧配電系統との接続の好適な一例を
示す模式的な概念図である。
FIG. 1 shows a power generation system according to this embodiment.
This will be described with reference to FIG. FIG. 1 is a schematic conceptual diagram showing a preferred example of a power generation system according to the present embodiment and its connection to a low-voltage distribution system.

【0025】(直流電源)本発明の発電システムの直流
電源は、対地浮遊容量を有するものであれば特に限定さ
れないが、後述するように、直流電源としては太陽電池
を含む電源が好適である。
(DC Power Supply) The DC power supply of the power generation system of the present invention is not particularly limited as long as it has a floating capacity to the ground. As described later, a power supply including a solar cell is suitable as the DC power supply.

【0026】(太陽電池アレイ)本発明の発電システム
の直流電源として好適に用いられる太陽電池アレイ1
は、種々の構成のものを用いることが可能である。もち
ろんアレイではなく、一個の太陽電池を直流電源とする
こともできるが、大きな電力を得るためには、複数の太
陽電池を有する太陽電池アレイが好適である。太陽電池
アレイ1は、対地浮遊容量6があるものであればよく、
アレイを構成する太陽電池モジュールの種類は限定され
ない。対地浮遊容量6が大きいものほど本発明の効果は
大きく、金属補強板上に太陽電池セル(素子)が樹脂封
止された太陽電池モジュール、金属板上に接するように
施工される太陽電池モジュール、建材一体型の太陽電池
モジュール等で太陽電池アレイを構成した時に本発明は
特に効果が大きい。また、通常時は対地浮遊容量6が小
さくても、雨などで対地浮遊容量6が大きくなる太陽電
池モジュールを用いた太陽電池アレイを用いた場合にも
本発明の効果が得られる。また、上記金属補強板、金属
板等が接地されている場合には、安定した対地浮遊容量
が存在しているので、不要な遮断が生じ易くなり、本発
明の効果が顕著に発揮されることになる。本発明の効果
が特に顕著に現れる対地浮遊容量の範囲は、0.1μF
以上である。(原理的には容量が大きいほど漏電電流が
流れやすくなるため、上限は無い。) 本実施の形態では、裏面に金属板を有する太陽電池モジ
ュール(キヤノン製、商品形式BS2-01、定格出力
60Wp(ワットピーク))を60枚(15直列4並
列)使用して3.6kWpのアレイを構成した。裏面金
属板は、すべて接地した。この時の浮遊容量6の実測値
は2.4μFであった。なお、原理的に言って、容量6
としてはインバータ内部のフィルタコンデンサ等の容量
も当然含まれる。要はDC回路の大地に対する静電容量
が問題となるのである。
(Solar Cell Array) A solar cell array 1 suitably used as a DC power supply of the power generation system of the present invention.
Can have various configurations. Of course, instead of an array, one solar cell can be used as a DC power supply, but a solar cell array having a plurality of solar cells is suitable for obtaining large power. The solar cell array 1 only needs to have a ground floating capacitance 6,
The type of the solar cell module constituting the array is not limited. The effect of the present invention is greater as the ground floating capacitance 6 is larger, a solar cell module in which solar cells (elements) are resin-sealed on a metal reinforcing plate, a solar cell module constructed to be in contact with the metal plate, The present invention is particularly effective when a solar cell array is formed by building material integrated solar cell modules and the like. In addition, the effect of the present invention can be obtained even when a solar cell array using a solar cell module in which the floating capacitance 6 to the ground becomes large due to rain or the like even when the floating capacitance 6 to the ground is small normally. In addition, when the metal reinforcing plate, the metal plate, and the like are grounded, since there is a stable floating capacitance to the ground, unnecessary interruption is likely to occur, and the effect of the present invention is remarkably exhibited. become. The range of the stray capacitance to the ground where the effect of the present invention is particularly remarkable is 0.1 μF
That is all. (In principle, the larger the capacity, the more easily the leakage current flows, so there is no upper limit.) In this embodiment, a solar cell module having a metal plate on the back surface (manufactured by Canon, product type BS2-01, rated output 60 Wp (Watt peak)), and a 3.6 kWp array was constructed using 60 sheets (15 in series and 4 in parallel). All the back metal plates were grounded. The measured value of the floating capacitance 6 at this time was 2.4 μF. Note that, in principle, the capacity 6
This naturally includes the capacity of a filter capacitor or the like inside the inverter. The point is that the capacitance of the DC circuit with respect to the ground becomes a problem.

【0027】(インバータ)インバータ2はトランスレ
スインバータであり、種々のトランスレスインバータを
用いることができる。本発明は、非絶縁タイプのインバ
ータと浮遊容量のある直流電源を組み合わせた発電シス
テムでは、外部地絡電流の侵入が発生してしまうことに
着目してなされている。このような状況が発生するため
にはトランスレスインバータが必須なのである。本実施
の形態では、日本電池製トランスレスインバータ(形式
LINEBACK FX)を使用した。なお、インバー
タの出力電気方式(単相・三相、電圧、周波数)は、連
系する配電系統に合わせることが望ましい。
(Inverter) The inverter 2 is a transformerless inverter, and various transformerless inverters can be used. The present invention has been made by focusing on the fact that intrusion of an external ground fault current occurs in a power generation system combining a non-insulated type inverter and a DC power supply having a stray capacitance. In order for such a situation to occur, a transformerless inverter is essential. In the present embodiment, a transformerless inverter (model LINEBACK FX) manufactured by Nippon Battery was used. In addition, it is desirable that the output electric system (single-phase / three-phase, voltage, frequency) of the inverter is adjusted to the distribution system to be interconnected.

【0028】(低圧配電系統)低圧配電系統4は、1線
が接地された低圧配電系統であればよく、電圧、周波
数、配線方式に制限はない。本実施の形態では単相3線
式100V/200V、60Hzの配電系統とした。
(Low-voltage distribution system) The low-voltage distribution system 4 may be a low-voltage distribution system in which one line is grounded, and there is no limitation on voltage, frequency, and wiring system. In the present embodiment, a single-phase three-wire 100 V / 200 V, 60 Hz power distribution system is used.

【0029】(負荷)負荷5は、電力を消費するもので
あれば何でもよく、例えば一般の電化製品からなる。本
実施の形態では、負荷5として1kWの電気ストーブを
用い、これを需要家A、B1及びB2に設置した。
(Load) The load 5 may be anything as long as it consumes power, for example, a general electric appliance. In the present embodiment, an electric stove of 1 kW is used as the load 5 and installed in the consumers A, B1, and B2.

【0030】(受電用漏電遮断器)発電システムに使用
される漏電遮断器3Aとしては、動作時限設定手段7を
内蔵したものを採用した。このようなタイプの漏電遮断
器としては市販品が数多く存在するのでそれを用いるこ
とができる。動作電流は30mAである。無論、このよ
うな動作時限設定手段7は外付けであってもよいし、動
作時限設定の方法としてもデジタル・アナログを問わず
種々の公知技術を適用することが可能である。
(Electric Leakage Circuit Breaker for Power Receiving) As the earth leakage circuit breaker 3A used in the power generation system, one incorporating the operation time setting means 7 was adopted. There are many commercially available earth leakage breakers of this type, which can be used. The operating current is 30 mA. Needless to say, the operation time limit setting means 7 may be externally provided, and various known techniques may be applied to the operation time limit setting method irrespective of digital or analog.

【0031】また、本実施の形態では、他の需要家群B
1、B2の漏電遮断器3として、定格動作電流30m
A、動作時限0.1秒以下のものを選択した。この程度
の感度と動作電流の漏電遮断器が、一般家庭で最も使用
頻度が高いというのが選択の理由である。
In this embodiment, another customer group B
1, the rated operating current 30m as the earth leakage breaker 3 of B2
A, those with an operation time limit of 0.1 second or less were selected. The reason for the selection is that the earth leakage breaker of this degree of sensitivity and operating current is most frequently used in ordinary households.

【0032】本実施の形態の本質的な技術思想は、発電
システムを有する需要家の漏電遮断器が多少の時間動作
しないようにして、他の需要家での漏電に起因する遮断
を防止するというものである。そこで、発電システムの
漏電遮断器3Aの動作時限を他の需要家群B1、B2の
漏電遮断器3の動作時限よりも長い0.8秒に設定し
た。この漏電遮断器3Aの動作時限は、本発明の目的が
達成できる範囲で短い方が望ましく、より具体的には、
0.1秒以上1.0秒以下とすることが好ましい。
The essential technical idea of the present embodiment is that the leakage breaker of the customer having the power generation system is not operated for a certain period of time to prevent the interruption caused by the leakage in the other customers. Things. Therefore, the operation time of the earth leakage breaker 3A of the power generation system is set to 0.8 seconds, which is longer than the operation time of the earth leakage breakers 3 of the other customer groups B1 and B2. It is desirable that the operation time limit of the earth leakage breaker 3A is short as long as the object of the present invention can be achieved. More specifically,
It is preferable that the time be 0.1 second or more and 1.0 second or less.

【0033】時限を変えるには、直接的な遅延時限を変
えるほかに、定格動作電流を変える方法もある。この方
法は、同じ大きさの漏電電流が流れた場合に、定格動作
電流の大きい漏電遮断器(感度の鈍い方)が遅く動作す
る事を利用する。即ち、発電システム側の漏電遮断器3
Aの定格動作電流を需要家群B1、B2の漏電遮断器3
の定格動作電流よりも大きな値とすれば良いが、極端な
感度の低下を招くべきではないとの点も考慮することが
好ましい。具体的には、漏電遮断器3Aの定格動作電流
は、100mA以上1000mA以下とすることが好ま
しい。
To change the time period, there is a method of changing the rated operating current in addition to directly changing the delay time period. This method utilizes the fact that a leakage breaker with a large rated operating current (the one with lower sensitivity) operates slowly when a leakage current of the same magnitude flows. That is, the earth leakage breaker 3 on the power generation system side
The rated operating current of A is connected to the earth leakage breakers 3 of the customer groups B1 and B2.
May be set to a value larger than the rated operating current, but it is preferable to consider that extreme reduction in sensitivity should not be caused. Specifically, the rated operating current of the earth leakage breaker 3A is preferably 100 mA or more and 1000 mA or less.

【0034】なお、通常市販されている漏電ブレーカを
用いてシステムを構築する場合、定格動作電流を変える
方法よりも直接的な遅延時限を変える方法の方が条件の
設定が容易であるので好ましい。
When a system is constructed using a commercially available earth leakage breaker, a method of directly changing the delay time is preferable to a method of changing the rated operating current because the condition can be easily set.

【0035】(動作試験)需要家B2において、漏電電
流500mA、0.1秒の地絡事故を発生させた。B2
の遮断器は約50msで動作し、B1の遮断器は漏電電
流の侵入が無いので不動作であった。また、この時の発
電システムへの侵入漏電電流はほぼ200mAに達して
いたが、漏電遮断器3A自身は動作せず、不要遮断が生
じない事が確認できた。
(Operation Test) In the customer B2, a ground fault having a leakage current of 500 mA for 0.1 second was generated. B2
The circuit breaker of No. 1 operated in about 50 ms, and the circuit breaker of B1 did not operate because there was no leakage current intrusion. In addition, although the leakage current leaking into the power generation system at this time reached almost 200 mA, it was confirmed that the leakage breaker 3A itself did not operate, and unnecessary breakage did not occur.

【0036】(第2の実施の形態)本実施の形態では、
発電システム側の地絡検出機能に地絡が外部で起きたか
否かを判定する地絡方向判定手段を用いたシステムにつ
いて説明する。
(Second Embodiment) In this embodiment,
A system using a ground fault direction determining means for determining whether or not a ground fault has occurred in the ground fault detection function on the power generation system side will be described.

【0037】従来例である図9で示したとおり、地絡電
流Ig2は対地浮遊容量6を通じて発電システムAに侵
入してくる。この時の擬似等価回路を図8に示した。需
要家B2の地絡抵抗Rxにより発生した地絡電流Ig0
は、(太陽電池モジュールの裏面金属板がD種接地して
ある場合)本来流れるべきB種接地抵抗Rbを通じて流
れてくる電流Ig1とD種接地抵抗Rdおよび対地浮遊
容量Cの直列回路とを通じて流れてくる電流Ig2とに
なる。したがって、この場合、中性線の対地電位を基準
位相に取ると、発電システムを通じて流れる零相電流
(侵入地絡電流Ig2)は進み電流になる。このことを
利用して侵入地絡電流Ig2を検出することで地絡が需
要家Aの外部で生じたか内部で生じたかを判定し、遮断
器の動作を制御するということが、本実施の形態の大き
な特徴である。
As shown in FIG. 9, which is a conventional example, the ground fault current Ig2 enters the power generation system A through the ground floating capacitance 6. The pseudo equivalent circuit at this time is shown in FIG. Ground fault current Ig0 generated by ground fault resistance Rx of customer B2
Means that the current Ig1 flowing through the B-class grounding resistor Rb, which should flow normally, and the series circuit of the D-class grounding resistor Rd and the stray capacitance C to the ground (when the back metal plate of the solar cell module is D-class grounded) Current Ig2. Therefore, in this case, when the ground potential of the neutral wire is set to the reference phase, the zero-phase current (intrusion ground fault current Ig2) flowing through the power generation system becomes a leading current. In this embodiment, by detecting the intrusion ground fault current Ig2 by utilizing this fact, it is determined whether the ground fault has occurred outside or inside the customer A and the operation of the circuit breaker is controlled. It is a big feature of.

【0038】図2は、本実施の形態にかかる発電システ
ム及びその低圧配電系統との接続の好適な一例を示す模
式的な概念図である。図2中、Aは太陽光発電システム
を有する需要家であり、その発電システム中の漏電遮断
器3Bは地絡方向判定手段8Aを有している。図2中、
太陽電池アレイ1、系統連系インバータ2、低圧配電系
統4、負荷5および需要家群B1、B2に用いられる漏
電遮断器3は、第1の実施の形態と同様である。
FIG. 2 is a schematic conceptual diagram showing a preferred example of a power generation system according to the present embodiment and its connection to a low-voltage distribution system. In FIG. 2, A is a customer having a photovoltaic power generation system, and the earth leakage breaker 3B in the power generation system has a ground fault direction determining means 8A. In FIG.
The solar cell array 1, the grid-connected inverter 2, the low-voltage distribution system 4, the load 5, and the earth leakage breaker 3 used for the customer groups B1 and B2 are the same as those in the first embodiment.

【0039】(遮断手段器3Bの構成)本実施の形態で
用いられる漏電遮断器3Bは、地絡方向判定手段8Aを
含んでいる。地絡方向判定手段8Aは、図2に示したよ
うに漏電遮断器3Bの中に含まれていてもよく、漏電遮
断器3Bとは別に存在していてもよい。漏電遮断器3B
の概要を図3に示す。図3は、漏電遮断器3Bの構成を
示す模式的なブロック図である。
(Structure of Circuit Breaker 3B) The earth leakage breaker 3B used in the present embodiment includes a ground fault direction determining means 8A. The ground fault direction determining means 8A may be included in the earth leakage breaker 3B as shown in FIG. 2, or may be provided separately from the earth leakage breaker 3B. Earth leakage breaker 3B
Is shown in FIG. FIG. 3 is a schematic block diagram showing the configuration of the earth leakage breaker 3B.

【0040】地絡方向判定手段8Aは、対地電圧検出手
段82、零相電流トランス81、零相電流検出手段8
3、位相比較手段84からなる。地絡方向判定手段8A
は、零相電流を基準とする対地電圧の位相が一定の位相
範囲に入る場合には、地絡が需要家Aの外部で発生した
(外部地絡)と判定し、入らなかった場合には、地絡が
需要家Aの内部で発生した(内部地絡)と判定し、その
結果を出力する。本例では−30度から−150度(−
90度±60度)までの領域に入った場合に外部地絡と
判定することにした。本例のようなケースでは、侵入経
路が安定した浮遊容量を持っているので、外部地絡と判
定する範囲は-90度を中心にもっと狭く(例えば90
度±30度に)することも可能である。このような目的
に使用できる電圧検出手段、電流検出手段、位相比較手
段などは、信号変換器(transducer)として
多種多様なものが市販されており、公知公用の技術が使
用できる。
The ground fault direction determining means 8A includes a ground voltage detecting means 82, a zero-phase current transformer 81, and a zero-phase current detecting means 8
3. It comprises a phase comparing means 84. Ground fault direction determining means 8A
Is determined that a ground fault has occurred outside the customer A (external ground fault) when the phase of the ground voltage based on the zero-sequence current falls within a certain phase range, and , The ground fault has occurred inside the customer A (internal ground fault), and the result is output. In this example, from -30 degrees to -150 degrees (-
It is determined that an external ground fault has occurred when the vehicle enters an area up to 90 ° ± 60 °). In the case of this example, since the intrusion route has a stable stray capacitance, the range for determining an external ground fault is narrower around −90 degrees (for example, 90 degrees).
(± 30 degrees). A variety of voltage detectors, current detectors, phase comparators, and the like that can be used for such purposes are commercially available as signal converters, and known and publicly available technologies can be used.

【0041】位相比較手段84から出力された判定結果
(判定出力)は、時限選択器32に送られて、時限を選
択させる。具体的には外部地絡と判定した場合0.8秒
を選択し、内部地絡と判定した場合には0.1秒を選択
するようにした。
The judgment result (judgment output) output from the phase comparing means 84 is sent to the time limit selector 32 to select a time limit. Specifically, when it is determined that an external ground fault has occurred, 0.8 second is selected, and when it is determined that an internal ground fault has occurred, 0.1 second is selected.

【0042】この時限選択結果は、零相電流レベル判定
手段31(判定レベル30mA)の結果と共に接点駆動
手段33に送られ、接点34を動作させる。
The result of the time period selection is sent to the contact driving means 33 together with the result of the zero-phase current level judging means 31 (judgment level 30 mA), and the contact 34 is operated.

【0043】(動作試験)第1の実施の形態と同様に5
00mA、0.1秒の地絡を需要家B2で発生させたと
ころ、発電システムの不要遮断が起きないことを確認し
た。さらに、本実施の形態では、外部判定時の動作時限
を無限大すなわち不動作と設定することにより、地絡保
護のされていない配電系統4の幹線の地絡であっても発
電システムの遮断を抑制できる。ただし、不動作とする
ことの是非については、システムの安全性等必要性を考
慮して検討する必要がある。
(Operation test) As in the first embodiment, 5
When a ground fault of 00 mA and 0.1 second was generated at the customer B2, it was confirmed that unnecessary shutoff of the power generation system did not occur. Furthermore, in the present embodiment, the operation time limit at the time of external determination is set to infinity, that is, non-operation, so that the power generation system can be shut down even if there is a ground fault in the mains of the distribution system 4 that is not protected from ground fault. Can be suppressed. However, it is necessary to consider the necessity of disabling in consideration of the necessity of system safety and the like.

【0044】また、本実施の形態の受電用漏電遮断器
は、精度の高い内外判定が可能であるとともに、内部地
絡の場合の応答速度を落とさずにすむ。言い換えると、
内部地絡が生じた場合には通常の受電用漏電遮断器と全
く同じ動作をするので、大変安全性が高い。
Further, the earth leakage circuit breaker for power reception according to the present embodiment enables highly accurate inside / outside judgment, and does not reduce the response speed in case of an internal ground fault. In other words,
When an internal ground fault occurs, the operation is exactly the same as that of a normal earth leakage breaker for power reception, so that the safety is very high.

【0045】(第3の実施の形態)本実施の形態では、
低圧配電系統が共用接地された単相系統と三相系統から
構成されている場合(変則V結線なども含む)について
説明する。このような系は外部地絡の影響を最も受けや
すい。特に発電システムが単相系統に連系されている場
合、これが顕著になる。まず、この理由について図を参
照しながら説明する。例えば、図4に示すようにΔ接続
の三相系統と単相3線系統が共用接地された場合のベク
トル図の例は図6のようになる。S相(S線)で地絡が
生じた場合は、単相系統のR相あるいはT相で地絡が生
じた場合よりも大きな対地電位が、単相系統の接地側電
線(中性線:N線)と大地との間に発生する。このため
零相電流も大きくなる。即ち、発電システムに侵入する
地絡電流が大きくなり、漏電遮断器の不要動作が生じ易
くなるのである。本発明は、このような共有接地線を有
する低圧配電系統に連系している場合に、さらに大きな
効果が見込める。なお、このような共用接地の例は、低
圧配電系統に連系する発電系統に特有のものであると考
えられる。
(Third Embodiment) In the present embodiment,
The case where the low-voltage distribution system is composed of a single-phase system and a three-phase system that are commonly grounded (including an irregular V connection, etc.) will be described. Such systems are most susceptible to external ground faults. This is particularly noticeable when the power generation system is connected to a single-phase system. First, the reason will be described with reference to the drawings. For example, as shown in FIG. 4, an example of a vector diagram when a three-phase system of Δ connection and a single-phase three-wire system are commonly grounded is as shown in FIG. When a ground fault occurs in the S phase (S line), a larger ground potential than when a ground fault occurs in the R phase or the T phase of the single phase system. (N line) and the ground. Therefore, the zero-phase current also increases. That is, the ground fault current that enters the power generation system increases, and the unnecessary operation of the earth leakage breaker tends to occur. According to the present invention, a greater effect can be expected when interconnected to a low-voltage distribution system having such a common ground line. It should be noted that such an example of the common grounding is considered to be peculiar to the power generation system linked to the low-voltage distribution system.

【0046】このような系に関しては、地絡方向判定手
段として、第2の実施の形態よりも簡易なものを用いる
ことができる。以下、図4を用いて本実施の形態につい
て具体的に説明する。
With respect to such a system, a simpler means than the second embodiment can be used as the ground fault direction determining means. Hereinafter, this embodiment will be specifically described with reference to FIG.

【0047】図4中、太陽電池アレイ1、インバータ
2、負荷5、需要家B1、B2の受電用漏電遮断器3は
第1の実施の形態と同様の構成とした。また、その他に
ついても、第2の実施の形態と同様の点については説明
を省略する。
In FIG. 4, the solar cell array 1, the inverter 2, the load 5, and the power receiving earth leakage breakers 3 of the customers B1 and B2 have the same configuration as that of the first embodiment. Regarding other points, the description of the same points as those in the second embodiment is omitted.

【0048】(低圧配電系統4)ここでは、図4に示す
ように三相トランスから単相3線系統と三相系統を共通
配電する系を低圧配電系統として用いた。この他にも、
共通接地点を持っている2つの系統、例えば、図7に示
すようなトランスを個別に持った系や、単相トランス2
つを組み合わせて使用する変則V結線なども、本実施の
形態に適用できる。
(Low-voltage distribution system 4) Here, as shown in FIG. 4, a system for commonly distributing a single-phase three-wire system and a three-phase system from a three-phase transformer was used as a low-voltage distribution system. Besides this,
Two systems having a common ground point, for example, a system having individual transformers as shown in FIG.
An irregular V-connection using a combination of the two can also be applied to the present embodiment.

【0049】(遮断手段3C)本実施の形態で用いられ
る遮断器3Cには、第2の実施の形態よりも簡単な方向
判定手段8Bを利用することができる。かかる遮断器3
C及び方向判定手段8Bの概要を図5に示す。図5の例
では、具体的には対地電圧検出手段82の出力レベルを
対地電圧レベル判定手段85で判定し、その結果を判別
する。即ち、本実施の形態においては、中性線(N線)
の対地電圧のみを判定し外部地絡か内部地絡かを判定す
るのである。具体的には、判定手段85は、対地電圧検
出手段82の出力が予め設定された電圧しきい値よりも
低い場合には内部地絡と判定し、高い場合には外部地絡
と判定する。そして、判定出力は時限選択器32に送ら
れ時限を選択させる。この時限選択結果は、零相電流レ
ベル判定手段31の結果とともに接点駆動手段33に送
られて、接点34を動作させる。電圧しきい値は、発電
システムが連系されている系統電圧よりも高い電圧が検
出された場合に外部地絡が生じたと判定するように設定
するのが簡便である。実際に発電システム内部で最悪ケ
ースの地絡(最も対地電圧が高くなるような地絡)を起
こしてみて、その際の対地電位を基準に電圧しきい値を
設定すれば、電圧しきい値をより低くすることができる
ので、発電システム保護の観点から言えば更に好まし
い。本実施の形態では、商用系統電圧の変動も考慮し、
電圧しきい値を110Vに設定した。
(Blocking Means 3C) The direction determining means 8B, which is simpler than the second embodiment, can be used for the circuit breaker 3C used in the present embodiment. Such a circuit breaker 3
FIG. 5 shows an outline of C and the direction determination means 8B. In the example of FIG. 5, specifically, the output level of the ground voltage detecting means 82 is determined by the ground voltage level determining means 85, and the result is determined. That is, in the present embodiment, the neutral line (N line)
Only the ground voltage of the above is determined to determine whether it is an external ground fault or an internal ground fault. More specifically, the determining unit 85 determines that the output of the ground voltage detecting unit 82 is lower than a preset voltage threshold value as an internal ground fault, and determines that the output is higher than the preset voltage threshold value. Then, the judgment output is sent to the time period selector 32 to select the time period. The result of the time period selection is sent to the contact driving means 33 together with the result of the zero-phase current level judging means 31 to operate the contact. It is convenient to set the voltage threshold value so as to determine that an external ground fault has occurred when a voltage higher than the system voltage to which the power generation system is connected is detected. The worst-case ground fault (ground fault that causes the highest ground voltage) actually occurs inside the power generation system, and the voltage threshold is set based on the ground potential at that time. Since it can be lower, it is more preferable from the viewpoint of power generation system protection. In the present embodiment, the fluctuation of the commercial system voltage is also considered,
The voltage threshold was set at 110V.

【0050】第2の実施の形態では位相比較により方向
判定を行ったが、本実施の形態では電圧検出により判定
を行う。そのため構成が簡単になり、コスト的にも有利
になるという特徴がある。
In the second embodiment, the direction is determined by comparing the phases, but in the present embodiment, the determination is performed by detecting the voltage. Therefore, there is a feature that the configuration is simplified and the cost is advantageous.

【0051】なお、方向判定以外の要素は、第2の実施
の形態と同様であるので説明を一部省略した。
Elements other than the direction determination are the same as those in the second embodiment, so that the description is partially omitted.

【0052】(動作試験)需要家B2でS相の地絡(5
00mA、0.1秒)を発生させたところ、対地電位は
130Vまで上昇し、不要遮断(漏電遮断器の不要動
作)が起きないことを確認した。しかし、単相配電系統
と共通であるR相又はT相の地絡を発生させた場合には
不要遮断が生じてしまった。これは、S相又はT相の地
絡を発生させた場合には対地電位が110Vまで上昇し
ないためである。このような不要遮断は、時限選択器3
2を第2の実施の形態と同様にして漏電遮断器3Cの動
作時限を遅くすることで防ぐことができる。
(Operation test) A ground fault (5
(00 mA, 0.1 second), the ground potential rose to 130 V, and it was confirmed that unnecessary interruption (unnecessary operation of the earth leakage breaker) did not occur. However, when an R-phase or T-phase ground fault common to the single-phase power distribution system is generated, unnecessary interruption occurs. This is because the ground potential does not rise to 110 V when an S-phase or T-phase ground fault is generated. Such an unnecessary cutoff is performed by the time selector 3.
2 can be prevented by delaying the operation time limit of the earth leakage breaker 3C in the same manner as in the second embodiment.

【0053】本実施の形態のように方向判定を対地電圧
で行うのに最も適した系は、図7に示すように単相系と
三相系が個別のトランスを持ち、なおかつ1線が共用接
地されている場合である。図7に示す場合には、図4に
示す場合と異なり、R相又はT相の地絡が発生した場合
にも対地電位上昇が生じ、内部地絡か外部地絡かの判定
が可能になる。即ち、図7に示すような場合には時限選
択器32が不要となる。なお、図7に示す場合には、中
性線S相およびN相は元々接地されているので、これら
の相における地絡は一般的には検出する必要がない。
As shown in FIG. 7, the most suitable system for performing the direction judgment with respect to the ground voltage as in the present embodiment is that the single-phase system and the three-phase system have separate transformers and one line is shared. This is the case when it is grounded. In the case shown in FIG. 7, unlike the case shown in FIG. 4, a ground potential rise also occurs when an R-phase or T-phase ground fault occurs, and it is possible to determine whether an internal ground fault or an external ground fault is occurring. . That is, in the case shown in FIG. 7, the time selector 32 becomes unnecessary. In the case shown in FIG. 7, since the neutral S and N phases are originally grounded, it is not generally necessary to detect a ground fault in these phases.

【0054】[0054]

【発明の効果】以上、述べてきたように本発明は、以下
のような顕著な効果を有する。 (1)外部地絡事故時に不要な遮断動作を行わない。こ
のために発電システムにおける停電が減る。 (2)停電が減るので、発電停止する機会も減り、発電
損失が生じにくい。
As described above, the present invention has the following remarkable effects. (1) Unnecessary shutoff operation is not performed in the event of an external ground fault. This reduces power outages in the power generation system. (2) Since the number of power outages is reduced, the chance of stopping power generation is also reduced, and power generation loss is hardly caused.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態にかかる発電システ
ム及びその低圧配電系統との接続の好適な一例を示す模
式的な概念図である。
FIG. 1 is a schematic conceptual diagram showing a preferred example of a power generation system according to a first embodiment of the present invention and its connection to a low-voltage distribution system.

【図2】本発明の第2の実施の形態にかかる発電システ
ム及びその低圧配電系統との接続の好適な一例を示す模
式的な概念図である。
FIG. 2 is a schematic conceptual diagram showing a preferred example of a power generation system and a connection to a low-voltage distribution system according to a second embodiment of the present invention.

【図3】本発明で使用される漏電遮断器の構成の一例を
示す模式的な概念図である。
FIG. 3 is a schematic conceptual diagram showing an example of a configuration of an earth leakage breaker used in the present invention.

【図4】本発明の第3の実施の形態にかかる発電システ
ム及びその低圧配電系統との接続の好適な一例を示す模
式的な概念図である。
FIG. 4 is a schematic conceptual diagram showing a preferred example of a power generation system according to a third embodiment of the present invention and its connection to a low-voltage distribution system.

【図5】本発明で使用される漏電遮断器の構成の一例を
示す模式的な概念図である。
FIG. 5 is a schematic conceptual diagram showing an example of a configuration of an earth leakage breaker used in the present invention.

【図6】共用接地系統の電圧ベクトル図の例である。FIG. 6 is an example of a voltage vector diagram of a common ground system.

【図7】本発明の第3の実施の形態にかかる発電システ
ムに接続されうる共用接地系統の一例を示す模式的な概
念図である。
FIG. 7 is a schematic conceptual diagram showing an example of a common grounding system that can be connected to a power generation system according to a third embodiment of the present invention.

【図8】侵入地絡電流の発生経路を示す擬似等価回路に
ついて説明するための示す概念図である。
FIG. 8 is a conceptual diagram illustrating a pseudo-equivalent circuit showing a generation path of an inrush ground current.

【図9】従来の発電システム及びその低圧配電系統との
接続の一例を示す模式的な概念図である。
FIG. 9 is a schematic conceptual diagram showing an example of a conventional power generation system and its connection to a low-voltage distribution system.

【符号の説明】[Explanation of symbols]

1 太陽電池アレイ(直流電源) 2 系統連系インバータ(トランスレス・インバータ) 3 受電用漏電遮断器 3A 動作時限遅延つき漏電遮断器 3B、3C 地絡方向判定機能つき漏電遮断器 4 低圧配電系統 5 負荷 6 対地浮遊容量 7 動作時限設定手段(遅延手段) 8A、8B 地絡方向判定手段 31 零相電流レベル判定手段 32 時限選択器 33 接点駆動手段 34 負荷開閉接点 81 零相電流トランス 82 対地電圧検出手段 83 零相電流検出手段 84 位相比較手段 85 対地電圧レベル判定手段 A 太陽光発電システムを有する需要家 B1、B2 発電設備を有さない需要家 Ig0 地絡電流 Ig1 配電系統接地極(B種接地)に流れ込む地絡電
流 Ig2 発電システムに侵入してくる地絡電流
DESCRIPTION OF SYMBOLS 1 Solar cell array (DC power supply) 2 Grid connection inverter (Transformerless inverter) 3 Earth leakage breaker for receiving power 3A Earth leakage breaker with operation time delay 3B, 3C Earth leakage direction judgment function earth leakage direction breaker 4 Low voltage distribution system 5 Load 6 Stray capacitance to ground 7 Operation time limit setting means (delay means) 8A, 8B Ground fault direction determining means 31 Zero-phase current level determining means 32 Time limit selector 33 Contact driving means 34 Load switching contact 81 Zero-phase current transformer 82 Ground voltage detection Means 83 Zero-phase current detecting means 84 Phase comparing means 85 Ground voltage level determining means A Consumers having a photovoltaic power generation system B1, B2 Consumers having no power generation facilities Ig0 Ground fault current Ig1 Distribution system grounding pole (Class B grounding) ) Ground fault current flowing into the Ig2 power generation system

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 漏電遮断器を備えた複数の需要家が接続
され1線が接地されている低圧配電系統に、受電用漏電
遮断器を介して接続され、少なくともトランスレスイン
バータと対地浮遊容量を有する直流電源とからなる発電
システムにおいて、発電システムの受電用漏電遮断器の
動作時限が上記需要家群に備えられた漏電遮断器の動作
時限よりも大きく設定されていることを特徴とする発電
システム。
1. A low-voltage distribution system to which a plurality of consumers each having an earth leakage breaker are connected and one line is grounded is connected via an earth leakage breaker for power reception to connect at least a transformerless inverter and a stray ground to ground. In the power generation system comprising a DC power supply, the operation time limit of the earth leakage breaker for power reception of the power generation system is set to be longer than the operation time period of the earth leakage breaker provided in the customer group. .
【請求項2】 前記低圧配電系統が、共通接地された単
相低圧配電系統と3相配電系統によって構成されている
低圧配電系統である請求項1に記載の発電システム。
2. The power generation system according to claim 1, wherein the low-voltage distribution system is a low-voltage distribution system including a single-phase low-voltage distribution system and a three-phase distribution system that are commonly grounded.
【請求項3】 1線が接地された低圧配電系統に受電用
漏電遮断器を介して接続され、少なくともトランスレス
インバータと対地浮遊容量を有する直流電源とからなる
発電システムにおいて、地絡位置が該発電システムの内
部か外部かを判定する地絡方向判定手段を有することを
特徴とする発電システム。
3. A power generation system connected to a low-voltage power distribution system in which one line is grounded via a ground fault circuit breaker for power reception and comprising at least a transformerless inverter and a DC power supply having a floating capacity to ground. A power generation system comprising: a ground fault direction determination unit that determines whether the power generation system is inside or outside.
【請求項4】 前記地絡方向判定手段が地絡位置を内部
と判定した場合に前記受電用漏電遮断器が動作するまで
の時間が、前記地絡方向判定手段が地絡位置を外部と判
定した場合に前記受電用漏電遮断器が動作するまでの時
間よりも短いことを特徴とする請求項3に記載の発電シ
ステム。
4. When the ground fault direction determining means determines that the ground fault position is inside, the time until the power receiving earth leakage breaker operates is determined by the ground fault direction determining means determining that the ground fault position is outside. 4. The power generation system according to claim 3, wherein the time is shorter than the time required for the power receiving circuit breaker to operate.
【請求項5】 前記地絡方向判定手段が地絡位置を内部
と判定した場合には前記受電用漏電遮断器が動作し、前
記地絡方向判定手段が地絡位置を外部と判定した場合に
は前記受電用漏電遮断器が動作しないことを特徴とする
請求項3に記載の発電システム。
5. When the ground fault direction determining means determines that the ground fault position is inside, the power receiving earth leakage breaker operates, and when the ground fault direction determining means determines that the ground fault position is outside. 4. The power generation system according to claim 3, wherein the power leakage breaker does not operate.
【請求項6】 前記低圧配電系統が、共通接地された単
相低圧配電系統と3相配電系統によって構成されている
低圧配電系統である請求項3乃至5に記載の発電システ
ム。
6. The power generation system according to claim 3, wherein the low-voltage distribution system is a low-voltage distribution system configured by a single-phase low-voltage distribution system and a three-phase distribution system that are commonly grounded.
【請求項7】 前記地絡方向判定手段が、低圧配電系統
の接地側端子の対地電圧と零相電流の位相差から地絡位
置が内部か外部かを判定する地絡方向判定手段である請
求項3乃至6に記載の発電システム。
7. A ground fault direction determining means for determining whether a ground fault position is inside or outside based on a phase difference between a ground voltage and a zero-phase current of a ground terminal of a low-voltage distribution system. Item 7. The power generation system according to any one of Items 3 to 6.
【請求項8】 前記トランスレスインバータが単相配電
系統に連系しており、前記地絡方向判定手段が、該単相
配電系統の接地側端子の対地電圧が該単相系統における
正常値よりも高い時に地絡位置を外部と判定するもので
あることを特徴とする請求項6に記載の発電システム。
8. The single-phase distribution system, wherein the transformerless inverter is connected to a single-phase distribution system, and the ground fault direction determining means determines that a ground voltage of a ground terminal of the single-phase distribution system is higher than a normal value in the single-phase distribution system. The power generation system according to claim 6, wherein the ground fault position is determined to be outside when the ground fault is high.
【請求項9】 前記直流電源が太陽電池を含む請求項1
乃至8に記載の発電システム。
9. The DC power source includes a solar cell.
9. The power generation system according to any one of items 1 to 8.
【請求項10】 前記太陽電池が、太陽電池素子と金属
板とを有する太陽電池モジュールである請求項9に記載
の発電システム。
10. The power generation system according to claim 9, wherein the solar cell is a solar cell module having a solar cell element and a metal plate.
【請求項11】 前記金属板が接地されている請求項1
0に記載の発電システム。
11. The apparatus according to claim 1, wherein the metal plate is grounded.
0. The power generation system according to 0.
【請求項12】 前記直流電源が、複数の太陽電池を直
列及び/又は並列に接続した太陽電池アレイからなる請
求項9乃至11に記載の発電システム。
12. The power generation system according to claim 9, wherein the DC power supply comprises a solar cell array in which a plurality of solar cells are connected in series and / or in parallel.
【請求項13】 1線が接地された低圧配電系統に受電
用漏電遮断器を介して接続され、少なくともトランスレ
スインバータと対地浮遊容量を有する直流電源とからな
る発電システムにおいて、前記受電用漏電遮断器が、対
地電圧検出手段と、零相電流トランスと、該零相電流ト
ランスに接続された零相電流検出手段と、該対地電流検
出手段と該零相電流検出手段とに接続された位相比較手
段と、該位相比較手段に接続され該位相手段から出力さ
れた信号に応じて異なる時限を選択する時限選択器と、
前記前記零相電流検出手段に接続された零相電流レベル
判定手段と、該零相電流レベル判定手段と該時限選択器
とに接続されそれぞれの出力に応じて接点を駆動する接
点駆動手段と、を有することを特徴とする発電システ
ム。
13. A power generating system connected to a low-voltage power distribution system in which one line is grounded through a power leakage breaker for power reception and comprising at least a transformerless inverter and a DC power supply having a floating capacity to ground, A zero-phase current transformer, a zero-phase current detector connected to the zero-phase current transformer, and a phase comparator connected to the ground current detector and the zero-phase current detector. Means, and a time selector which is connected to the phase comparing means and selects a different time according to a signal output from the phase means,
Zero-phase current level determination means connected to the zero-phase current detection means, contact drive means connected to the zero-phase current level determination means and the time selector and driving contacts according to respective outputs, A power generation system comprising:
【請求項14】 1線が接地された低圧配電系統に受電
用漏電遮断器を介して接続され、少なくともトランスレ
スインバータと対地浮遊容量を有する直流電源とからな
る発電システムにおいて、前記受電用漏電遮断器が、対
地電圧検出手段と、該対地電圧検出手段に接続された対
地電圧レベル判定手段と、零相電流トランスと、該零相
電流トランスに接続された零相電流検出手段と、前記前
記零相電流検出手段に接続された零相電流レベル判定手
段と、該零相電流レベル判定手段と前記対地電圧レベル
判定手段とに接続されそれぞれの出力に応じて接点を駆
動する接点駆動手段と、を有することを特徴とする発電
システム。
14. A power receiving system connected to a low-voltage power distribution system in which one line is grounded via a power leakage breaker for power reception and comprising at least a transformerless inverter and a DC power supply having a floating capacity to ground, A ground voltage detecting means, a ground voltage level determining means connected to the ground voltage detecting means, a zero-phase current transformer; a zero-phase current detecting means connected to the zero-phase current transformer; Zero-phase current level determining means connected to the phase current detecting means, and contact driving means connected to the zero-phase current level determining means and the ground voltage level determining means and driving a contact according to each output, A power generation system comprising:
【請求項15】 1線が接地された低圧配電系統に受電
用漏電遮断器を介して接続され、少なくともトランスレ
スインバータと対地浮遊容量を有する直流電源とからな
る発電システムにおいて、前記受電用漏電遮断器が、対
地電圧検出手段と、該対地電圧検出手段に接続された対
地電圧レベル判定手段と、該対地電圧レベル判定手段に
接続され該対地電圧判定手段の出力に応じて時限を選択
する時限選択器と、零相電流トランスと、該零相電流ト
ランスに接続された零相電流検出手段と、前記前記零相
電流検出手段に接続された零相電流レベル判定手段と、
該零相電流レベル判定手と前記時限選択器とに接続され
それぞれの出力に応じて接点を駆動する接点駆動手段
と、を有することを特徴とする発電システム。
15. A power supply system connected to a low-voltage power distribution system in which one line is grounded via a power leakage breaker for power reception and comprising at least a transformerless inverter and a DC power supply having a floating capacity to ground, A ground voltage detecting means, a ground voltage level determining means connected to the ground voltage detecting means, and a time selection connected to the ground voltage level determining means and selecting a time period according to an output of the ground voltage determining means A zero-phase current transformer; zero-phase current detection means connected to the zero-phase current transformer; zero-phase current level determination means connected to the zero-phase current detection means;
A power generation system comprising: a contact driving means connected to the zero-phase current level determining means and the time selector for driving a contact according to each output.
【請求項16】 漏電遮断器を備えた複数の需要家が接
続され1線が接地されている低圧配電系統に、少なくと
もトランスレスインバータと対地浮遊容量を有する直流
電源とからなる発電システムを受電用漏電遮断器を介し
て接続する発電システムの設置方法において、前記受電
用漏電遮断器として、動作時間が前記需要家群に備えら
れた漏電遮断器の動作時限よりも大きく設定された漏電
遮断器を接続することを特徴とする発電システムの設置
方法。
16. A power generation system comprising at least a transformerless inverter and a DC power supply having a ground floating capacity is connected to a low-voltage distribution system to which a plurality of consumers each having an earth leakage breaker are connected and one wire is grounded. In the installation method of the power generation system connected via the earth leakage breaker, as the earth leakage breaker for receiving, an earth leakage breaker whose operation time is set to be longer than an operation time of the earth leakage breaker provided in the customer group is used. A method for installing a power generation system, characterized by connecting.
【請求項17】 1線が接地された低圧配電系統に、少
なくともトランスレスインバータと対地浮遊容量を有す
る直流電源とからなる発電システムを、受電用漏電遮断
器を介して接続する発電システムの設置方法において、
地絡位置が該発電システムの内部か外部かを判定する地
絡方向判定手段を設けることを特徴とする発電システム
の設置方法。
17. A method of installing a power generation system in which a power generation system including at least a transformerless inverter and a DC power supply having a floating capacity to ground is connected to a low-voltage distribution system in which one line is grounded via a power leakage breaker for receiving power. At
A method for installing a power generation system, comprising: a ground fault direction determining means for determining whether a ground fault position is inside or outside the power generation system.
【請求項18】 前記地絡方向判定手段が地絡位置を内
部と判定した場合に前記受電用漏電遮断器が動作するま
での時間が、該地絡方向判定手段が地絡位置を外部と判
定した場合に前記受電用漏電遮断器が動作するまでの時
間よりも短くなるような制御手段を設けることを特徴と
する請求項17に記載の発電システムの設置方法。
18. The ground fault direction determining means determines that the ground fault position is outside when the ground fault direction determining means determines that the ground fault position is internal, until the power receiving earth leakage breaker operates. 18. The method according to claim 17, wherein a control unit is provided so as to be shorter than the time required for the power receiving circuit breaker to operate when the power receiving system is operated.
【請求項19】 前記地絡方向判定手段が地絡位置を内
部と判定した場合には前記受電用漏電遮断器を動作さ
せ、前記地絡方向判定手段が地絡位置を外部と判定した
場合には前記受電用漏電遮断器を動作させないような制
御手段を設けることを特徴とする請求項17に記載の発
電システムの設置方法。
19. When the ground fault direction determining means determines that the ground fault position is inside, the power receiving earth leakage breaker is operated, and when the ground fault direction determining means determines that the ground fault position is outside. 18. The method according to claim 17, further comprising: providing a control unit that does not operate the earth leakage breaker for power reception.
【請求項20】 前記地絡方向判定手段として、低圧配
電系統の接地側端子の対地電圧と零相電流の位相差から
地絡位置が内部か外部かを判定する地絡方向判定手段を
用いることを特徴とする請求項17に記載の発電システ
ムの設置方法。
20. As the ground fault direction determining means, a ground fault direction determining means for determining whether a ground fault position is inside or outside from a phase difference between a ground voltage and a zero-phase current of a ground terminal of a low-voltage distribution system is used. The method for installing a power generation system according to claim 17, wherein:
【請求項21】 前記直流電源として太陽電池を含む電
源を設けることを特徴とする請求項15乃至20に記載
の発電システムの設置方法。
21. The method according to claim 15, wherein a power supply including a solar cell is provided as the DC power supply.
【請求項22】 前記太陽電池として、太陽電池素子と
金属板とを有する太陽電池モジュールを用いることを特
徴とする請求項21に記載の発電システムの設置方法。
22. The method according to claim 21, wherein a solar cell module having a solar cell element and a metal plate is used as the solar cell.
【請求項23】 前記金属板を接地する工程を含む請求
項22に記載の発電システムの設置方法。
23. The method according to claim 22, further comprising a step of grounding the metal plate.
【請求項24】 前記直流電源として、複数の太陽電池
を直列及び/又は並列に接続した太陽電池アレイを設け
ることを特徴とする請求項21乃至23に記載の発電シ
ステムの設置方法。
24. The method according to claim 21, wherein a solar cell array in which a plurality of solar cells are connected in series and / or in parallel is provided as the DC power supply.
JP2000362832A 1999-11-29 2000-11-29 Power generation system and installation method thereof Expired - Fee Related JP3728200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362832A JP3728200B2 (en) 1999-11-29 2000-11-29 Power generation system and installation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33747199 1999-11-29
JP11-337471 1999-11-29
JP2000362832A JP3728200B2 (en) 1999-11-29 2000-11-29 Power generation system and installation method thereof

Publications (2)

Publication Number Publication Date
JP2001224129A true JP2001224129A (en) 2001-08-17
JP3728200B2 JP3728200B2 (en) 2005-12-21

Family

ID=26575802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362832A Expired - Fee Related JP3728200B2 (en) 1999-11-29 2000-11-29 Power generation system and installation method thereof

Country Status (1)

Country Link
JP (1) JP3728200B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148749A1 (en) * 2010-05-24 2011-12-01 有限会社ライフテクノス Electrical leakage detection apparatus with unexpected motion blocking function
JP2012233809A (en) * 2011-05-05 2012-11-29 Life Technos:Kk Incidental operation alarming device of leakage detection device
JP2015104297A (en) * 2013-11-28 2015-06-04 富士電機機器制御株式会社 Electric leak monitoring and protection system
JP2018152996A (en) * 2017-03-13 2018-09-27 オムロン株式会社 Distributed power source
JP2019075898A (en) * 2017-10-17 2019-05-16 株式会社関電工 Leakage current suppression device
JP2020089156A (en) * 2018-11-29 2020-06-04 ソーラーフロンティア株式会社 Power generation system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148749A1 (en) * 2010-05-24 2011-12-01 有限会社ライフテクノス Electrical leakage detection apparatus with unexpected motion blocking function
JP2011249042A (en) * 2010-05-24 2011-12-08 Lifetechnos Co Ltd Leakage detection device with adoption lock
KR101421564B1 (en) 2010-05-24 2014-07-22 유겐가이샤 라이프테크노스 Electrical leakage detection apparatus with unexpected motion blocking function
US9400302B2 (en) 2010-05-24 2016-07-26 Lifetechnos Co., Ltd. Earth leakage detector with suffered current-blocking function
JP2012233809A (en) * 2011-05-05 2012-11-29 Life Technos:Kk Incidental operation alarming device of leakage detection device
JP2015104297A (en) * 2013-11-28 2015-06-04 富士電機機器制御株式会社 Electric leak monitoring and protection system
JP2018152996A (en) * 2017-03-13 2018-09-27 オムロン株式会社 Distributed power source
JP2019075898A (en) * 2017-10-17 2019-05-16 株式会社関電工 Leakage current suppression device
JP7013086B2 (en) 2017-10-17 2022-01-31 株式会社関電工 Leakage current suppressor
JP2020089156A (en) * 2018-11-29 2020-06-04 ソーラーフロンティア株式会社 Power generation system

Also Published As

Publication number Publication date
JP3728200B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
Mirsaeidi et al. Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies
Salomonsson et al. Protection of low-voltage DC microgrids
JP3754898B2 (en) Collector box for photovoltaic power generation, photovoltaic power generation apparatus and control method
US8564916B2 (en) Photovoltaic array ground fault detection method for utility-scale grounded solar electric power generating systems
US6593520B2 (en) Solar power generation apparatus and control method therefor
US20120026631A1 (en) Photovoltaic array ground fault detection in an ungrounded solar electric power generating system and techniques to transition onto and off the utility grid
US9784781B2 (en) Islanding detection reliability in electricity distribution network
Dang et al. An adaptive protection method for the inverter dominated microgrid
US6556396B1 (en) Power generation system, and method for installing the same
Bower et al. Investigation of ground-fault protection devices for photovoltaic power system applications
CN110401178A (en) Micro-capacitance sensor overcurrent protective device
EP2596563B1 (en) Photovoltaic bipolar to monopolar source circuit converter with frequency selective grounding
Bayati et al. Fault analysis and protection of low-voltage DC microgrid equipped by renewable energy resources
JP3728200B2 (en) Power generation system and installation method thereof
Samkari et al. Multi-agent protection scheme for resilient microgrid systems with aggregated electronically coupled distributed energy resources
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP2951141B2 (en) Method of improving unbalance in single-phase three-wire line and power supply device used therefor
JP2001298850A (en) Ground detector of photovoltaic power generation panel
JPH11225448A (en) Solar power generation system and operation thereof
JP6730172B2 (en) Power system
JP2729475B2 (en) Grid connection protection device
JPH0150168B2 (en)
Longrigg Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration
JP3314602B2 (en) Grid connection protection device
Laaksonen et al. New islanding detection schemes for future distribution networks

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees