JPS58175805A - Variable resistor - Google Patents

Variable resistor

Info

Publication number
JPS58175805A
JPS58175805A JP20893182A JP20893182A JPS58175805A JP S58175805 A JPS58175805 A JP S58175805A JP 20893182 A JP20893182 A JP 20893182A JP 20893182 A JP20893182 A JP 20893182A JP S58175805 A JPS58175805 A JP S58175805A
Authority
JP
Japan
Prior art keywords
resistance
variable resistor
resistor
slider
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20893182A
Other languages
Japanese (ja)
Inventor
浦中 佑
北原 国弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP20893182A priority Critical patent/JPS58175805A/en
Publication of JPS58175805A publication Critical patent/JPS58175805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は可変抵抗器に直列に負荷抵抗を接続して負荷電
圧を加え、可変抵抗器を調整して負荷抵抗の負荷電力を
調整する可変抵抗器回路の可変抵抗器の抵抗カーブに関
するものであり、可変抵抗器の局部的焼損等の故障防止
 調整範囲の拡大、及び可変抵抗器の小形化を目的とし
ている。
Detailed Description of the Invention The present invention provides a variable resistor circuit that connects a load resistor in series to a variable resistor, applies load voltage, and adjusts the variable resistor to adjust the load power of the load resistor. This is related to the resistance curve of the variable resistor, and aims to prevent failures such as local burnout of the variable resistor, expand the adjustment range, and downsize the variable resistor.

従来、上記の可変抵抗器は例えば回転シャフトに固着し
た摺動子が摺接する抵抗体の抵抗部の抵抗カーブが適当
でないため、抵抗調整時に抵抗部内において1ケ所場合
によっては数箇所で負荷電力が許容範囲を超える結果局
部的に温度が上昇して抵抗体の局部的焼損や断線等の事
故が発生Jることがあった。そうしてこの対策としては
非常1(大きな直線型抵抗カーブ等を有する高電力の巻
線型可変抵抗器が使用されていた。このため可変抵抗器
は大型となり抵抗調整範囲も狭く、かつコストも高いも
のとなっていた。ここで上記可変抵抗器の使用対象機種
として車載用音響機器等があり、その大出力化に#なっ
て、2チヤンネルスピーカー/ステム等の場合で一対の
スピーカーの音量調節用として使用される上記抵抗器は
高電力化が要求されている。ところが音響機器を収納す
る自動車のダツシュボード等は大きさが制限されている
ため、使用ける可変抵抗器等は反対に小型化が要求され
ている。
Conventionally, in the variable resistor described above, for example, the resistance curve of the resistance part of the resistor that the slider fixed to the rotating shaft comes into sliding contact with is not appropriate, so when adjusting the resistance, the load power is lost at one or even several places in the resistance part. As a result, the temperature rises locally as a result of exceeding the allowable range, resulting in accidents such as local burnout and disconnection of the resistor. As a countermeasure to this problem, a high-power wire-wound variable resistor with a large linear resistance curve was used.As a result, the variable resistor is large, has a narrow resistance adjustment range, and is expensive. The variable resistor mentioned above is used in car audio equipment, etc., and as the output increases, it is used to adjust the volume of a pair of speakers in the case of a 2-channel speaker/stem, etc. The above-mentioned resistors that are used as such are required to have high power. However, because the size of automobile dashboards that house audio equipment is limited, the variable resistors that can be used are required to be smaller. has been done.

本発明は上記従来のこの種の可変抵抗器の欠点を解決し
、小型で故障が少なく、調整範囲が広くかつ価格の安い
可変抵抗器の提供を目的としてL)るO 以下、本発明の実施例を図面とともに説明フる。
The present invention solves the above-mentioned drawbacks of the conventional variable resistor of this type, and aims to provide a variable resistor that is small, has few failures, has a wide adjustment range, and is inexpensive. An example will be explained with drawings.

第1図は本発明可変抵抗器実施例の断面組立図、第2図
は同実施例における抵抗体基板組立の斜視図、第3図(
イ)は同実施例の回路図、同図(ロ)は同実施例の負荷
回路図、牙4図(イ)は本発明を含むiJ変低抵抗器部
分負荷電流、電力特性、及び区分抵抗ΔRに対応する電
力負荷分布を示1図、同図;′0)は本発明可変抵抗器
の抵抗カーブを示す図である。
FIG. 1 is a cross-sectional assembly view of an embodiment of the variable resistor of the present invention, FIG. 2 is a perspective view of a resistor board assembly in the same embodiment, and FIG.
A) is a circuit diagram of the same embodiment, FIG. Figure 1 shows the power load distribution corresponding to ΔR, and Figure '0) is a diagram showing the resistance curve of the variable resistor of the present invention.

標準的な可変抵抗器を示J第1図及び抵抗基板組立を示
す第2図において、lは馬蹄形状のメタルグレーズ又は
カーボンレジ/皮膜よりなる抵抗体でありセラミック等
の絶縁基板2上に固着されている。7.71は金属端子
であり、第2図に示Jように抵抗体10両端と接続し基
板2に固着さnている。3は導電弾性金属板よりなる摺
動子で/ヤント5に同着した絶縁物よりなる摺動子受4
に固着されており、シャフト5は基板2に固着された軸
受9に回転可能に枢着されている。摺動子3の先端弾性
接点部は@記抵抗体1と摺晰し抵抗を調整する 基板2
に固着された弾性金属板よりなる集1子6は、摺動子3
と摺接し基板2上の金属よりなる端子8に接続固着され
ている。
In Figure 1, which shows a standard variable resistor, and Figure 2, which shows a resistor board assembly, l is a horseshoe-shaped resistor made of metal glaze or carbon resin/film, and is fixed on an insulating substrate 2 made of ceramic or the like. has been done. Reference numerals 7 and 71 designate metal terminals, which are connected to both ends of the resistor 10 and fixed to the substrate 2 as shown in FIG. 3 is a slider made of a conductive elastic metal plate/a slider holder 4 made of an insulator attached to the Yant 5
The shaft 5 is rotatably pivoted to a bearing 9 fixed to the substrate 2. The tip elastic contact portion of the slider 3 slides against the resistor 1 to adjust the resistance. Substrate 2
The slider 6 made of an elastic metal plate is fixed to the slider 3.
It is connected and fixed to a terminal 8 made of metal on the substrate 2 in sliding contact with the terminal 8 .

ここで可変抵抗器の最も一般的な電力負荷回路として可
変抵抗器に直列に一定の負荷抵抗Rsを接続して一定の
負荷電圧Vボルトを負荷したときの可変抵抗器の抵抗体
の部分負荷電力を検討する。
Here, as the most common power load circuit for a variable resistor, the partial load power of the variable resistor's resistor when a constant load resistance Rs is connected in series with the variable resistor and a constant load voltage V volts is loaded. Consider.

電源電圧に一定の内部抵抗があるときは負荷抵抗R8に
加えて一定の等価負荷抵抗R8とみなせばよい。
When the power supply voltage has a constant internal resistance, it can be regarded as a constant equivalent load resistance R8 in addition to the load resistance R8.

可変抵抗器の調整抵抗をRとJると 可変抵抗の負荷電力W=V・工、・■TI2 、’、   W=       soR・ ・ ・(6
)(R十R,) で表わされる。
If the adjustment resistances of the variable resistor are R and J, the load power of the variable resistor W = V・cm,・■TI2,', W=soR・・・(6
)(R0R,).

以下、第4図(イ)を参照して説明する。一定の負荷抵
抗R8オームを直列に接続した可変抵抗器の調整退抗を
Rオームとする。ここで負荷抵抗R8を基準として可変
抵抗器の調整抵抗値RをR/R8で示ブと便利であり、
第4図(イ)では横軸に可変抵抗器の抵抗を0から次第
に増加させて、可変抵抗器の欧抗体はリング状で便宜上
その巾は一定とする。
This will be explained below with reference to FIG. 4(a). Let R ohm be the adjusted resistance of a variable resistor connected in series with a constant load resistance R 8 ohm. Here, it is convenient to express the adjustment resistance value R of the variable resistor as R/R8 using the load resistance R8 as a reference.
In FIG. 4(A), the resistance of the variable resistor is gradually increased from 0 on the horizontal axis, and the resistance of the variable resistor is ring-shaped and its width is constant for convenience.

可変抵抗器の調整コル抗Rを0から次第に増加させた場
合、調整抵抗Rに対する電流工、が流れるリング状抵抗
体の角度をθ、可変抵抗4の全回転角即ち全抵抗角度な
θ1、このときの全抵抗をRtとするO第4図(イ)に
示すように、可変抵抗器の抵抗R部分即ち抵抗体の角度
θに流わる電流は抵抗Rが00とき最大の電流工。を1
00チとJると、’s / RS =0.1.2.4.
10に対してそれぞれ100チ、50チ、33%、20
%、9%となる。そうして可変抵抗器の全消費電力Wワ
ットはW=R・Gであり、破線で示フようにR/Rs=
iで最大でその前後でゆるやかに減っている。
When the adjustable resistor R of the variable resistor is gradually increased from 0, the angle of the ring-shaped resistor through which the current flows with respect to the adjustable resistor R is θ, the total rotation angle of the variable resistor 4, that is, the total resistance angle θ1, this As shown in Figure 4 (a), the current flowing through the resistance R portion of the variable resistor, that is, the angle θ of the resistor, is the maximum current when the resistance R is 00. 1
00chi and J,'s/RS =0.1.2.4.
100 chi, 50 chi, 33%, 20 for 10 respectively
%, 9%. Then, the total power consumption W watts of the variable resistor is W=R・G, and as shown by the broken line, R/Rs=
It reaches its maximum at i and gradually decreases around that point.

次に第3図(イ)(ロ)に示すようにンヤフト5を回し
て摺動子3を抵抗値R1抵抗角度θの位置におきこのと
きの電流を工、とJる。次に摺動子を409回すと、抵
抗値はΔR増加し電流は減って■7−Δ工。
Next, as shown in FIGS. 3(a) and 3(b), turn the shaft 5 to position the slider 3 at a position of resistance value R1 and resistance angle θ, and calculate the current at this time. Next, when the slider is rotated 409 times, the resistance value increases by ΔR and the current decreases, resulting in ■7-Δμ.

となる。ここで局部抵抗面積増加分である抵抗角度増加
分Δθに対ブる局部負荷電力は工l・ΔRである。ここ
でこの局部負荷電力G・ΔRは抵抗体の局部面積 Δθ
での温度を上昇させ、上昇温度くによってきまる抵抗体
の局部面積Δθの局部負荷電力町と等しくなる。ここで
単位面噴当りの熱放散電力wjは温度上昇Jが一定であ
れば一定値となり、抵抗体の巾を一定とフるとこの局部
抵抗体ΔRの面積即ち角度Δθに比例フるのτ、角度Δ
θをこの部分の負荷電力G・ΔRに比例させると抵抗体
の抵抗変化部分ΔRに対する局部温度上昇を一定とする
ことができる。数式で安水フると次のように衣わさねる
。■=・ΔR<Δθ ・・(7)次に第3図(ロ)等に
示すような負荷抵抗R11を直列に接続した可変抵抗器
回路の可変抵抗器を調整したときの部分負荷電力に対す
る局部抵抗温度上昇を均一にした可変抵抗器の抵抗カー
ブ作製の実施例を説明Jる。ここで可変抵抗体の全抵抗
R4をn個の区分抵抗ΔR即ちΔR1、ΔR2・・・Δ
Rnに分ける。次に各区分抵抗ΔRに対して各部の最大
電流工、の2乗ニジを求めそれぞれのΔR・Gを討入Δ
R Σ−Σ−−・■= ・・・(8) K=l  バS で表わさねル。そうして各抵抗値の区分抵抗ΔRの角度
Δθ(長さでもよい)はΔθ3、Δθ2・・−を Δθ4で表わされる。ここで全抵抗角、θ、として□θ
−θ 、ノ’ ” IR/Σ−−−+、)t    R
becomes. Here, the local load power corresponding to the resistance angle increase Δθ, which is the local resistance area increase, is 1·ΔR. Here, this local load power G・ΔR is the local area of the resistor Δθ
The local area Δθ of the resistor, which is determined by the rising temperature, becomes equal to the local load power. Here, the heat dissipation power wj per unit surface jet is a constant value if the temperature rise J is constant, and if the width of the resistor is constant, it is proportional to the area of this local resistor ΔR, that is, the angle Δθ. , angle Δ
By making θ proportional to the load power G·ΔR in this portion, the local temperature rise in the resistance changing portion ΔR of the resistor can be made constant. When you add anhydrous water to the formula, you get the following equation. ■=・ΔR<Δθ... (7) Next, when adjusting the variable resistor of the variable resistor circuit in which the load resistor R11 is connected in series as shown in Fig. 3 (b), the local An example of creating a resistance curve for a variable resistor with uniform resistance temperature rise will be explained. Here, the total resistance R4 of the variable resistor is divided into n segmental resistances ΔR, that is, ΔR1, ΔR2...Δ
Divide into Rn. Next, find the square of the maximum current of each part for each segmental resistance ΔR, and calculate each ΔR・G.
R Σ-Σ--・■= ...(8) K=l Expressed as S. Then, the angle Δθ (the length may be used) of the segmented resistance ΔR of each resistance value is represented by Δθ3, Δθ2, . . . - by Δθ4. Here, the total resistance angle, θ, is □θ
−θ,ノ' ”IR/Σ−−−+,)t R
.

とすれば、前記可変抵抗器の部分負荷での可変抵抗器の
抵抗体の局部抵抗の温度上昇を一定とフることか可能で
ある。
If so, it is possible to keep the temperature rise of the local resistance of the resistor of the variable resistor constant when the variable resistor is partially loaded.

次に抵抗カーブ設計法の1例を計算及び図面によって説
明する。ここで抵抗体の全抵抗値Rtは負荷抵抗Rsの
10倍とし、又抵抗値を等分に分割してもよいが簡単化
のため通常の可変抵抗器抵抗体O。
Next, an example of a resistance curve design method will be explained using calculations and drawings. Here, the total resistance value Rt of the resistor is 10 times the load resistance Rs, and the resistance value may be divided into equal parts, but for simplicity, the resistor O of a normal variable resistor is used.

の製作法に準じてR/R80,5,1,2,4,1、^ 10間で抵抗体を6部分に分け、それぞれ0〜0.5.
0.5〜1・−一7〜10とする、同−抵は0.5.0
.5.1.2.3.3となる。このとき電流工8は(5
)式及び第4図(イ)に示すようにR=00最大電流と
比較して100.61.58.33.20.13チとな
り、エニは同じく100.44.25.10.5.4.
1.6チとなる。次にこれにΔR。
According to the manufacturing method of R/R80, 5, 1, 2, 4, 1, ^ 10, the resistor is divided into 6 parts, and each part is 0 to 0.5.
0.5~1・-1 7~10, same minus is 0.5.0
.. 5.1.2.3.3. At this time, electrician 8 is (5
) formula and Figure 4 (a), compared to R = 00 maximum current, it becomes 100.61.58.33.20.13, and Eni is also 100.44.25.10.5.4 ..
It becomes 1.6 inches. Next, add ΔR to this.

それぞれΔR/ R,を乗じて−6−・工、は50.2
2.25.21.12.5%となり、以上を合計してΣ
=135となる。ここで相対比のみが問題となるので、
数値は最も便利なチ値で整理した〇角度θ、を10Q%
としてチで表わすとΔθは37.16.3.18.5.
15.5.8.9.3.7  チとなり、θは37.5
3.3、?1.8.87.3.96.2.100チとな
る。角度θはそれぞれ加えることで示される。以上を下
記に表示する。  LI (1)  (2)  (3L  (4)  <5)  
(6)I      R/RsD、5  1   2 
  47  10■区間 (R/R11)0〜0.50
.)−11〜22〜44〜71〜10I(ΔR) ΔR
/R50,50,51233■電流   工R1006
750332013V(電流)”/100100   
44  25  10.5  4  1.6%/l  
  IR/B−・工:/10ロ  50     22
    25    21    12   5■Δθ
(%)    37 16.318.5 15.58.
9 3.7Vll  θ(%)    37 53.3
71.887,3 96.2 100ここで第4図(イ
)の区分抵抗ΔR/R,に対する電流■8は各抵抗部Δ
R/R11の最大電流を適用し、ピッチの狭い破線で区
分抵抗ΔRに対応Jる電力負荷分布ΔR/ R6・1二
を表示している。又第4図仲)では可変抵抗器のシャフ
トの回転角θチに対する抵抗値R/ RSの変化を表示
している。又ここでR/ R,はmtzx l Qとし
たがR/R,を10Q又は1000としても第4図(ロ
)に示す抵抗カーブは右端100チの近くで多少変るの
みで全体として大差なく、可変抵抗器の調整範囲はかな
り広くつることができる。
Multiplying each by ΔR/R, -6-・manufacturing is 50.2
It becomes 2.25.21.12.5%, and the above sums up Σ
=135. Since only the relative ratio matters here,
The numerical values are organized by the most convenient value of 〇 Angle θ, 10Q%
When expressed in chi, Δθ is 37.16.3.18.5.
15.5.8.9.3.7 Chi, and θ is 37.5
3.3,? 1.8.87.3.96.2.100 chi. The angle θ is shown by adding each. The above is shown below. LI (1) (2) (3L (4) <5)
(6) I R/RsD, 5 1 2
47 10 ■ section (R/R11) 0~0.50
.. )-11~22~44~71~10I (ΔR) ΔR
/R50,50,51233 ■Current engineering R1006
750332013V (current)”/100100
44 25 10.5 4 1.6%/l
IR/B-・Engineering: /10ro 50 22
25 21 12 5■Δθ
(%) 37 16.318.5 15.58.
9 3.7Vll θ (%) 37 53.3
71.887, 3 96.2 100 Here, the current ■8 for the segmented resistance ΔR/R in Figure 4 (a) is the resistance of each resistor Δ
The maximum current of R/R11 is applied, and the power load distribution ΔR/R6·12 corresponding to the segmental resistance ΔR is displayed using narrow-pitch broken lines. In addition, Fig. 4 (middle) shows the change in resistance value R/RS with respect to the rotation angle θ of the shaft of the variable resistor. Also, here R/R is set to mtzx l Q, but even if R/R is set to 10Q or 1000, the resistance curve shown in Figure 4 (b) only changes slightly near the right end of 100 inches, but there is no big difference overall. The adjustment range of the variable resistor can be adjusted quite widely.

前記の回路で (1)  可変抵抗器の抵抗値Rを変化させて使用した
とき可変抵抗器は摺動子の位置によって可変抵抗器の全
体及び局部の負荷電力が変化し。
In the circuit described above, (1) When the variable resistor is used with its resistance value R changed, the load power of the entire variable resistor and local load power changes depending on the position of the slider.

(2)又抵抗体はカーブ抵抗体のときはその各部で単位
表面積当りの負荷電力が異なり温度上昇も異なり、かつ
摺動子の位置によって以上は大巾に変化する。
(2) When the resistor is a curved resistor, the load power per unit surface area differs in each part, and the temperature rise also differs, and the above varies widely depending on the position of the slider.

(3)  そうして(7)式に示す可変抵抗器の抵抗値
Rを変化させたときの局部温度上昇を一定又は一定態下
としたときに始めて可変抵抗器は抵抗体の全域について
抵抗体の局部的な過負荷及び温度上昇による故障を防止
することができる。
(3) Then, only when the local temperature rise when changing the resistance value R of the variable resistor shown in equation (7) is constant or constant, the variable resistor Failure due to local overload and temperature rise can be prevented.

(4)そうして可変抵抗器の抵抗体の抵抗カーブは(7
)式より導かれる抵抗変化での局部温度上昇を一定とし
た抵抗カーブによって可変抵抗器の最も一般の使用法で
ある負荷抵抗R8を直列としたときの可変抵抗器で可変
抵抗器に最大負荷を可能とする抵抗カーブを得ることが
できる。
(4) Then the resistance curve of the resistor of the variable resistor is (7
) The maximum load can be applied to a variable resistor using a variable resistor when the load resistor R8 is connected in series, which is the most common usage of a variable resistor, using a resistance curve that keeps the local temperature rise due to resistance change constant. It is possible to obtain a resistance curve that allows

ここで端部の熱伝導の影響で抵抗の両端は多少緩和して
もよい。ここで抵抗部R7の電流が流れる部分抵抗Rの
温度上昇 はこの抵抗部分の負荷電力はR・工2である
ため、部分負荷での温度上昇は工2に比例するが、抵抗
基板の部分抵抗Rの円周方向、即ち摺動子の摺動方向に
熱伝導があるため局の範囲で多少緩和してもよい0 本発明は上記の従来のこの種の可変抵抗器の欠点を解決
し、小型で故障が少なく調整範囲が広くかつ価格の安い
可変抵抗器の提供することができ実際的な効果は極めて
大きいものである。
Here, both ends of the resistor may be somewhat relaxed due to the influence of heat conduction at the ends. Here, the temperature rise of the partial resistor R through which the current of the resistor part R7 flows is, since the load power of this resistor part is R · h2, the temperature rise at the partial load is proportional to h2, but the partial resistance of the resistor board Since there is heat conduction in the circumferential direction of R, that is, in the sliding direction of the slider, it may be relaxed to some extent within the local range. It is possible to provide a variable resistor that is small, has few failures, has a wide adjustment range, and is inexpensive, and the practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明可変抵抗器実施例の断面組立図、第2図
は同実施例における抵抗体基板組立の斜視図、第3図(
イ)は同実施例の回路図、同図(ロ)は同実施例の負荷
回路図、第4図け)は本発明を含む可変抵抗器の部分負
荷電流、電力特性、及び区分抵抗ΔRに対応する電力負
荷分布を示す図、同図−は本発明可変抵抗器の抵抗カー
ブな示す図である。 1:抵抗体、 2:基板、 3:摺動子、 4:摺動子
骨、 5:シャフト、 6:集電子、 8:集電子端子
、 7α、71α:抵抗端子、 9:軸受。 特許出願人   帝国通信工業株式会社代 理 人  
  久   高       捻第1図 (イ) ] シリー又均丁屯(R1) 第4図(C1 e外 手続補正書(方式) %式% 1、事件の表示 昭和57年 1%願 第208931  号2、発 明
 の名称 可変抵抗器 3、 補正をする者 事件との関係      er #’T出頼人氏 名 
    帝国通信工業株式会社4、 代  理  人 
 〒 tSO (2)明細書の図面の簡単な説明の欄 7、補1Eの内容
FIG. 1 is a cross-sectional assembly view of an embodiment of the variable resistor of the present invention, FIG. 2 is a perspective view of a resistor board assembly in the same embodiment, and FIG.
A) is a circuit diagram of the same embodiment, FIG. 4B is a load circuit diagram of the same embodiment, and FIG. A diagram showing the corresponding power load distribution, and a diagram showing the resistance curve of the variable resistor of the present invention. 1: Resistor, 2: Substrate, 3: Slider, 4: Slider bone, 5: Shaft, 6: Current collector, 8: Current collector terminal, 7α, 71α: Resistor terminal, 9: Bearing. Patent applicant: Teikoku Tsushin Kogyo Co., Ltd. Agent
Hisataka Nene Figure 1 (A)] Shiri Mata Hittingun (R1) Figure 4 (C1 Amendment to procedures other than e (method) % formula % 1, Indication of the case 1989 1% Application No. 208931 No. 2, Title of the invention Variable resistor 3, Relationship to the case of the person making the amendment er #'T Name of the person making the amendment
Teikoku Tsushin Kogyo Co., Ltd. 4, Agent
〒 tSO (2) Contents of column 7, Supplement 1E of brief explanation of drawings in the specification

Claims (3)

【特許請求の範囲】[Claims] (1)可変抵抗器に直列に負荷抵抗R8を接続した可変
抵抗器回路の可変抵抗器の調゛整にお0て、摺動子の抵
抗体上の位置をθ、その際の調整抵抗値をRとし、摺動
子の位置をΔθ変化させたときの調整抵抗値の変化をΔ
Rとしたとき、抵抗体の局部領域Δθ′(おける部分負
荷電力ΔR、fIIに対応する抵抗体局部領域の温度上
昇を一定5−−する抵抗カーブを備えた可変抵抗器
(1) When adjusting the variable resistor of a variable resistor circuit in which a load resistor R8 is connected in series to the variable resistor, the position of the slider on the resistor is θ, and the adjusted resistance value at that time is is R, and the change in the adjustment resistance value when the slider position is changed by Δθ is Δ
A variable resistor with a resistance curve that maintains a constant temperature rise in the local area of the resistor corresponding to the partial load power ΔR, fII in the local area Δθ' (
(2)可変抵抗器の抵抗体の全抵抗値R6を連続するn
箇の抵抗値R即ちRlRt ・・・Rに、及び摺動子の
位置θ即ちθ1θ2・−・θ  及び抵抗7L”1 区分ΔR1即ちΔR3、ΔR■・・・ΔRnに分け、次
に区分抵抗ΔRに対して各部の最大電流工、の2乗I:
を求めそれぞtのΔR/R1・Gを計算し、1ΔR。 その合計値Σ=Σ−−I、を求め、各抵抗区分%、、R
。 ΔRに対する摺動子の区間領域をΔθIllちΔθ1Δ
R Δθ、・−一Δθ7としたときΔθ工θt−H,,ft
+/Σとする抵抗カーブな備えた特許請求範囲第1項記
載の可変抵抗器
(2) Continuous n of the total resistance value R6 of the resistor of the variable resistor
The resistance value R, that is, RlRt...R, and the slider position θ, that is, θ1θ2...θ, and the resistance 7L''1 are divided into sections ΔR1, that is, ΔR3, ΔR■...ΔRn, and then the segmented resistance ΔR The maximum current of each part for each part, squared I:
Find ΔR/R1・G for each t and calculate 1ΔR. The total value Σ=Σ−-I is determined, and each resistance division %, R
. The section area of the slider with respect to ΔR is ΔθIll, Δθ1Δ
When R Δθ, - - Δθ7, Δθ work θt-H,, ft
The variable resistor according to claim 1, which has a resistance curve of +/Σ.
(3)  ΔR/ R,・Gのニジのべき数2の代りに
1.5〜2を用いた抵抗カーブを備えた特許請求範囲第
1項記載の可変抵抗器
(3) The variable resistor according to claim 1, which has a resistance curve using 1.5 to 2 instead of the rainbow power of 2 of ΔR/R,·G.
JP20893182A 1982-11-29 1982-11-29 Variable resistor Pending JPS58175805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20893182A JPS58175805A (en) 1982-11-29 1982-11-29 Variable resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20893182A JPS58175805A (en) 1982-11-29 1982-11-29 Variable resistor

Publications (1)

Publication Number Publication Date
JPS58175805A true JPS58175805A (en) 1983-10-15

Family

ID=16564493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20893182A Pending JPS58175805A (en) 1982-11-29 1982-11-29 Variable resistor

Country Status (1)

Country Link
JP (1) JPS58175805A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095837A (en) * 2007-10-12 2009-05-07 Sumitomo Metal Ind Ltd System for cooling under surface of steel sheet
JP2009095836A (en) * 2007-10-12 2009-05-07 Sumitomo Metal Ind Ltd System for cooling under surface of steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095837A (en) * 2007-10-12 2009-05-07 Sumitomo Metal Ind Ltd System for cooling under surface of steel sheet
JP2009095836A (en) * 2007-10-12 2009-05-07 Sumitomo Metal Ind Ltd System for cooling under surface of steel sheet

Similar Documents

Publication Publication Date Title
US8531264B2 (en) Current sensing resistor and method for manufacturing the same
JPH05223850A (en) High performance shunt device
JPS61234502A (en) Conductive polymer device
DE3302080A1 (en) THERMAL MASS FLOW METER, ESPECIALLY FOR GASES
JPS6265401A (en) Regulating method for ordinary heating temperature in thermosensitive electric resistance compositiion
JPS58175805A (en) Variable resistor
JPH0235251B2 (en)
US5953811A (en) Trimming temperature variable resistor
US3696294A (en) Rms voltage or current sensor
KR19990028577A (en) Shunt assembly for current measurement
US2751473A (en) Electric resistor
JPS5828327Y2 (en) Stereo balance variable resistor
CN111105909A (en) Detachable resistor
JP7190609B1 (en) temperature sensor
JPS61193402A (en) Voltage limiting element
SU809408A1 (en) Low-resistance shunt for stabilizing electronic circuits
US3258691A (en) Converter with compensation for ther- mal reverse d.c. current error
JPS55148453A (en) Semiconductor device
JPS63289402A (en) Load cell
JPS6350808Y2 (en)
JPH0132363Y2 (en)
JPS55154430A (en) Temperature detecting circuit
JPH03209703A (en) Liquid-level detecting element
JP2603974Y2 (en) Terminal board
DE102004034295A1 (en) Flat gas sensor consists of a carrier substrate with thin layers for the heating element, a solid electrolyte and electrodes