JPS58175797A - Total heat exchanger element - Google Patents

Total heat exchanger element

Info

Publication number
JPS58175797A
JPS58175797A JP5890182A JP5890182A JPS58175797A JP S58175797 A JPS58175797 A JP S58175797A JP 5890182 A JP5890182 A JP 5890182A JP 5890182 A JP5890182 A JP 5890182A JP S58175797 A JPS58175797 A JP S58175797A
Authority
JP
Japan
Prior art keywords
heat
base material
moisture
substance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5890182A
Other languages
Japanese (ja)
Inventor
Takuro Kodera
小寺 卓郎
Nobuyuki Yano
矢野 宣行
Toshio Utagawa
歌川 敏男
Akira Aoki
亮 青木
Shinji Ogawa
信二 小川
Kazufumi Watanabe
渡辺 和文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP5890182A priority Critical patent/JPS58175797A/en
Publication of JPS58175797A publication Critical patent/JPS58175797A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To increase the heat exchanging efficiency of a heat exchanger by suppressing the rise of sensible heat caused by absorption of heat which is produced when moisture absorbing substance, being added to the base material, absorbs moisture, by adding a substance which shows a heat absorbing reaction at the time when it is dissolved into water, to the base material of total heat exchanger element. CONSTITUTION:Moisture absorbing substance 2 is deposited on a base material 1, in order to increase the latent heat exchanging efficiency. When an element absorbs moisture from the airflow, first, moisture is adsorbed to the surface of an element, and absorption heat is generated to heighten the temperature of the element. At that time, high temperature generated by absorption of moisture is moderated, because the raised temperature at the time when dissolving reaction is taken place is lowered by a substance 3 such as potassium nitrate or sodium nitrate, which shows heat absorbing reaction at the time when it is dissolved into water, is deposited on the base material 1. Accordingly, the value of heat, transferred by the airflow into the base material 1, is decreased, the exchanging efficiency of sensible heat is increased, while the decrease of moisture-absorbing capacity due to the increase of temperature in the base material 1 is prevented, so that minus influences to the heat exchanging rate in latent heat can be removed.

Description

【発明の詳細な説明】 本発明は、顕熱および潜熱を同時に回収する全熱交換器
の熱交換素子に関するもので、従来のものよシ高効率の
ものを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchange element for a total heat exchanger that simultaneously recovers sensible heat and latent heat, and provides a heat exchange element that is more efficient than conventional ones.

従来、全熱交換器としては静止透過式、又は蓄熱回転式
があシ、多くの場合には潜熱交換効率を上昇させるため
に熱交換素子の基材に吸湿性物質を付加させている。し
かし、従来用いられているー□□□ 物質は、吸湿に際し熱を発生し、この熱が気流にのって
入シ込むため、顕熱の交換効率に悪影響を及ぼし、効率
の上昇をさまたげていた。また、この発熱によって、基
材表面の温度が上昇するため、吸湿能力の低下をきたし
、潜熱交換効率にも悪影響を及ぼしていた。
Conventionally, total heat exchangers have been of the stationary transmission type or the heat storage rotation type, and in many cases, a hygroscopic substance is added to the base material of the heat exchange element in order to increase the latent heat exchange efficiency. However, conventionally used materials generate heat when they absorb moisture, and this heat enters with the airflow, which has a negative impact on sensible heat exchange efficiency and hinders efficiency gains. . In addition, this heat generation increases the temperature of the surface of the base material, resulting in a decrease in moisture absorption ability and adversely affecting the latent heat exchange efficiency.

本発明は、このような問題点を軽減した熱交換素子に関
するもので、吸湿の際の熱の発生を低減し、従来よりも
高効率の熱交換素子を提供せんとするものである。すな
わち従来の全熱交換素子は、紙、アスベスト紙、プラス
チック紙などからなる基材に塩化リチウムなどの吸湿性
物質を含浸させたものか、またはアルミニウムの表面に
アルミナ。
The present invention relates to a heat exchange element that alleviates such problems, and aims to provide a heat exchange element that reduces heat generation during moisture absorption and is more efficient than conventional heat exchange elements. In other words, conventional total heat exchange elements are made by impregnating a base material such as paper, asbestos paper, or plastic paper with a hygroscopic substance such as lithium chloride, or by impregnating alumina on the surface of aluminum.

シリカなどの吸湿性物質を付着させたものがよく用いら
れている。これらの場合、気流中から素子への吸湿に際
して、まず表面への水分の吸着が起こシ、吸着熱を発生
して温度が上昇する。ついで、吸湿性物質として塩化リ
チウムなどの潮解性物質を用いた場合には、これら水分
子への溶解現象を生じる。この際、塩化リチウムなどは
発熱反応を示すので、さらに温度は上昇することになる
。しかし、基材に、水への溶解時に吸熱反応を示す物質
を付加しておけば、溶解現象での温度が降下するため、
吸着によって生じた高温度をやわらげることになる。
Those coated with a hygroscopic substance such as silica are often used. In these cases, when the element absorbs moisture from the airflow, the moisture is first adsorbed onto the surface, generating heat of adsorption and increasing the temperature. Next, when a deliquescent substance such as lithium chloride is used as a hygroscopic substance, a phenomenon of dissolution in these water molecules occurs. At this time, since lithium chloride and the like exhibit an exothermic reaction, the temperature will further rise. However, if a substance that exhibits an endothermic reaction when dissolved in water is added to the base material, the temperature during the dissolution phenomenon will drop.
This will reduce the high temperatures caused by adsorption.

以下、本発明の一実施例を図面に基づいて説明する。第
1図は従来多く用いられている基材1上に吸湿性物質2
を付加した場合の全熱交換素子板の一部の略断面図であ
る。第2図は本発明の一実施例の全熱交換素子板の一部
の略断図を示すものであり、基材1上に吸湿性物質2お
よび水への溶解時吸熱反応を示す例えば硝酸力IJ (
KNO3)  あるいは硝酸ナトリウム(NaNO5)
などの物質3を付加した場合である。基材としては、紙
、金属、プラスチックおよびこれらの複合体のいずれで
も良く、また、その形状としても、平板と波状間隔板を
交互に積層したもの、ハニカム状のものなど色々考えら
れる。
Hereinafter, one embodiment of the present invention will be described based on the drawings. Figure 1 shows a hygroscopic material 2 on a base material 1, which is commonly used in the past.
FIG. 4 is a schematic cross-sectional view of a part of the total heat exchange element plate when the total heat exchange element plate is added. FIG. 2 shows a schematic cross-sectional view of a part of a total heat exchange element plate according to an embodiment of the present invention. Power IJ (
KNO3) or sodium nitrate (NaNO5)
This is the case when substance 3 such as the following is added. The base material may be paper, metal, plastic, or a composite thereof, and its shape may be various, such as one in which flat plates and corrugated spacers are alternately laminated, or a honeycomb shape.

本発明による全熱交換ネ子の効果を確認するために、第
3図に示すような装置を用いた。第3図において、4は
ルーバー(前面パネル)、5はフレーム、6(d、7’
ロペラフアン、7はファンモータ、は吸排気口、12は
全熱交換素子である。ここでファン6をある所定時間(
例えば1分)ごとに回転を逆転させ、風向を切り換え、
全熱交換素子における吸湿、脱湿を交互に行なわせる。
In order to confirm the effect of the total heat exchanger according to the present invention, an apparatus as shown in FIG. 3 was used. In Figure 3, 4 is the louver (front panel), 5 is the frame, 6 (d, 7')
7 is a fan motor, 12 is a total heat exchange element. Here, the fan 6 is turned on for a certain predetermined time (
For example, the rotation is reversed every minute) and the wind direction is changed.
Moisture absorption and dehumidification in the total heat exchange element are performed alternately.

全熱交換素子は高さ25c11.巾25備、奥行6備の
大きさで、クラフト紙の平板と波状間隔板が交互に積層
されており、吸湿性物質として塩化リチウムが含浸され
でいる。これに、水への溶解時吸熱反応を示す物質を付
加した場合と比較して、第1表に示す。なお、処理風量
は2 m/ min 、切シ換えサイクルは1分間隔と
し、また試験の条件としては、夏期における室内冷房時
を想定して、室外側33°C170%王(相対湿度)、
室内側26°C,50%RHとした。
The total heat exchange element has a height of 25c11. It has a width of 25 mm and a depth of 6 mm, and consists of alternating layers of kraft paper flat plates and corrugated spacers, and is impregnated with lithium chloride as a hygroscopic substance. Table 1 shows a comparison with the case where a substance exhibiting an endothermic reaction when dissolved in water was added. The processing air volume was 2 m/min, the switching cycle was at 1-minute intervals, and the test conditions were: 33°C, 170% (relative humidity) outside, assuming indoor cooling in the summer;
The temperature inside the room was 26°C and 50% RH.

く以 下 余 白〉 第1表かられかるよう・に、水への溶解時に吸熱反応を
示す物質を添加した方が効果があることがわかる。これ
を、もう少し詳細にみてみると、吸湿性物質のみが付加
された素子の場合には、まず33°C,70%RHの高
温、高湿の外気がファンで吸引され、全熱交換素子板を
接触通過する。この素子の出口における気流の温度の経
時変化は、まず最初は、この素子の持つ熱容量によって
、気、流の持つ顕熱の一部が蓄熱されると共に、吸湿に
よって生じ大吸着熱の一部も蓄熱されるため、33°C
付近であるが、素子の熱容量が飽和に達すると、気流の
持つ顕熱に吸湿の際の吸着熱が加わって、1分後には3
4.6℃にまで上昇する。他方、素子における吸湿の経
時変化をみてみると、最初は脱着後であるため、残存吸
着量も少なく、また素子板の表面温度が低いため、素子
板表面の水蒸気圧は気流の水蒸気圧よシも低く、吸湿は
進行するが、時間と共に吸着された水分量が多くなるの
と、吸着時の発熱反応による表面温度の上昇によって、
表面の水蒸気圧も上昇させられ、吸湿は少なくなる。1
分後、今度はファンの回転方向が逆転し、室内の低温、
低湿の気体が室外に出ていく場合であるが、この場合に
は、室外に出ていく気流の温湿度状態よシも、さらにも
う1分後の室外気を取り入れる際に、素子がより良い条
件になっているかどうかが問題となる。34,6°C付
近まで上昇していた素子は、26°C,50%RHの室
内気で冷却されると共に、水分の脱着熱によって温度は
降下し、1分後における素子通過後の気流の温度は24
.6°Cになる。熱容量の点からは、素子の温度は低い
方が良いが、吸脱湿の点からは、素子の温度が低いと脱
湿が不充分となり、次のサイクルにおける吸湿量が少な
くなる要因となっている。他方、吸湿剤と水への溶解時
吸熱反応を示す物質の両方を付加した場合において、室
外気の取り入れに際し、吸湿で生じた吸着熱は溶解にお
ける吸熱反応でやわらげられるため、1盆後においても
KNO3テは33.6°C、NaNOsでは33.7°
Cまでしか上昇せず、吸湿性物質単独の場合と比べて約
1°C低い。また、素子における吸湿量も、素子板の表
面温度の上昇が小さいため、吸湿性物質単独の場合より
も多い。なお、溶解時吸熱反応を示す物質も吸湿性能を
有するので、吸湿量の増加には、この要因も含まれてい
る。また、ファンが逆回転して、室内気が室外へ出てい
く場合であるが、切シ換え1分後の気流の温度はKNO
3では26.5°C1NaN03では25.3°Cであ
り、素子の熱容量の点からは良くないが、脱湿に対して
は、吸湿性物質単独の場合よりも好影響を生じている。
As shown in Table 1, it can be seen that it is more effective to add a substance that exhibits an endothermic reaction when dissolved in water. Looking at this in more detail, in the case of an element to which only a hygroscopic substance is added, first high temperature and high humidity outside air of 33°C and 70% RH is sucked in by a fan, and the total heat exchange element board passing through contact. The change over time in the temperature of the air flow at the outlet of this element is caused by the fact that, due to the heat capacity of this element, a part of the sensible heat of the air and flow is stored, and a part of the large adsorption heat generated by moisture absorption is also stored. 33°C due to heat storage
When the heat capacity of the element reaches saturation, the heat of adsorption during moisture absorption is added to the sensible heat of the airflow, and after 1 minute, the heat capacity of the element reaches saturation.
The temperature rises to 4.6℃. On the other hand, if we look at the change in moisture absorption in the element over time, it is initially after desorption, so the amount of residual adsorption is small, and the surface temperature of the element plate is low, so the water vapor pressure on the element plate surface is higher than that of the air flow. Moisture absorption progresses, but as time passes, the amount of moisture absorbed increases and the surface temperature rises due to the exothermic reaction during adsorption.
The water vapor pressure at the surface is also increased and moisture absorption is reduced. 1
After a few minutes, the direction of rotation of the fan will be reversed, reducing the low temperature in the room.
In this case, the temperature and humidity conditions of the air flowing out of the room are different, and when the outdoor air is taken in after another minute, the element is in a better condition. The question is whether the conditions are met. The element, which had risen to around 34.6°C, was cooled by indoor air at 26°C and 50% RH, and the temperature decreased due to the heat of desorption of moisture, and the airflow after passing through the element after 1 minute was The temperature is 24
.. The temperature will be 6°C. From the point of view of heat capacity, the lower the element temperature, the better, but from the point of view of moisture absorption and desorption, if the element temperature is low, dehumidification will be insufficient and this will be a factor in reducing the amount of moisture absorbed in the next cycle. There is. On the other hand, when both a hygroscopic agent and a substance that exhibits an endothermic reaction when dissolved in water are added, the heat of adsorption generated by moisture absorption when outdoor air is taken in is softened by the endothermic reaction during dissolution, so even after one tray KNO3te is 33.6°C, NaNOs is 33.7°
C, which is approximately 1°C lower than when using the hygroscopic substance alone. Furthermore, the amount of moisture absorbed in the element is also greater than in the case of a hygroscopic substance alone, since the rise in the surface temperature of the element plate is small. Note that since substances that exhibit an endothermic reaction during dissolution also have hygroscopic properties, this factor is also included in the increase in the amount of hygroscopic absorption. In addition, when the fan rotates in the opposite direction and the indoor air flows out, the temperature of the airflow 1 minute after switching is KNO.
3: 26.5°C; NaN03: 25.3°C, which is not good in terms of the heat capacity of the element, but has a better effect on dehumidification than the case of a hygroscopic substance alone.

以上は、全熱交換素子を固定し、ファンの回転方向をサ
イクルごとに逆転させて、吸脱湿を繰り返した場合につ
いて述べたが、円筒形の回転蓄熱式ならびに、直交タイ
プの静止透過式の全熱交換素子についても同様のことが
言える。
The above describes the case where the total heat exchange element is fixed and the rotational direction of the fan is reversed every cycle to repeat moisture absorption and desorption. The same can be said of the total heat exchange element.

以上のように、本発明によれば、全熱交換素子の基材に
水への溶解時に吸熱反応を示す物質を付加すれば、吸湿
に伴って発生する吸着熱による顕熱の上昇を緩和させる
ことができ、ひいては、吸湿能力も向上させることがで
きて、高効率の全熱交換素子が可能となる。
As described above, according to the present invention, by adding a substance that exhibits an endothermic reaction when dissolved in water to the base material of the total heat exchange element, the increase in sensible heat due to the heat of adsorption generated with moisture absorption can be alleviated. In turn, the moisture absorption capacity can be improved, and a highly efficient total heat exchange element can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の全熱交換素子の基材に吸湿性物質を付加
した場合の素子の一部断面図、第2図は本発明の一実施
例における基材に吸湿性物質および水への溶解時に吸熱
反応を付加した場合の全熱交換素子の一部断面図、第3
図は評価試験に用いた簡易型全熱交換換気扇の略断面図
である。 1・・・・・・全熱交換素子の基材、2・・・・・・吸
湿性物質、3・・・・・・水への溶解時吸熱反応を示す
物質、5・・・・・・フレーム、6・・・・・・プロペ
ラファン、7・・・・・・ファンモーター、11・・・
・・・吸排気口、12・・・・・・全熱交換素子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ? 第2図 第3図
Figure 1 is a partial sectional view of a conventional total heat exchange element in which a hygroscopic substance is added to the base material, and Figure 2 is a partial sectional view of a conventional total heat exchange element in which a hygroscopic substance and water are added to the base material in an embodiment of the present invention. Partial cross-sectional view of the total heat exchange element when an endothermic reaction is added during melting, Part 3
The figure is a schematic cross-sectional view of a simple total heat exchange ventilation fan used in the evaluation test. 1... Base material of total heat exchange element, 2... Hygroscopic substance, 3... Substance that exhibits an endothermic reaction when dissolved in water, 5...・Frame, 6...Propeller fan, 7...Fan motor, 11...
...Intake/exhaust port, 12...Total heat exchange element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure? Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)基材に水への溶解時吸熱反応を示す物質を付加し
た素子を所定間隔を置いて配置した全熱交換素子。
(1) A total heat exchange element in which elements to which a substance exhibiting an endothermic reaction when dissolved in water is added to a base material are arranged at predetermined intervals.
(2)基材に水への溶解時に吸熱反応を示す物質を付加
すると共に吸湿性物質を付加した素子を所定間隔を置い
て配置した全熱交換素子。
(2) A total heat exchange element in which elements to which a substance exhibiting an endothermic reaction when dissolved in water and a hygroscopic substance are added to a base material are arranged at predetermined intervals.
JP5890182A 1982-04-08 1982-04-08 Total heat exchanger element Pending JPS58175797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5890182A JPS58175797A (en) 1982-04-08 1982-04-08 Total heat exchanger element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5890182A JPS58175797A (en) 1982-04-08 1982-04-08 Total heat exchanger element

Publications (1)

Publication Number Publication Date
JPS58175797A true JPS58175797A (en) 1983-10-15

Family

ID=13097701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5890182A Pending JPS58175797A (en) 1982-04-08 1982-04-08 Total heat exchanger element

Country Status (1)

Country Link
JP (1) JPS58175797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248560A1 (en) * 2022-06-21 2023-12-28 シャープ株式会社 Total heat exchange element and ventilator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248560A1 (en) * 2022-06-21 2023-12-28 シャープ株式会社 Total heat exchange element and ventilator

Similar Documents

Publication Publication Date Title
US4341539A (en) Thermally regenerative desiccant element
US3844737A (en) Desiccant system for an open cycle air-conditioning system
JPH0657295B2 (en) Selective transfer high efficiency sensible and latent heat exchange media for total energy recovery wheels
US2792071A (en) Non-frosting heat exchanger
JP2002326012A (en) Dehumidifier
Oh et al. Studying the performance of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations
JPH11262621A (en) Dehumidifying air conditioner
JP2008043899A (en) Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method
JP6376890B2 (en) Desiccant block device and desiccant air conditioner
JP2011143358A (en) Moisture absorption filter and humidifier
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JPS62297647A (en) Dehumidification system of building
JPS58175797A (en) Total heat exchanger element
JP4681203B2 (en) Air conditioner
JPS61164623A (en) Dehumidifier
JPS5896988A (en) Heat exchange method
JP2018169054A (en) Air conditioning system
JP2006289258A (en) Dehumidification body and desiccant air-conditioner using the same
JPS6042876B2 (en) Composite heat exchange equipment
Peng The analysis and design of liquid absorbent/desiccant cooling/dehumidification systems for low grade thermal energy applications
JPS6324227B2 (en)
JP3594486B2 (en) Moisture exchange element
JP2000039278A (en) Total heat exchanging element
WO2023223455A1 (en) Total heat exchange element, total heat exchanger, and production method of total heat exchange element
JPS58203331A (en) Dehumidifier for room cooler